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Abstract— Uncertainty is an inherent part in controllers 

used for real-world applications.  The use of new methods 
for handling incomplete information is of fundamental 
importance in engineering applications.  We simulated the 
effects of uncertainty produced by the instrumentation 
elements in type-1 and type-2 fuzzy logic controllers to 
perform a comparative analysis of the systems’ response, in 
the presence of uncertainty.  We are presenting a proposal 
to optimize interval type-2 membership functions using an 
average of two type-1 systems we did some experiments 
where we optimized the MFs under different ranges values 
for the Footprint Of Uncertainty (FOU) and different noise 
values. 
 

Index Terms—Type-2 Fuzzy Logic, Intelligent Control.  
 

I. INTRODUCTION 
Uncertainty affects decision-making and appears in a number 
of different forms. The concept of information is fully 
connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty 
involved in any problem-solving situation is a result of some 
information deficiency, which may be incomplete, imprecise, 
fragmentary, not fully reliable, vague, contradictory, or 
deficient in some other way [1].  The general framework of 
fuzzy reasoning allows handling much of this uncertainty, 
fuzzy systems employ type-1 fuzzy sets, which represents 
uncertainty by numbers in the range [0, 1].  When something is 
uncertain, like a measurement, it is difficult to determine its 
exact value, and of course type-1 fuzzy sets makes more sense 
than using crisp sets [2]. However, it is not reasonable to use an 
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accurate membership function for something uncertain, so in 
this case what we need is another type of fuzzy sets, those 
which are able to handle these uncertainties, the so called 
type-2 fuzzy sets [3].  So, the effects of uncertainty in a system 
can be handled in a better way by using type-2 fuzzy logic 
because it offers better capabilities to cope with linguistic 
uncertainties by modeling vagueness and unreliability of 
information [4, 5, 6, 7, 8]. 

Recently, we have seen the use of type-2 fuzzy sets in fuzzy 
logic systems to deal with uncertain information [9, 10, 11]. So 
we can find some papers emphasizing on the implementation of 
a type-2 Fuzzy Logic System (FLS) [12]; in others, it is 
explained how type-2 fuzzy sets let us model and minimize the 
effects of uncertainties in rule-base FLSs [13].  Some research 
works are devoted to solve real world applications in different 
areas, for example, in signal processing type-2 fuzzy logic is 
applied in prediction in Mackey-Glass chaotic time-series with 
uniform noise presence [14, 15]. In medicine, an expert system 
was developed for solving the problem of Umbilical Acid-Base 
(UAB) assessment [16].  In industry, type-2 fuzzy logic and 
neural networks was used in the control of non-linear dynamic 
plants [17, 18, 19, 20, 21, 22]. 

This work deals with the optimization, through a random 
search, of interval type-2 membership functions in a fuzzy logic 
controller (FLC), the behavior of the FLC after optimization of 
the MFs under different range values for the Foot of 
Uncertainty (FOU) and different noise values.  It is a fact, that 
in the control of real systems, the instrumentation elements 
(instrumentation amplifier, sensors, digital to analog, analog to 
digital converters, etc.) introduce some sort of unpredictable 
values in the information that has been collected [23, 24]; so, 
the controllers designed under idealized conditions tend to 
behave in an inappropriate manner [25].  Since, uncertainty is 
inherent in the design of controllers for real world applications, 
with the purpose of analyzing the effects of uncertainty we plan 
a set of experiments, which are explained next: 

In the first test, we are presenting how to deal with it using 
type-2 FLC to diminish the effects of imprecise information.  
We are supporting this statement with experimental results, 
qualitative observations, and quantitative measures of errors.  
For quantifying the errors, we utilized three widely used 
performance criteria, these are:  Integral of Square Error (ISE), 
Integral of the Absolute value of the Error (IAE), and Integral 
of the Time multiplied by the Absolute value of the Error 
(ITAE) [26].  

As a second test, we optimized the parameters of the 
Gaussian membership functions (MFs) using a random search 
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method, ISE as the fitness function; we used, as an output, the 
average of two type-1 systems. We optimized the MFs of the 
FLC for different values of the FOU and for different noise 
values introduced to the system in a simulated way. 

