
Strategies for Service Discovery over Ad Hoc Networks

Michel Barbeau, Evangelos Kranakis and Honghui Luo ∗

Abstract

Service discovery is an important and necessary com-
ponent of ad hoc networks. To fit within the con-
text of such networks, a post-query model with sev-
eral service discovery strategies (named post-query
strategies) are proposed, with a focus on locating ser-
vices. Strategies consists of a sequence of post-query
protocols executed in rounds and based on the loca-
tion method employed they include the conservative,
greedy, incremental, (l, l′), uniform memoryless, with
demand distribution, and with memory post-query.
We analyze some of these strategies and present a
performance evaluation in combination with the DSR
and DSDV protocols.

Keywords: ad hoc network, service discovery, resource
discovery, service location protocol, service discovery
protocol, post-query strategy

1 Introduction

An ad hoc network consists of set of nodes with wire-
less network interfaces, which is self organizing (i.e.,
its topology is established and maintained automati-
cally), short-lived and does not involve routing across
the Internet (i.e., the availability of a network in-
frastructure is not required) [16]. Service discovery
is defined as the problem of locating servers that ful-
fill requirements of clients [9]. A service discovery
protocol is a set of message formats and rules that
can be used by clients to find servers over a net-
work. There is a number of service discovery pro-
tocols, for general networks, such as Service Location
Protocol (SLP) [5] and Jini [13]. Besides, there are ad
hoc network specific discovery protocols such as Ser-
vice Discovery Protocol (SDP) [1], DEAPSpace [7],
Konark [6], and the work of Koodli and Perkins [11].

∗The authors graciously acknowledge the financial support
received from the following organizations: Natural Sciences and
Engineering Research Council of Canada (NSERC) and Math-
ematics of Information Technology and Complex Systems (MI-
TACS). Address of authors is: School of Computer Science,
Carleton University, 1125 Colonel By Drive, Ottawa, Canada
K1S 5B6 Email: {barbeau,kranakis}@scs.carleton.ca

SLP is designed for TCP/IP networks. Key ab-
stractions are the user agent, which locates services
on behalf of a client, service agent, which provides
information about a service, and directory agent,
which caches service information received from service
agents and replies to service requests from user agents.
SLP can operate in a distributed manner (without di-
rectory agents) or in a centralized manner (with one or
several directory agents). The Jini architecture con-
sists of the service provider, which is the front-end of
a service available on a node, client, which is a user of
services, and lookup service, which is a central node
where service providers register their services (simi-
lar to the directory agent of SLP). Bluetooth, a short
range ad hoc network technology, employs SDP for
locating services provided by or available on other de-
vices. The SDP architecture consists of the server and
client. To find a service, an client unicasts a request
to servers one by one. Servers either send back re-
sponses or error responses. These service discovery
protocols use a request-reply communication model.
They can, however, be used in several different ways
that we term strategies. Strategies aim at maximiz-
ing the probability of success in locating a service and
minimizing the waiting time and total number of post-
ings and queries.

In the context of service discovery in ad hoc net-
works, this paper addresses the following important
questions. How can these service discovery protocols
be best used on ad hoc networks? How can different
service discovery strategies be characterized? In par-
ticular, how is it possible to obtain a characterization
with respect to tradeoffs between expected cost and
probability that a given client succeeds in finding a
server?

In this paper, to fit within the context of ad hoc net-
works, a post-query model with several service discov-
ery strategies named post-query strategies are pro-
posed. This model focuses on locating services. It
defines ways of using service discovery protocols on
ad hoc networks. The post-query model is based
on the distributed match-making paradigm described
by Mullender and Vitányi [14] and Kranakis and

Engineering Letters, 13:1, EL_13_1_2 (Advance online publication: 4 May 2006)
__

Vitányi [12]. Their work refers only to traditional
networks. Our work goes beyond this and differs in
two important respects, all related to modeling the
message transmissions of service location protocols in
ad-hoc networks. Firstly, the post-query strategy is
taking place in a sequence of rounds. In each round
posting is followed by querying.

This is intended to account for the fact that post-
query protocols are executed at different frequencies,
as well as the fact that repeated rounds may be nec-
essary to account for collisions, faults, and service
availability. Secondly, services are requested by clients
following a probability distribution (called the client
demand distribution) which indicates the probability
that client c requests a service of a certain type (and
posted by servers).

In the post-query model, each server posts its ser-
vice(s) to other nodes according to the Posting pro-
tocol, and each client queries its desired services ac-
cording to the Querying protocol. A pair of Posting
and Querying protocols forms a post-query protocol.
In order to adapt to topological changes over time
in an ad hoc network, several post-query strategies
are proposed. A post-query strategy is a sequence of
post-query protocols executed in rounds. In the con-
text of ad hoc networks, the Posting and Querying
protocols are independent. We propose seven post-
query strategies, namely, the conservative, greedy, in-
cremental, (l, l′), uniform memoryless, with demand
distribution, and with memory post-query strategies.
we introduce a novel framework which core is a proba-
bilistic model in which service discovery strategies can
be modeled and evaluated in a uniform manner. We
show how strategies for discovering services in ad hoc
network can be represented, analyzed and evaluated
through simulations, combined with the DSR proto-
col [8] and DSDV protocol [15]. Our methodology for
evaluating the performance and efficiency of such ser-
vice discovery protocols can be useful in developing
efficient search strategies for ad-hoc networks.