This paper is organized as follows: section II presents an 
introductory explanation of type-1 and type-2 FLCs and the 
performance criteria for evaluating the transient and steady 
state closed-loop response in a computer control system.  
Section III is devoted to the experimental results. In this section 
we are showing details of the implementation of the feedback 
control system used, we are presenting results from several 
experiments. The plant was tested using several signal to noise 
ratio, we are including a performance comparison between 
type-1 and type-2 fuzzy logic controllers, versus optimized 
type-2 FLCs, an analysis of the results of optimized MFs for 
different ranges of the FOU and different noise levels.  Finally, 
in section IV, we have the conclusions. 

II. FUZZY CONTROLLERS 

A. Type-1 Fuzzy Controllers 
In the 40's and 50's, many researchers proved that many 

dynamic systems can be mathematically modeled using 
differential equations.  These previous works represent the 
foundations of the Control theory, which, in addition with the 
Transform theory, provided an extremely powerful means of 
analyzing and designing control systems [27].  These theories 
were being developed until the 70's, when the area was called 
System theory to indicate its definitiveness [28].  Its principles 
have been used to control a very big amount of systems taking 
mathematics as the main tool to do it during many years.  
Unfortunately, in too many cases this approach could not be 
sustained because many systems have unknown parameters or 
highly complex and nonlinear characteristics that make them 
not to be amenable to the full force of mathematical analysis as 
dictated by the Control theory. 

Soft computing techniques have become a research topic, 
which is applied in the design of controllers [29].  These 
techniques have tried to avoid the above-mentioned drawbacks, 
and they allow us to obtain efficient controllers, which utilize 
the human experience in a more related form than the 
conventional mathematical approach [30, 31, 32].  In the cases 
in which a mathematical representation of the controlled 
systems cannot be obtained, the process operator should be able 
to express the relationships existing in them, that is, the process 
behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is 
called a type-1 fuzzy logic system (type-1 FLS). It is composed 
by a knowledge base that comprises the information given by 
the process operator in form of linguistic control rules; a 
fuzzification interface, who has the effect of transforming crisp 
data into fuzzy sets; an inference system, that uses them in 
conjunction with the knowledge base to make inference by 
means of a reasoning method; and a defuzzification interface, 
which translates the fuzzy control action so obtained to a real 
control action using a defuzzification method [27]. 

In our paper, the implementation of the fuzzy controller in 
terms of type-1 fuzzy sets, has two input variables such as the 
error e(t), the difference between the reference signal and the 
output of the process, as well as the error variation Δe(t), 

)()()( tytrte −=            (1) 
)1()()( −−=Δ tetete          (2) 

so the control system can be represented as in Fig. 1. 
 

 
 

Figure 1.  System used for obtaining the experimental results in this paper.  
 

B. Type-2 Fuzzy Controllers 
A FLS described using at least one type-2 fuzzy set is If we 

have a type-1 membership function as in Fig. 2,  and we 
blurring it to the left and to the right then, at a specific value , 
the membership function value , takes on different values 
which not all be weighted the same, so we can assign an 
amplitude distribution to all of those points.  

'x
'u

 

 
Fig. 2. Blurred type-1 membership function. 

 
Doing this for all Xx ∈ , we create a three-dimensional 

membership function –a type-2 membership function– that 
characterizes a type-2 fuzzy set [3,13].  A type-2 fuzzy set A~ , 
is characterized by the membership function: 

( ){ }]1,0[,|),(),,(~ ~ ⊆∈∀∈∀= xA JuXxuxuxA μ   (3) 

in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is, 
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x and u.  For discrete universes of discourse is replaced by 

[13].  In fact  represents the primary 

membership of x and 

∫
∑ ]1,0[⊆xJ

),(~ uxAμ is a type-1 fuzzy set known as 
the secondary set.  Hence, a type-2 membership grade can be 
any subset in [0,1], the primary membership, and 
corresponding to each primary membership, there is a 
secondary membership (which can also be in [0,1]) that defines 
the uncertainty for the primary membership. 

This uncertainty is represented by a region called footprint of 
uncertainty (FOU). When ]1,0[,1),(~ ⊆∈∀= xA Juuxμ  we 
have an interval type-2 membership function, as shown in Fig. 
3.  The uniform shading for the FOU represents the entire 
interval type-2 fuzzy set and it can be described in terms of an 
upper membership function )(~ xAμ and a lower membership 

function )(~ xAμ . 

 
Fig. 3.  Interval type-2 membership function. 

 
A FLS described using at least one type-2 fuzzy set is called 

a type-2 FLS.  Type-1 FLSs are unable to directly handle rule 
uncertainties, because they use type-1 fuzzy sets that are certain 
[33].  On the other hand, type-2 FLSs, are very useful in 
circumstances where it is difficult to determine an exact 
certainty, and measurement uncertainties [3]. 

It is known that type-2 fuzzy sets let us to model and to 
minimize the effects of uncertainties in rule-based FLS.  
Unfortunately, type-2 fuzzy sets are more difficult to use and 
understand than type-1 fuzzy sets; hence, their use is not 
widespread yet.  In [13] were mentioned at least four sources of 
uncertainties in type-1 FLSs: 

1. The meanings of the words that are used in the 
antecedents and consequents of rules can be uncertain 
(words mean different things to different people).  

2. Consequents may have histogram of values associated 
with them, especially when knowledge is extracted 
from a group of experts who do not all agree. 

3. Measurements that activate a type-1 FLS may be noisy 
and therefore uncertain. 

4. The data used to tune the parameters of a type-1 FLS 
may also be noisy.  

All of these uncertainties translate into uncertainties about 

fuzzy set membership functions.  Type-1 fuzzy sets are not able 
to directly model such uncertainties because their membership 
functions are totally crisp.  On the other hand, type-2 fuzzy sets 
are able to model such uncertainties because their membership 
functions are themselves fuzzy.   A type-1 fuzzy set is a special 
case of a type-2 fuzzy set; its secondary membership function is 
a subset with only one element, unity.   

Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule 
base, fuzzy inference engine, and output processor.  The output 
processor includes type-reducer and defuzzifier; it generates a 
type-1 fuzzy set output (from the type-reducer) or a crisp 
number (from the defuzzifier) [34,35].  A type-2 FLS is again 
characterized by IF-THEN rules, but its antecedent or 
consequent sets are now type-2.  Type-2 FLSs, can be used 
when the circumstances are too uncertain to determine exact 
membership grades such as when training data is corrupted by 
noise.  In our case, we are simulating that the instrumentation 
elements (instrumentation amplifier, sensors, digital to analog, 
analog to digital converters, etc.) are introducing some sort of 
unpredictable values in the collected information.    

In the case of the implementation of the type-2 FLC, we have 
the same characteristics as in type-1 FLC, but we used type-2 
fuzzy sets as membership functions for the inputs and for the 
output. 

 

C. Performance criteria 
For evaluating the transient closed-loop response of a 

computer control system we can use the same criteria that 
normally are used for adjusting constants in PID (Proportional 
Integral Derivative) controllers.  These are [26]: 

1. Integral of Square Error (ISE). 

[ ]∫
∞
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2. Integral of the Absolute value of the Error (IAE). 

∫
∞

=
0

|)(|IAE dtte      (6) 

3. Integral of the Time multiplied by the Absolute value 
of the Error (ITAE). 

∫
∞

=
0

|)(|ITAE dttet      (7) 

The selection of the criteria depends on the type of response 
desired, the errors will contribute different for each criterion, so 
we have that large errors will increase the value of ISE more 
heavily than to IAE.  ISE will favor responses with smaller 
overshoot for load changes, but ISE will give longer settling 
time. In ITAE, time appears as a factor, and therefore, ITAE 
will penalize heavily errors that occurs late in time, but virtually 
ignores errors that occurs early in time. Designing using ITAE 
will give us the shortest settling time, but it will produce the 
largest overshoot among the three criteria considered.  
Designing considering IAE will give us an intermediate results, 
in this case, the settling time will not be so large than using ISE 
nor so small than using ITAE, and the same applies for the 



 
 

 

overshoot response.  The selection of a particular criterion 
depends on the type of desired response. 