Service discovery in ad hoc networks is reviewed in
Section 2. Our strategy representation model is in-
troduced in Section 3. Strategies represented in this
mode are discussed in Section 4. Section 5 presents
analytical results of post-query strategies. Section 6
presents simulation results of post-query strategies.
We conclude with Section 7.

2 Service Discovery in Ad Hoc Net-
works

Existing standards for dynamic configuration of nodes
(see for example Guttman et al [5]) are inadequate for
ad hoc networks (see Perkins [17]). A natural ques-
tion posed by Perkins [16] is: where do services re-
side? The difficulty of answering this problem is com-
pounded by the fact that in addition to the topolog-
ical changes affecting ad hoc networks over time, it
may not be possible either for service discovery to be
inserted into a network layer (due to vertical design
obstacles) or for a node to specify the exact service it
wants in a network layer (see Perkins [17]).

Bluetooth is an ad hoc network technology for nodes
that are very close to each other [1]. They are con-
structed from piconets in order to form larger net-
works called scatternets. A piconet is a set of two to
seven interconnected Bluetooth devices while a scat-
ternet is a set of interconnected piconets. Bluetooth
defines the Service Discovery Application Profile [1]
for finding services over such networks. To find a ser-
vice, a client sends a ServiceSearchRequest message
to every device on the network, one after the other
using unicast. They each respond with the Service-
SearchResponse message, which can be either positive
of negative.

IBM has developed DEAPspace that addresses the
service discovery problem in single-hop ad hoc net-
works [7]. A push model is used (servers send unso-
licited service advertisements). Each node maintains
a cache to store all the services offered in the net-
work. Nodes participate in the advertising of services
through a broadcast mechanism. Periodic broad-
casts are scheduled in a proactive way using an adap-
tive backoff mechanism. A performance evaluation of
DEAPspace shows that this approach uses about the
same bandwidth as other push model solutions while
the time required for the discovery of available services
is better, since more service information is being prop-
agated when one node broadcasts its entire cache than
when each node of the network only broadcasts the
service information which it offers. However, main-
taining such a tight convergence in a highly dynamic
ad hoc network may not be worth the effort. Un-
necessarily repeated broadcasts occur in DEAPspace,
consuming network bandwidth.

Konark [6] is designed specifically for the discovery
and delivery of services in multihop ad hoc networks.
As for the service discovery aspect, Konark supports

the push model and pull model. It assumes multicast
support from the underlying ad hoc routing protocol.
Konark attempts to balance the convergence time and
network bandwidth use. In contrast to DEAPspace,
when a node receives a service message, it only mul-
ticasts the new information, if there are any. Hence,
network traffic is reduced.

Perkins pointed out (see [17]) that existing standards
for dynamic configuration of nodes (see for example
Guttman et al [5]) are inadequate for ad hoc networks.
A natural question posed by Perkins [16] is: where
do services reside? The difficulty of answering this
question is compounded by the fact that in addition
to the topological changes affecting ad hoc networks
over time, it may not be possible either for service
discovery to be inserted into a network layer (due to
vertical design obstacles) or for a node to specify the
exact service it wants in a network layer. For the pur-
poses of service discovery in ad hoc networks, Koodli
and Perkins define extensions to ad hoc network rout-
ing protocols [11]. Their extensions together with a
routing protocol can find services and routes to ser-
vices at the same time. Service information and route
information become simultaneously available. The ex-
tensions can be combined with both proactive and re-
active routing protocols. With proactive protocols,
service information is included in packets about the
network topology that are exchanged between routers.
With reactive protocols, service discovery uses the
same messages as the one defined for route discovery,
with extensions.

In light of the above service discovery protocols for
ad hoc networks, we make the following assumption
in the sequel of this paper: routes to services are dis-
covered before or at the same time of services.

3 Strategy Model

A network is modeled as a graph G = (N, L) where
N = {1, 2, . . . , n} is a set of n nodes and L ⊆ N ×N
is a set of directed links. Whenever (i, j) ∈ L, then
there is a communication path between the nodes i
and j and i can talk to j. Given a set of nodes N ,
an ad hoc network is modeled as a discrete sequence
of graphs G0, G1, G2, At time t, Gt = (Nt, Lt),
with Nt ⊆ N , modeling the set of active nodes, and
Lt ⊆ Nt×Nt, modeling the set of active links. When-
ever (i, j) ∈ Lt, then there is a communication path
between the nodes i and j and i can talk to j at time
t. This model is similar to the one defined by Farago
and Syrotiuk [4]. To model the uncertainty in ad hoc

networks, we define the probability p, with 0 ≤ p ≤ 1,
that there is a communication path between two given
nodes. Let 1, 2, . . . , k be the k different types of ser-
vices offered in the network and let K = {1, 2, . . . , k}.
A strategy is abstracted as post-query protocols.
They are time dependent protocols executed in rounds
modeling request-reply interactions between client
and servers on a network. The post-query model de-
scribed by Mullender and Vitányi [14] and Kranakis
and Vitányi [12] refers only to traditional networks.
In this paper, we adapt and extend their post-query
model to ad hoc networks.

At any given time a client wants to locate a service
that has been posted by a server.1 Servers post ser-
vices and clients query nodes in order to locate the
desired services. Post-query protocols are algorithms
for posting and querying services. A client may re-
quest services of different types.