III. EXPERIMENTAL RESULTS 
Fig. 1 shows, the feedback control system that was used for 
achieving the results of this paper.  It was implemented in 
Matlab where the controller was designed to follow the input as 
closely as possible.  The plant was modeled using equation (8) 

( ) ( ) ( ) ( )
( ) ( )25.0105.0

19.0207.032.0
−⋅+−⋅+

−⋅+−⋅−⋅=
iuiu

iyiyiyiy
    (8) 

The controller’s output was applied directly to the plant’s input. 
Since we are interested in comparing the performance between 
type-1 and type-2 FLC systems versus optimized type-2 FLC 
system, and type-2 FLCs versus type-2 FLCs optimized under 
different ranges of the FOU and different noise levels, we have 
the next three cases:  

1. Considering the system as ideal, that is, we did not 
introduce in the modules of the control system any 
source of uncertainty.  See experiments 1, and 2. 

2.  Simulating the effects of uncertain modules 
(subsystems) response introducing some uncertainty 
at 10 db SNR noise levels.  See experiments 3 and 4. 

3. Optimizing the MFs under different sizes of the FOU 
and noise levels.  See experiments 5 and 6. 

For case 1, as is shown in Fig. 1, the system’s output is 
directly connected to the summing junction, but in the second 
case, the uncertainty was simulated introducing random noise 
with normal distribution (the dashed square in Fig. 1).  We 
added noise to the system’s output y(i) using the Matlab’s 
function “randn” which generates random numbers with 
Gaussian distribution. The signal and the aditive noise in turn, 
were obtained with the programmer’s expression (9), the result 

 was introducedh to the summing junction of the controller 
system. Note that in (9) we are using the value 0.05, for 
experiments 3 and 4, but in the set of tests for experiment 5 and 
6 we varied this value to obtain different SNR values. 

( )iy

randniyiy ⋅+= 05.0)()(      (9) 
We tested the system using as input, a unit step sequence free 

of noise, .  For evaluating the system’s response and 
compare between type-1 and type-2 fuzzy controllers, we used 
the performance criteria ISE, IAE, and ITAE.  In Table III, we 
summarized the values obtained for each criterion considering 
400 units of time.  For calculating ITAE we considered a 
sampling time sec. 

)(ir

1.0=sT
For experiments 1, 2, 3, and 4 the reference input r is stable 

and noisy free.  In experiments 3 and 4, although the reference 
appears clean, the feedback at the summing junction is noisy 
since we introduced deliberately noise for simulating the 
overall existing uncertainty in the system, in consequence, the 
controller’s inputs e (t) (error), and  contains 
uncertainty data.  

)(teΔ

In experiment 5, we tested the systems, type-1 and type-2 
FLCs, introducing diverse values of noise η , this is modifying 
the signal to noise ratio SNR [36,37,38], see equation (10), 

noise

signal

P
Ps

SNR ==
∑
∑

2

2

η
    (10) 

Because many signals have a very wide dynamic range [37], 
SNRs are usually expressed in terms of the logarithmic decibel 
scale, SNR(db), as we can see in equation (11), 
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P

dbSNR 10log10)(     (11) 

In Table IV, we show, for different values of SNR(db), the 
behavior of ISE, IAE, ITAE for type-1 and type-2 FLCs.  In 
almost all the cases the results for type-2 FLC are better than 
type-1 FLC.  
 In type-1 FLC, we selected Gaussian membership functions 
(Gaussian MFs) for the inputs and for the output.  A Gaussian 
MF is specified by two parameters {c,σ}: 

2
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⎞
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⎛ −
−

= σμ
cx

A ex       (12) 
where c  represents the MFs center and σ determines the MFs 
standard deviation. For each input of the type-1 FLC, (t) and e

)(teΔ , we defined three type-1 fuzzy Gaussian MFs: negative, 
zero, positive. The universe of discourse for these membership 
functions is in the range [-10 10]; their centers are -10, 0 and 10 
respectively, and their standard deviations are 9, 2 and 9 
respectively. 

For the output of the type-1 FLC, we have five type-1 fuzzy 
Gaussian MFs: NG, N, Z, P and PG. They are in the interval 
[-10 10], their centers are -10, -4.5, 0, 4, and 10 respectively; 
and their standard deviations are 4.5, 4, 4.5, 4 and 4.5.  Table I 
illustrates the characteristics of the inputs and output of the 
type-1 FLC. For the type-2 FLC, as in type-1 FLC we also 
selected Gaussian MFs for the inputs and for the output, 

 
TABLE I 

CHARACTERISTICS OF THE INPUTS AND OUTPUT OF TYPE-1 FLC. 
 

Variable Term Center 
 c

Standard 
deviation 

σ  
negative -10 9 

zero 0 2 
 

Input  e
positive 10 9 
Negative -10 9 

Zero 0 2 
 

Input eΔ
positive 10 9 

NG -10 4.5 
N -4.5 4 
Z 0 4.5 
P 4 4 

 

Output 

 cde PG 10 4.5 

 
but in this case we have an interval type-2 Gaussian MFs with a 
fixed standard deviation, σ , and an uncertain center, ie., 
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In terms of the upper and lower membership functions, we have 
for )(~ xAμ , 
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and for the lower membership function )(~ xAμ , 
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where ( ) ≡xcN ,,1 σ
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Fig.4.  Input MFs for the type-2 FLC. e

 
Hence, in type-2 FLC, for each input we defined three 

interval type-2 fuzzy Gaussian MFs: negative, zero, positive in 
the interval [-10 10], as illustrates Figures 4 and 5; for 
computing the output we have five interval type-2 fuzzy 
Gaussian MFs NG, N, Z, P and PG, with uncertain center and 
fixed standard deviations in the interval [-10 10], as can be seen 
in Fig. 6. Table II shows the characteristics of the inputs and 
output of the type-2 FLC. 

 
Fig.5.  Input MFs for the type-2 FLC. eΔ

 
Fig.6.  Output MFs for the type-2 FLC. cde
 

For type-2 FLCs, we used, in experiments 2, and 4, basically 
the free software available online [39], and for experiments 5, 
and 6 we obtained the output of the type 2 FLC system with the 
average of two type-1 FLCs. 
 

TABLE II 
CHARACTERISTICS OF THE INPUTS AND OUTPUT OF TYPE-2 FLC. 

Variable Term Center 
 1c

Center 
 2c

Standard 
deviation 

σ  
negative -10.25 -9.75 9.2 

zero -0.25 0.25 2.2 
 

Input  e
positive 9.75 10.25 9.2 
Negative -10.25 -9.75 9.2 

Zero -0.25 0.25 2.2 
 

Input eΔ  
positive 9.75 10.25 9.2 

NG -10.25 -9.75 4.5 
N -4.75 -4.25 4 
Z -0.25 0.25 4.5 
P 3.75 4.25 4 

Output cde

 

PG 9.75 10.25 4.5 
 
 

Experiment 1.  Ideal system using a type-1 FLC.   
In this experiment, we did not add uncertainty data to the 

system, in Table III, we listed the obtained values of ISE, IAE, 
and ITAE for this experiment.  
 

TABLE III 
COMPARISON OF PERFORMANCE CRITERIA FOR TYPE-1 AND 

TYPE-2 FUZZY LOGIC CONTROLLERS FOR 10 db SIGNAL NOISE 
RATIO. VALUES OBTAINED AFTER 200 SAMPLES. 

 
Type-1 FLC Type-2 FLC Performance 

Criteria Ideal 
System 

Syst. with 
uncertainty 

Ideal 
System 

Syst. with 
uncertainty 

ISE 5.2569 205.0191 5.2572 149.3097 
IAE 13.8055 155.9412 13.7959 131.77 

ITAE 46.0651 1583.4 45.8123 1262.2 
 
 
Experiment 2.  Ideal system using a type-2 FLC.   
Here, we used the same test conditions of Experiment 1, but in 
this case, we implemented the controller’s algorithm with 
type-2 fuzzy logic.  The corresponding performance criteria are 
listed in Table III. 