Definition 1 A post-query protocol is a pair of func-
tions (P, Q). P : N → 2N×K : s → P (s) is the post-
ing protocol, and Q : N → 2N×K : c → Q(c) is the
querying protocol.2

Each server s posts (respectively, client c queries for)
services in nodes of the set P (s) (respectively, Q(c))
according to the following rules. Server s posts ser-
vice i to node u if and only if (u, i) ∈ P (s). Simi-
larly, client c queries node u for service i if and only if
(u, i) ∈ Q(s). In the sequel, it will be useful to adopt
the following notations. NP (s) = {u ∈ N : (∃i ∈
K)((u, i) ∈ P (s))} be the set of nodes to which ser-
vices are posted by server s. Let KP (u, s) = {i ∈ K :
(u, i) ∈ P (s)} be the set of services posted to u by
server s and

KP (s) =
⋃

u∈N

KP (u, s)

the set of all services posted by server s. We define in
a similar manner the set NQ(c) of nodes queried by
client c and the sets KQ(v, c) (respectively, KQ(c)) of
services requested by client c when querying node v
(respectively, nodes of the network).

1Although in the application model we have in mind all
nodes are treated as computationally identical, we will still
find it convenient to use the client/server terminology in or-
der to distinguish between nodes querying/posting for services,
respectively.

2In this paper, we use 2S to denote the set of all subsets of
a set S.

Several post-query protocols fall under the category
of our model. Here we illustrate with two examples
of simple protocols. A server s (respectively, client c)
may not post (respectively, query) at all, i.e., P (s) = ∅
(respectively, Q(c) = ∅). A server s (respectively,
client c) may post (respectively, query) all services
everywhere, i.e., P (s) = N ×K (respectively, Q(c) =
N ×K).

The cost of the posting and querying protocols is the
number of postings and queries made by all nodes,
i.e.,

C(P) :=
n∑

s=1

|NP (s)| and C(Q) :=
n∑

c=1

|NQ(c)| (1)

The cost of the post-query protocol (P, Q) is an av-
eraged sum of the costs of the posting and querying
protocols, i.e.,

C(P,Q) =
1
n

n∑
s,c=1

(|NP (s)|+ |NQ(c)|) (2)

Definition 2 A client succeeds in finding all services
it wants if every service it wants has been posted by
some server to a node that it queries.

In view of the aforementioned notation, KQ(c) is the
set of services requested by client c. Therefore, suc-
cess is assured if for all services i ∈ KQ(c) there exists
a server s and a node u such that (u, i) ∈ P (s) (i.e.,
service i has been posted at node u) and (u, i) ∈ P (s)
(i.e., client c requests service i from node u). We ex-
tend this model to capture the unknown environment
of an ad hoc network. We modify Definition 1 so that
P,Q are random variables.

Definition 3 A post-query protocol is a pair (P,Q)
of functions. P : N → 2N×K : s → P (s) is the
posting protocol and Q : N → 2N×K : c → Q(c)
is the querying protocol such that P (s) and Q(c) are
random variables.

The expected cost of the posting and querying proto-
cols is defined by

E[P] :=
n∑

s=1

E[P (s)] and E[Q] :=
n∑

c=1

E[Q(c)] (3)

respectively, where

E[P (s)] :=
n∑

i=1

i · Pr[|NP (s)| = i] and

E[Q(c)] :=
n∑

c=1

i · Pr[|NQ(c)| = i]

The expected cost of the post-query protocol (P, Q) is
an averaged sum of the expected costs of the posting
and querying protocols, i.e.,

E(P, Q) := E(P) + E(Q)

=
1
n

n∑
s,c=1

(E[P (s)] + E[Q(c)]) (4)

As given in Definition 3, we are interested in maximiz-
ing the probability that a given client c ∈ N succeeds
in finding a service. This can be expressed compactly
as the probability

Pr[∀s(NQ(c) ∩NP (s) 6= ∅)] (5)

A lower bound on the expected cost E(P, Q) can be
derived easily as in the main result of Kranakis and
Vitányi [12]. Namely, if we define the random vari-
ables Ui as the number of occurrences of the node i in
an intersection NP (s) ∩NQ(c) then

E(P,Q) ≥ 2
n

n∑

i=1

E[
√

Ui] (6)

Protocols matching this lower bound exist, e.g. based
on a projective model (for more details see Refer-
ences [12], [14]). This is, however, not very useful
in the unknown environment of ad hoc networks.

Remark 1 In the context of ad hoc networks it is
reasonable to assume that the post and query pro-
tocols P (s), Q(c), s, c = 1, 2, . . . , n, are independent
and identically distributed random variables. A simi-
lar remark applies to the case of post-query strategies
which are post-query protocols executed in rounds, al-
though in the latter case a post-query protocol at a
given round may depend on the protocol of the previ-
ous round.

In general, in the model with k types of services we
are interested in maximizing the probability that a
given client succeeds in obtaining all services, namely

p(P,Q)(c) := Pr[∀i ∈ K(∃s ∈ N

(i available in NQ(c) ∩NP (s)))](7)

The dynamic changes affecting an ad hoc network in-
dicate that a post-query protocol is not by itself suffi-
cient to locate a service efficiently. For example, dur-
ing the execution of a posting (respectively, querying)

protocol nodes may not be available either because
they are operating in a non-active mode or in an ac-
tive mode but at a different frequency. To overcome
this problem we consider post-query strategies. Post-
query strategies are post-query protocols that are ex-
ecuted in a sequence of rounds, each round consisting
of a post-query protocol.

Definition 4 A post-query strategy is a sequence
(P1, Q1), . . . , (Pr, Qr), . . . , (PR, QR) of post-query
protocols executed in R rounds.