 
 

 

Experiment 3.  System with uncertainty using a type-1 FLC.  
In this case we simulated, using equation (9), the effects of 
uncertainty introduced to the system by transducers, amplifiers, 
and any other element that in real world applications affects 
expected values.  In Table III, we can see the obtained values 
for ISE, IAE, and ITAE performance criteria for a simulated 10 
db signal noise ratio. 
Experiment 4.  System with uncertainty using a type-2 FLC.  
In this experiment, we introduced uncertainty in the system, in 
the same way as in Experiment 3. In this case, we used a type-2 
FLC and we improved those results obtained with a type-1 FLC 
(Experiment 3), see table III. 
Experiment 5.  Optimizing the interval type-2 MFs of the FLC 
for 10 db of SNR, varying the FOU. 
To optimize the interval type-2 MFs of the FLC, we simulated 
the system using two type-1 FLCs.  We maintained constant the 
centers of the Gaussian MFs of the inputs and we varied its 
standard deviations.  After optimization, and taking ISE as the 
fitness function, we found the best values of the MFs.  To see 
the effects of varying the size of the FOU in the optimization of 
the type-2 MFs, for 10 db signal to noise ratio, we established 
different search intervals for the shadow of the MFs.  We began 
with a narrow interval and finished with the wider one.  First we 
repeated the conditions of experiment 6, in the case of the 
inputs e and  for the negative and positive MFs we started 
with an interval between 8 and 9, and for the term zero with an 
interval between 1 and 2.   After the optimization, we calculated 
ISE, IAE and ITAE for the noise levels from 6 to 30 db of SNR. 

eΔ

The next step was to increase the search interval as 
follow, an interval between 7 and 9 for the negative and 
positive terms of inputs e and , for the term zero from 0.5 to 
2 and after the optimization was calculated ISE, IAE and ITAE. 
Finally, the broader search interval was, between 5 and 9 for the 
negative and positive terms of inputs e and , from .5 to 2 for 
the zero term.  Then again we obtained the values for ISE, IAE 
and ITAE.  In table IV, can be seen the optimized values for the 
standard deviations of the MFs. In table V, we can see the 
comparison between these results.  In Fig. 7 we have that the 
best results were obtained using a wider search interval of the 
FOU. 

eΔ

eΔ

 
Experiment 6.  Optimizing the interval type-2 MFs of the FLC 
for 24 db of SNR, varying the FOU. 
We repeated the steps of experiment 5, but in this case 
optimizing for 24 db of SNR. 
 Table VI shows the optimized values for the standard 
deviations of the MFs, and in table VII we can see the 
comparison between the results obtained for each variation of 
the FOU.  Similar than in experiment 7, in Fig. 8 we obtained 
the best results using a wider search interval of the FOU. 
 In figure 9, we plotted the best results of ISE for experiment 5 
and the best for experiment 6.  In Fig.10, we have a zoomed 
view of the curves between 18 and 30 db.  In these figures we 
are showing that for higher noise levels we obtained the better 
results of ISE with the MFs optimized for 10 db, and for lower 
noise levels with the ones optimized for 24 db of SNR.  
 

 
Fig. 7.  System optimized for 10 db of SNR, with different search intervals for 
optimizing the MFs. 
 

 
Fig. 8.  System optimized for 24 db of SNR, with different search intervals for 
optimizing the MFs. 
 

 
Fig. 9.  A comparative ISE values for different FOU sizes and noise levels for 
optimizing the MFs. 
 



 
 

 

 
TABLE IV 

COMPARISON OF THE CHARACTERISTICS OF THE OPTIMIZED MFs FOR DIFFERENT INTERVALS OF THE FOU OF  TYPE-2 FUZZY LOGIC 
CONTROLLER, FOR 10 DB SIGNAL NOISE RATIO. 

 
Type-2  FLC 

Intervals for MFs of e and . eΔ
σ between 8 to 9 for the positive 
and negative terms; σ between 1 
to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 7 to 9 for the positive 
and negative terms; σ between 
0.5 to 2 for the zero term.  c1= c2. 

Type-2 FLC 
Intervals for MFs of e and eΔ . 
σ between 5 to 9 for the positive 
and negative terms; σbetween   
0.5 to 2 for the  zero term.  c1= c2. 