At each round r, the nodes of the network first post
services they have available to other nodes of the net-
work according to the posting protocol Pr and then
query other nodes of the system according to a query-
ing protocol Qr. Thus, post-query strategies com-
prise a sequence of post-query protocols that adapt
to changes in the network. Execution of the strategy
is in R rounds, so that during each round r = 1 . . . R
a post-query protocol is executed. Rounds are nec-
essary in order to adapt to topological changes over
time in an ad hoc network.

For the sake of simplicity, we use the notation (P,Q)
to denote a post-query strategy consisting of a se-
quence (P1, Q1), (P2, Q2), . . . , (PR, QR) of post-query
protocols. The quantity R is a parameter indicat-
ing an upper bound on the number of rounds within
which clients and servers need to terminate execution
of their respective strategy. We can extend the def-
inition in Equation 4 to define the expected cost of
a post-query strategy when executed in R rounds as
the sum over all the rounds of the expected costs of
its constituent post-query protocols, namely

E(P,Q) :=
R∑

r=1

.E(Pr, Qr) (8)

In general, a given post-query strategy (P,Q) is exe-
cuted by node s (s can be either a client or a server) in
at most R rounds or until a desired service is located.
The specific algorithm in detail is as follows.

Algorithm 1 (Post-Query Strategy (P,Q) (s))

1. for r := 1 to R
or until service i is located

(which ever comes first) do
2. for all nodes u,
3. s posts service i at node u

if and only if (u, i) ∈ Pr(s)
4. for all nodes u,

s queries for service j at node u
if and only if (u, j) ∈ Qr(s)

In round r, node s first posts services according to the
posting set Pr(s) and subsequently queries nodes for
services according to the query set Qr(s). Each post-
ing is followed by querying. The algorithm terminates
either when it succeeds in finding the desired service
or when r := R, which ever comes first.

In the model of Definition 3, we are interested in max-
imizing the probability that in the post-query proto-
col (P, Q) a given client c ∈ N succeeds in finding a
service (see Formula 5). In the case of a post-query
strategy (P, Q), we are interested in minimizing the
waiting time, i.e., the time until client c succeeds in
finding a service according to the post-query startegy
(P,Q). This is given by the formula

W(P,Q)(c) :=
∞∑

r=1

r · p′(Pr,Qr)(c) (9)

where p′(Pr,Qr)(c), is the probability that client c suc-
ceeds in finding a service at exactly the rth round.
The maximum waiting time is the maximum taken
over all clients in order to acquire a service and is
given by the formula

W(P,Q) := max
c∈N

W(P,Q)(c) (10)

4 Strategies

Post-query strategies aim to find a balance between
usage of scarce ad hoc network resources, success, and
waiting time. In the sequel, we propose several post-
query strategies.

4.1 Conservative

The conservative post-query strategy requires that in
each round all servers (clients) post to (query from)
all their one-hop neighbors using a one-hop broad-
cast communication mechanism. It is a non-adaptive,
round invariant strategy.

4.1.1 Greedy, Post-Greedy, and Query-
Greedy

These post-query strategies follow the post-to-all,
query-all rule. In a greedy post-query strategy all
nodes post to all nodes, and all nodes query all nodes
of the network using the network broadcast mecha-
nism, formally, NP (s) = NQ(c) = N, for all s, c ∈ N.
This post-query strategy is non-adaptive and does not
change with each round. It is possible to consider two
alternatives to the greedy post-query strategy: post-
greedy and query-greedy. In the former case the servers
post to all nodes and the client queries only one node,
while in the latter the servers post to only one node
while the clients query all the nodes.

4.2 Incremental

The incremental post-query strategy starts by post-
ing and querying a small number of nodes in the first
round and gradually increases the number of nodes
posted to and queried from. The strategy aims at
conserving valuable resources in an ad hoc network,
e.g. power consumption. The incremental post-query
strategy (P, Q) is a sequence (Pr, Qr), r = 1, 2, . . . , R
of post-query protocols such that (Pr, Qr) is defined
to be the (r, r)-post-query strategy, for all r ≤ R.
Two variants of this strategy are the post-incremental
and query-incremental strategies. In the former, only
the posting set is incremented, i.e., (Pr, Qr) is defined
to be the (r, 1)-post-query strategy, for all r ≤ R,
while in the latter case, only the querying set is incre-
mented, i.e., (Pr, Qr) is defined to be the (1, r)-post-
query strategy, for all r ≤ R.

In all the incremental strategies above, the probabil-
ity of success in the r-th round is calculated as in
the memoryless post-to-all, query-to-all strategy, see
Subsection 4.4. However, the waiting times W(P,Q)(c)
and W(P,Q) are calculated by using the formulas in
Identities 9 and 10.

4.3 (l, l′)-strategy

The (l, l′) post-query protocol works by following the
post-to-l and query-l′ rule, where l, l′ ≤ n are positive
integers. In detail, this means that each server posts
to a random set of l nodes all the services it has to
offer while each client queries a random set of l′ nodes.
The (l, l′) post-query strategy consists of rounds of
uniform and memoryless repetition of the (l, l′) post-
query protocol. Analysis of this strategy is given in
the Subsection 5. The expected cost of the post-query

protocol is (l + l′)n since each server posts to exactly
l nodes and each client queries exactly l′ nodes. In
such a protocol, it is easy to calculate the waiting
time from the probability of success because it obeys
the geometric distribution. Hence, the waiting time
until client c succeeds in finding all services in this
post-query protocol is equal to 1/p(P,Q)(c).

4.4 Uniform memoryless

In the uniform memoryless post-query strategy, the
same post-query protocol is executed in each round
and the posting and querying protocols are identi-
cal for all the nodes. In such protocols, it is easy
to calculate the waiting time from the probability of
success because it obeys the geometric distribution.
Hence, the waiting time until client c succeeds in find-
ing all services in this post-query protocol is equal to
1/p(P,Q)(c).

The first class of strategies we consider post to a ran-
dom set of nodes and query a random set of nodes.
The size of the set of nodes used affects the waiting
time but also the network overload and number of
collisions.

4.5 With demand distribution

We now extend our model in order to capture sup-
ply/demand conditions in an ad-hoc network. We
augment the model to account for access costs of the
services. Each service i ∈ K is associated with a
weight wi indicating some kind of access cost, like,
monetary cost in relation to the size of the program
in bits. To each client, we associate a random variable
Yc such that Yc = i is the event that client c requests
service of type i ∈ K. Let qc(i) := Pr[Yc = i] be the
probability that client c requests service i. Probabil-
ity distributions qc may or may not depend on the
client executing the protocol.

We can extend and interpret all previous definitions in
this more general setting in order to quantify the ac-
cess cost, demand probability Distribution, and wait-
ing time of acquiring item of type i by the client.
Thus, it is easy to define weighted versions of the
formulas given by Identities 2, 3, and 10. For exam-
ple, as in Identitiy 9 we can define the waiting time
W(P,Q)(c, i) for client c to locate item i. Given the de-
mand probability distribution qc(i), we can define the
demand cost of client c in order to locate all services

when following the strategy (P, Q) by the formula

D(P,Q)(c) =
k∑

i=1

W(P,Q)(c, i) · wi · qc(i) (11)

where wi is the access cost of service i. The demand
cost of the strategy is the maximum of the demand
cost of the strategy (P, Q) over all clients c, namely

D(P,Q) := max
c∈N

D(P,Q)(c) (12)

4.5.1 q-Demand balancing strategy

It is clear from Formula 11 that in order to mini-
mize the demand cost, the posting strategy of the
servers must allocate the services in such a way that
the most popular services are located faster. Assume
that all clients c use the same demand distribution
q(i) := qc(i), and this is known to the servers. The
(l, l′) q-demand balancing strategy is to post services in
proportion to their popularity to l nodes and query for
services according to their popularity from l′ nodes.

1. Posting: each server selects l nodes at random
and for each of these nodes the server posts ser-
vice i at this node with probability q(i).

2. Querying: each client selects l′ nodes at random
and queries each of these nodes for service i with
probability q(i).

In a sense, the (l, l′) q-demand balancing strategy is a
refinement of the (l, l′) post-query strategies because
it takes into account the demand distribution of the
services to post the most popular services, while in
the latter case all. services are posted and queried at
once. We note that several variants of this strategy
are possible. E.g., by combining the number of nodes
being posted/queried with the number of services. We
present an outline of the analysis of this protocol in
the appendix.

An important issue that must be raised is whether
or not the servers have a priori knowledge of the dis-
tributions used by the clients. If not, there are sev-
eral types of distributions that could be considered
for the q-demand balancing post-query strategies. A
Zipfian distribution is the most realistic. It is related
to the “80-20” rule of thumb stating that 80 percent
of transactions are dealing with the most active 20
percent of a list of items [10]. The Zipf distribu-
tion [18] satisfies q(i) = 1

iHk
, where Hk =

∑k
i=1 1/i

is the harmonic number. In a uniform distribution
all services are requested with equal probability, i.e.,
q(1) = q(2) = · · · = q(k) = 1/k. In the geomet-
ric ditribution the probability the i-th service will be
requested satisfies q(i) = a−i, for i = 1, . . . , k − 1,
and q(k) = 2 − (1 − a−k)/(1 − a−1), where a > 1.
If the ditribution is arbitrary then it will satisfy
q(1) + q(2) + · · ·+ q(k) = 1.

4.6 With memory

In a with memory post-query strategy, the clients
build a cache of nodes they visited and services they
found in the previous round. Each new round in-
volves searching only new (previously unused) nodes
for undiscovered services.

5 Analytical results

In this section, we present a detailed analysis of the
(l, l′) post-query strategy.

Consider the events Ai,s,c: i is not available in NQ(c)∩
NP (s), Bs,c: NQ(c) ∩NP (s) 6= ∅, and Bm

s,c: |NQ(c) ∩
NP (s)| = m. Using the notation above, observe that
for a given c,

Pr[i is not available in NQ(c) ∩NP (s)]
= Pr[NQ(c) ∩NP (s) = ∅] +

Pr[(i is not available in NQ(c) ∩NP (s)) and

(NQ(c) ∩NP (s) 6= ∅)]
= Pr[NQ(c) ∩NP (s) = ∅] +

min{l,l′}∑
m=1

Pr[(i is not available in

NQ(c) ∩NP (s)) & |NQ(c) ∩NP (s)| = m]
= Pr[NQ(c) ∩NP (s) = ∅] +

min{l,l′}∑
m=1

Pr[Ai,s,c|Bm
s,c] Pr[Bm

s,c]

=

0 if l + l′ > n
(n−l′

l)
(n

l)
if l + l′ ≤ n

 +

min{l,l′}∑
m=1

(Pr[Ai,s,c])
m

(
l′

m

)(
n−l′

min{l,l′}−m

)
(
n
l

)