 
 
 
Variable 

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviation 

σ2

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviation 

σ2

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviatio
n 

σ2
-10 9 8.0298 -10 9 7.8717 -10 9 5.7384 
0 2 1.8911 0 2 1.3571 0 2 0.9101 

Input e 
 

10 9 8.1167 10 9 7.6215 10 9 6.6960 
-10 9 8.7767 -10 9 8.6036 -10 9 7.666 
0 2 1.0987 0 2 0.5008 0 2 0.6479 

Input  ∆e 
 

10 9 8.5129 10 9 8.7118 10 9 7.5595 
-10 4.5 4.5 -10 4.5 4 -10 4.5 4 
-4.5 4 4 -4.5 4 4.5 -4.5 4 4.5 

0 4.5 4.5 0 4.5 4 0 4.5 4 
4 4 4 4 4 4.5 4 4 4.5 

Output 
cde 
 

10 4.5 4.5 10 4.5 4.5 10 4.5 4.5 
 

 
TABLE V 

COMPARISON OF PERFORMANCE CRITERIA FOR DIFFERENT INTERVALS OF THE FOU OF  TYPE-2 FUZZY LOGIC CONTROLLER WITH 
OPTIMIZED MFS, FOR 10 DB SIGNAL NOISE RATIO.  VALUES OBTAINED AFTER 200 SAMPLES. 

 
Type-2  FLC 

Intervals for MFs of e and . eΔ
σ between 8 to 9 for the positive 
and negative terms; σ between 1 
to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 7 to 9 for the positive 
and negative terms; σ between 
0.5 to 2 for the zero term.  c1= c2. 

Type-2 FLC 
Intervals for MFs of e and eΔ . 
σ between 5 to 9 for the positive 
and negative terms; σbetween   
0.5 to 2 for the  zero term.  c1= c2. 

SNR 
(db) 

ISE IAE ITAE ISE IAE ITAE ISE IAE ITAE 
  6 616.4 274.7 3005 366.9 212.6 2204.3 368.7 211.4 2218.7 
  8 437.3 226.7 2509 167.4 142.9 1379.8 168.9 141.5 1338.2 
10 115 116.6 1119.6 87.1 104.2 974.5 84.8 98.7 929.9 
12 72.8 90.9 866.8 60.5 86 815.1 54.7 80.7 750.6 
14 45.6 71.3 674.1 41.3 70.2 769.5 36.2 64.8 608.7 
16 28.9 56.3 528.4 28.9 58 567.9 23.7 52.2 490.3 
18 18.6 45.2 419.4 20.5 48.6 479.5 15.7 42 395.1 
20 12.6 37 337 15 41.4 410.5 10.7 34.1 320 
22 8.9 30.8 273.8 11.6 36.3 360.3 7.6 28 260.8 
24 6.8 26.3 227.7 9.4 32.9 325.9 5.7 23.5 214.8 
26 5.6 23.1 195.6 8.2 31.2 304.8 4.5 20.2 180.1 
28 4.9 21 172.8 7.5 30.5 294.3 3.9 17.7 153.8 
30 4.5 19.6 157.8 7.1 30 287.1 3.5 16.3 135.8 

 

 

 



 
 

 

TABLE VI 
COMPARISON OF THE CHARACTERISTICS OF THE OPTIMIZED MFs FOR DIFFERENT INTERVALS OF THE FOU OF  TYPE-2 FUZZY LOGIC 

CONTROLLER, FOR 24 DB SIGNAL NOISE RATIO. 
 

Type-2  FLC 
Intervals for MFs of e and . eΔ
σ between 8 to 9 for the positive 
and negative terms; σ between 1 
to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 7 to 9 for the positive 
and negative terms; σ between 
0.5 to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 5 to 9 for the positive 
and negative terms; σbetween   
0.5 to 2 for the  zero term.  c1= c2. 