Recall we are assuming that the post-query functions
are independent random variables, and the events “i
is available in NQ(c) ∩ NP (s)” are independent for
i ∈ K, s, c ∈ N . If we substitute the last formula
in the equation below, it follows that the probability

that a client c succeeds in the post-query protocol can
be computed as follows

p(l,l′)(c) = Pr[∀i ∈ K∃s ∈ N

(i is available in NQ(c) ∩NP (s))]
= (Pr[∃s ∈ N

(i is available in NQ(c) ∩NP (s)])k

= (1− Pr[∀s ∈ N

(i is not available in NQ(c) ∩NP (s)])k

with

Pr[∀s ∈ N(i is not available in NQ(c) ∩NP (s)]

=
n∏

s=1

Pr[i is not available in NQ(c) ∩NP (s)]

=
n∏

s=1

(A + B)

A =

0 if l + l′ > n
(n−l′

l)
(n

l)
if l + l′ ≤ n

and

B =
min{l,l′}∑

m=1

(Pr[Ai,s,c])
m

(
l′

m

)(
n−l′

min{l,l′}−m

)
(
n
l

)

It follows that the expected waiting time of the (l, l′)
post-query strategy is equal to

(
1−

n∏
s=1

(A + B)

)−k

(13)

The expected cost of the post-query protocol is (l +
l′)n since each server posts to exactly l nodes and each
client queries exactly l′ nodes.

Assume that the probability that a given type i of
service is offered by a server is at least q and at most
p. It is clear that 1−p ≤ Pr[Ai,s,c] ≤ 1−q. Using this
and Formula 13 we can obtain upper and lower bounds
on the expected waiting time W(l,l′)(c) that a client
c following the (l, l′) post-query strategy succeeds in
locating all services. Using the approximation, 1−x ≈
e−x, for x a small positive real number, we can derive
easily the following estimates for special cases of the
(l, l′) post-query protocol.

(1, 1) post-query strategy: n ≥ 2

qk ≈
(

1−
(

1− q

n

)n)k

≤ p(1,1)(c)

≤
(

1−
(

1− p

n

)n)k

≈ pk

(1, l′) post-query strategy: n ≥ l′ + 1

(l′q)k ≈
(

1−
(

1− l′q
n

)n)k

≤ p(l,1)(c)

≤
(

1−
(

1− l′p
n

)n)k

≈ (l′p)k

(l, 1) post-query strategy: n ≥ l + 1

(lq)k ≈
(

1−
(

1− lq

n

)n)k

≤ p(1,l′)(c)

≤
(

1−
(

1− lp

n

)n)k

≈ (lp)k

(l, l) post-query strategy: n ≥ 2l

We have that for a given c

Pr[i is not available in Q(c) ∩ P (s)] =
(
n−l

l

)
(
n
l

) +
l∑

m=1

(Pr[Ai,s,c])
m

(
l
m

)(
n−l
l−m

)
(
n
l

)

and the probability of success of the post-query pro-
tocol and the expected waiting time is:

p(l,l)(c) =

(
1−

n∏
s=1

(A + B)

)k

W(l,l)(c) =

(
1−

n∏
s=1

(A + B)

)−k

with

A =

(
n−l

l

)
(
n
l

)

and

B =
l∑

m=1

((Pr[Ai,s,c])
m

(
l
m

)(
n−l
l−m

)
(
n
l

)

5.1 Analysis of the (l, l′) q-Demand post-
query protocol

This is similar to the analysis of the (l, l′) post-query
protocol given above. We can compute the probability
p(l,l′)(c, i) that client c finds a given service i at a
server in the network. Indeed, we have that

p(l,l′)(c, i)
= Pr[∃s ∈ N(i is available in NQ(c) ∩NP (s))]
= 1− Pr[∀s ∈ N

(i is not available in NQ(c) ∩NP (s)]

= 1−
n∏

s=1

Pr[i is not available in NQ(c) ∩NP (s)]

Now note that the event that service i is not available
in NQ(c)∩NP (s) is equivalent to the event that service
i was not posted in NQ(c) ∩NP (s). Since the size of
the set NQ(c)∩NP (s) ranges from m = 0 to min{l, l′},
we obtain that the probability of this last event is
equal to

Pr[NQ(c) ∩NP (s) = ∅] +
min{l,l′}∑

m=1

(1− q(i))m

From this we can compute the waiting time
W(P,Q)(c, i) as well as the demand cost

D(P,Q)(c) =
k∑

i=1

W(P,Q)(c, i) · wi · qc(i)

where wi is the access cost of service i, and maximal
demand cost D(P,Q) from Identities 11 and 12.

6 Simulation results

6.1 Simulation environment

The Network Simulator (NS) is the simulation tool
used for this work [3]. The Distributed Coordination
Function (DCF) of IEEE 802.11 for wireless LANs is
used as the MAC layer protocol. The transmission
range is about 250 meters. The signal propagation
model combines both a free space propagation model
and a two-ray ground reflection model.

A network of 50 nodes is simulated. Ten of them are
servers and 40 of them are clients. There are ten kinds

of services offered in the network. We assume that all
the services follow a uniform distribution. The Ran-
dom Waypoint Mobility Model [3] is used to generate
three different kinds of network scenarios:

• scen300-01: a 300 second pause time and one m/s
maximum node speed;

• scen100-10: a 100 second pause time and 10 m/s
maximum node speed;

• scen30-30: a 30 second pause time and 30 m/s
maximum node speed.