 
 
 
Variable 

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviation 

σ2

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviation 

σ2

Center 
c1

Standard 
Deviatio
n 

σ1

Standard 
Deviatio
n 

σ2
-10 9 8.0441 -10 9 7.7631 -10 9 6.963 
0 2 1.4188 0 2 1.4478 0 2 0.8629 

Input e 
 

10 9 8.0045 10 9 7.2071 10 9 5.0858 
-10 9 8.6585 -10 9 8.1797 -10 9 7.5034 
0 2 1.8657 0 2 1.1885 0 2 1.2757 

Input  ∆e 
 

10 9 8.5921 10 9 8.1486 10 9 7.4305 
-10 4.5 4.5 -10 4.5 4 -10 4.5 4 
-4.5 4 4 -4.5 4 4.5 -4.5 4 4.5 

0 4.5 4.5 0 4.5 4 0 4.5 4 
4 4 4 4 4 4.5 4 4 4.5 

Output 
cde 
 

10 4.5 4.5 10 4.5 4.5 10 4.5 4.5 
 

 

TABLE VII 
COMPARISON OF PERFORMANCE CRITERIA FOR DIFFERENT INTERVALS IN THE FOU OF  TYPE-2 FUZZY LOGIC CONTROLLER WITH 

OPTIMIZED MFS, FOR 24 DB SIGNAL NOISE RATIO.  VALUES OBTAINED AFTER 200 SAMPLES. 
 

Type-2  FLC 
Intervals for MFs of e and . eΔ
σ between 8 to 9 for the positive 
and negative terms; σ between 1 
to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 7 to 9 for the positive 
and negative terms; σ between 
0.5 to 2 for the zero term.  c1= c2. 

Type-2  FLC 
Intervals for MFs of e and eΔ . 
σ between 5 to 9 for the positive 
and negative terms; σbetween   
0.5 to 2 for the  zero term.  c1= c2. 

SNR 
(db) 

ISE IAE ITAE ISE IAE ITAE ISE IAE ITAE 
  6 1065.9 362.9 4640.1 661 288 3325 1132 385.5 4760.1 
  8 971.5 337.4 4465.3 503.7 247.1 286.2 754.8 308.2 3845.4 
10 1008.8 331.8 4513.1 113.8 115.1 1102.9 120.6 116.7 1054.3 
12 222.4 165.9 1985.4 68.7 87.1 820.3 67.4 85.8 800.8 
14 45 71.2 679.3 41.9 67.8 633.8 37.6 64.4 602.8 
16 27.8 55.1 521.5 26 53.4 496.5 23.9 51.5 481 
18 17.6 43.4 407.5 16.6 42.3 390.7 15.7 41.3 383.3 
20 11.6 34.5 319.7 11 33.8 307.9 10.6 33.2 305.3 
22 8.1 28.1 253.8 7.6 27.5 244.1 7.4 27 243.9 
24 6.1 23.2 202.1 5.6 22.8 194.9 5.5 22.3 195.8 
26 4.9 19.5 162.1 4.5 19 156.5 4.3 18.6 157.6 
28 4.2 16.9 131.1 3.8 16.2 126.6 3.7 15.8 128 
30 3.8 15 107.3 3.4 14 103.5 3.3 13.7 105.2 
 

 
 
 
 
 



 
 

 

 
Fig. 10.  An amplification of the curves showing a comparative ISE values for 
different FOU sizes and noise. 
 

IV CONCLUSIONS 
We observed and quantified using performance criteria such 

as ISE, IAE, and ITAE that in systems without uncertainties 
(ideal systems) is a better choice to select a type-1 FLC since it 
works a little better than a type-2 FLC, and it is easier to 
implement it. It is known that type-1 FLC can handle 
nonlinearities, and uncertainties up to some extent.  

Unfortunately, real systems are inherently noisy and 
nonlinear, since any element in the system contributes with 
deviations of the expected measures because of thermal noise, 
electromagnetic interference, etc., moreover, they add 
nonlinearities from element to element in the system. 

We are concluding that using a type-2 FLC in real world 
applications can be a good option since this type of system is a 
more suitable system to manage high levels of uncertainty, as 
we can see in the results shown in tables III, V and VII. 

We found that the optimized membership functions (MFs) 
for the inputs of a type-2 system increases the performance of 
the system for high noise levels.  Also when the search interval 
for optimizing the MFs is wider we obtained better results in 
the performance of the system as can be seen in the ISE, IAE, 
ITA values in tables V and VII, so these results indicate that the 
type-2 fuzzy system can handle in a better way the uncertainty 
introduced to the system. 
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