To characterize the mobility of the nodes of an ad
hoc network, a parameter called dynamic ratio (DR)
is introduced. To calculate it, we denote the total
number of nodes in the network as N and the total
number of link changes of all the nodes during the
entire simulation time as LC. The dynamic ratio is
then defined as:

DR = LC/N

A high DR reflects a high mobility. We define the
maximum round number R as equal to ten. It is an
upper bound on the number of rounds after which
servers and clients terminate their execution. If all
the clients successfully locate their wanted services,
the simulation is terminated. Round is a time interval
of 15 seconds.

6.2 Performance metrics

We denote as N , the total number of nodes; Nc, the
total number of clients; and Nsucc the total number
of successful clients. For each round r, we denote as
Mpost,r, the number of post messages; as Mquery,r, the
number of query messages, and as Mreply,r, the num-
ber of reply messages. Each successful client c receives
one to m reply messages associated with waiting time
tc,1, tc,2, . . . , tc,m. We use three performance met-
rics: success rate (SR), number of transmitted mes-
sages (NTM), and average waiting time (AWT).

SR is the percentage of clients which successfully lo-
cate the services for which thay are loooking for. It is
calculated using the following formula:

SR = Nsucc/Nc × 100 (%)

NTM is the number of messages transmitted in each
round by all the nodes in the network. It includes the

post, query and reply messages. It is calculated using
the following formula:

NTM =
N∑

n=1

Mpost,r + Mquery,r + Mreply,r

AWT is the minimum time period, in seconds, aver-
aged over all the clients, starting from the sending of
a query message and ending with the receiving of a
reply message. A client which fails to locate a service
after r rounds has the waiting time r times the round
interval seconds. It is calculated using the following
formula:

AWT =
∑Nc

n=1 min(t1,c, t2,c, . . . , tm,c)
Nc

(s)

Given a post-query strategy, good performance means
a high SR, a short AWT, and a low NTM.

6.3 Detailed results greedy strategy

We review in detail the simulation results of the
greedy post-query strategy. The simulation results as-
sociated with the conservative, incremental, uniform
memory less, and with memory post-query strategies
are summarized in Table 1. The greedy post-query
strategy requires that all servers post their services to
all the nodes, and that all clients query their services
from all the nodes in the network in each round. To
achieve this goal, a flooding algorithm is used. Each
node tries to forward every message to every neighbor.
This results in every message eventually being deliv-
ered to all reachable parts of the network. A message
ID based mechanism is used to avoid duplicate deliv-
eries and infinite loops.

Figures 1 show that this strategy can achieve a SR
of 100% when combined with the DSR and DSDV
protocols, which means that all the clients success-
fully locate the desired services. The flooding algo-
rithm used in this strategy results in a large number
of nodes being posted to or queried from within a low
number of rounds. The higher the DR of the network
is, the lower the SR this strategy has. As the DR in-
creases, the DSR protocol has more routing overhead,
and the DSDV protocol has a lower packet delivery
ratio [2] which result in a lower SR. When this strat-
egy is combined with the DSR protocol, it has a lower
SR than the one when combined with the DSDV pro-
tocol. The flooding algorithm requires the underlying
routing protocols to accommodate the heavy routing
demands. In such circumstance, the DSR protocol is

aggressively adopted and it has more routing overhead
than the DSDV protocol.

Figures 2 show the NTM of the greedy strategy as
a function of the number of rounds, over the DSR
protocol or DSDV protocol. This strategy is costly in
terms of NTM. As the DR becomes higher, the NTM
becomes lower. When this strategy is combined with
the DSR protocol, it has a lower NTM than when
combined with the DSDV protocol.

Figure 3 presents the AWT for different DRs of the
greedy combined with the DSR protocol or DSDV
protocol. As the DR increases, the AWT becomes
longer. With the DSR protocol, this strategy has
longer AWT than with the DSDV protocol. As an on-
demand routing protocol, DSR has to accommodate
heavy routing demands of establishing routes from all
nodes to all nodes of the network, which is very time-
consuming. As a table-driven routing protocol, in the
DSDV protocol, routes are discovered before messages
are sent, which will save time.

Table 1 lists the simulation results for the conserva-
tive, greedy, incremental, uniform memory less, and
with memory post-query strategies when combined
with the DSR protocol or DSDV protocol. Note that
what is important here is not so much the absolute
numbers, but their relative values. In other words,
better or worst absolute numbers can be obtained by
changing the simulation conditions, but their relations
will remain similar.

Each strategy, given a routing protocol, was tested
with three different DRs. There is a total of 30 com-
binations. The following conclusions could be drawn.
The greedy strategy consumes a significant amount
of network resources to achieve a high SR. Among
all the strategies, it has the highest NTM and short-
est AWT. When requiring a service discovery strategy
with a high SR and a short AWT, regardless of NTM,
the greedy strategy combined with the DSDV proto-
col is a good choice. The conservative strategy can
also achieve a high SR with a low NTM and a short
AWT in a high DR ad hoc network. In a low DR ad
hoc network, the SR is low because numerous nodes
may not be posted to or queried from at all. For a
high DR ad hoc network, this strategy combined with
the DSR or DSDV protocol is the best choice. The
incremental strategy can achieve a high SR with a low
NTM, while it has the longest AWT of all the strate-
gies. When requiring a high SR with a low NTM,
regardless of AWT, this strategy combined with the

Strat. RP DR Max. SR Total NTM AWT
8.06 82.25% 2909 36.55

DSR 61.48 99.75% 5455 20.12
Conservative 190.72 100% 3620 8.42

8.06 81.5% 2122 37.62
DSDV 61.48 99.5% 4519 27.81

190.72 100% 3408 10.09
8.06 100% 16215 7.50

DSR 61.48 100% 15601 7.85
Greedy 190.72 98.75% 13100 10.42

8.06 100% 16557 4.93
DSDV 61.48 100% 15777 5.03

190.72 100% 14887 5.46
8.06 96% 2900 79.72

DSR 61.48 94.75% 2894 81.32
Incremental 190.72 96% 2899 83.76

8.06 97% 2898 83.23
DSDV 61.48 87.75% 2856 90.80

190.72 81.75% 2828 107.15
8.06 89% 2602 54.55

DSR 61.48 92.5% 2610 54.30
Uniform 190.72 87.5% 2602 57.72
memoryless 8.06 88.25% 2596 59.27

DSDV 61.48 83.25% 2577 64.57
190.72 75.25% 2555 87.64
8.06 100% 2845 46.96

DSR 61.48 100% 2833 47.29
With 190.72 100% 2832 53.05
memory 8.06 100% 2816 51.89

DSDV 61.48 98.5% 2741 56.12
190.72 97.75% 2686 77.27

Table 1: The performance of the post-query strategies over the DSR protocol or DSDV protocol

Figure 1: The SR of the greedy strategy over DSR(left) and DSDV (right).

Figure 2: The NTM of the greedy strategy over DSR (left) and DSDV (right).

DSR protocol is the best. With the uniform mem-
oryless strategy, if the sizes of posting and querying
sets are relatively low, the NTM is low and, in each
round, almost remains constant. It uses a relatively
low amount of network bandwidth. For an ad hoc
network which can only spare a dedicated bandwidth
for service discovery, this strategy combined with the
DSR protocol or DSDV protocol is the most appropri-
ate. The with memory strategy aims to improve the
SR. It can achieve a high SR with a low NTM and
a long AWT. In contrast with the uniform memory-
less strategy, the SR of the with memory strategy is
higher. But the tradeoff is that each node is required
to build a cache of about 0.2 KB to store the IDs of
previously visited nodes. When requiring a high SR
and a low NTM and can bear with more memory us-
age, regardless of the AWT, the with memory strategy
combined with the DSR protocol is the most suitable.

7 Conclusion

In this paper, we have defined post-query strategies
as time dependent post-query protocols that are exe-
cuted in rounds. We have created a general method-
ology for evaluating the performance and efficiency of
service discovery strategies in ad hoc networks. Sev-
eral interesting problems remain for further investi-
gation. We believe it is an interesting mathemati-
cal challenge to refine our methodologies and propose
optimal strategies. Our heuristics are under the as-
sumption that all clients are employing the same prob-
ability distribution. What are appropriate heuristics
when the number of network nodes is unknown and
clients do not necessarily employ identical demand
probability distributions? A more difficult problem
is what strategies to consider when the demand dis-
tribution used is unknown.

Figure 3: The AWT of the greedy strategy with DSR or DSDV.

References

[1] Bluetooth. Specification of the Bluetooth system,
November 2003.

[2] J. Broch, D. Maltz, D. Johnson, Y. Hu, and
J. Jetcheva. A performance comparison of multi-
hop wireless ad hoc network routing protocols. In
Fourth Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking
(MobiCom), pages 85–97, Dallas, TX, October
1998.

[3] K. Fall and K. Varadhan. NS notes and doc-
umentation. The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, 1997.

[4] A. Farago and V.R. Syrotiuk. Merit: A unified
framework for routing protocol assessment in mo-
bile ad hoc networks. In SIGMOBILE, pages 53–
60. ACM, 2001.

[5] E. Guttman, C. Perkins, J. Veizades, and
M. Dago. Service Location Protocol, Version 2,
volume RFC 2608. IETF, 2000.

[6] S. Helal, N. Desai, V. Verma, and C. Lee. Konark
- a service discovery and delivery protocol for ad-
hoc networks. In IEEE Wireless Communica-
tions and Networking Conference (WCNC), vol-
ume 3, pages 2107–2113, New Orleans, March
2003.

[7] R. Hermann, D. Husemann, M. Moser, M. Nidd,
C. Rohner, and A. Schade. Deapspace - transient
ad-hoc networking of pervasive devices. Com-
puter Networks, 35:411–428, 2001.

[8] D.B. Johnson and D.A. Maltz. Dynamic source
routing in ad-hoc wireless networks. Mobile Com-
puting, 353, 1996.

[9] J. Kempf and P. St. Pierre. Service Location Pro-
tocol for Enterprise Networks. Wiley, 1999.

[10] D. Knuth. The Art of Computer Programming:
Volume 3, Sorting and Searching. Addison Wes-
ley, 3 edition, 1998.

[11] R. Koodli and C.E. Perkins. Service discovery
in on-demand ad hoc networks. Internet-Draft,
2002.

[12] E. Kranakis and P. Vitányi. A note on weighted
distributed match-making. Mathematical Sys-
tems Theory, 25:123–140, 1992.

[13] Sun Microsystems. Jini architectural overview.
Technical White Paper, December 1999.

[14] S. Mullender and P.Vitányi. Distributed match-
making. Algorithmica, 3:367–391, 1988.

[15] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing
(dsdv) for mobile computers. ACM SIGCOMM
Computer Communication Review, 24(4):234–
244, October 1994.

[16] C.E. Perkins, editor. Ad Hoc Networking. Addi-
son Wesley, 2001.

[17] C.E. Perkins, editor. Is the Client Server Model
Viable?, pages 353–354. In Perkins [16], 2001.

[18] C. K. Zipf. Human Behavior and the Principle
of Least Effort. Addison Wesley, Reading Mass.,
1949.

