

A Reference Model for Knowledge Management
in Software Engineering

J. Andrade, J. Ares, R. García, S. Rodríguez, and S. Suárez

Abstract— Software engineering is a discipline in which

knowledge and experience, acquired in the course of many years,
play a fundamental role. In this discipline changes are
particularly fast, and new methodologies, techniques and
technology constantly appear and modify or refine the existing
knowledge.

In this context, this work proposes the use of a knowledge
management strategy that will allow each person involved in
software development to access the best possible available
knowledge at the right time. Specifically as a first step towards
introducing a knowledge management programme that supports
the software process, we present a formalization scheme that is
able to represent and, therefore, capture and transmit the
relevant organizational knowledge and metaknowledge that exists
in software development. In this way, we facilitate the
transmission of experiences and knowledge inside the
organization and make institutional learning possible. Finally, our
proposal will be illustrated by means of its application to software
requirements engineering.

Index Terms— Corporate memory, knowledge descriptors,
knowledge management, software engineering, viewpoint-based
requirements engineering.

I. INTRODUCTION
 Since software engineering (SE) is a typical

knowledge-intensive discipline that evolves very fast and
involves a large number of people, different phases and
different activities [1], it is one of the disciplines that can
benefit most from knowledge management (KM) [2]. In this
context, a KM programme could allow us to capture, explicit
and institutionalize the knowledge and experience related to

each software development project, and thus provide the
organization with considerable benefits [3]. More precisely, the
adequate use of KM to SE would allow:

Manuscript received March 10, 2006. This work was supported in part by

the Dirección Xeral de Investigación e Desenvolvemento da Xunta de Galicia
(Autonomous Government of Galicia - project PGIDIT03PXIA10501PR), and
the University of A Coruña.

J. Andrade is with University of A Coruña, Facultad de Informática. Campus
de Elviña, s/n. 15071. A Coruña. Spain (e-mail: jag@udc.es).

J. Ares is with University of A Coruña, Facultad de Informática. Campus de
Elviña, s/n. 15071. A Coruña. Spain (e-mail: juanar@udc.es).

R. García is with University of A Coruña, Facultad de Informática. Campus
de Elviña, s/n. 15071. A Coruña. Spain (e-mail: rafael@udc.es).

S. Rodríguez is with University of A Coruña, Facultad de Informática.
Campus de Elviña, s/n. 15071. A Coruña. Spain (Corresponding author: phone:
+34 981 16 70 00; fax: +34 981 16 71 60; e-mail: santi@udc.es).

S. Suárez is with Technical University of Madrid, Facultad de Informática,
Campus de Montegancedo, s/n. 28660. Boadilla del Monte, Madrid. Spain
(e-mail: ssuarez@infomed.fi.upm.es).

1) To share experiences of individual workers (or groups)
and institutionalize these experiences through the years,
making each worker act almost like an expert.

2) To establish a common modus operandi at organizational
level, helping the organization to efficiently use the same
methodologies, techniques and technologies.

3) To facilitate the adoption and transfer of new
methodologies, techniques and technologies between
different departments or even partners.

A successful KM project, be it in the field of software
development or any other field, must necessarily observe three
key aspects. The first aspect is the implantation of the necessary
mechanisms that guarantee a total involvement of the
employees in the KM programme [4]; i.e., establish an
organizational culture based on sharing and collaborating. The
second aspect is to facilitate the exchange of the tacit or implicit
knowledge among the employees, regardless of their physical
and temporal location [5]. The third and last aspect, which
supports the two previous ones, is the use of a corporate
memory, as a means for description and interchange of relevant
knowledge [6].

The corporate memories combine two repositories that,
depending on the type of knowledge they contain, could be
called corporate knowledge base or yellow pages:
1) The first repository compiles the relevant organizational

knowledge with the aim of providing it to the employees
whenever, wherever and in the format required. This
repository includes two clearly differentiated elements: the
knowledge itself (for instance, best practices) and
metaknowledge (i.e. lessons learned, from the terminology
used by Weber et al [7]). The first element is already
institutionalized knowledge. For an organization that
develops software, for instance, this element would
describe the development process that is implemented at
the organizational level. The second element is knowledge
aimed to refine the first. An example of a knowledge chunk
that would fit in this category is the adaptation that each
expert has performed on the organizational process, on the
basis of his/her knowledge and experience. This second
element receives the generic name of metaknowledge and
can be classified into positive experiences, negative
experiences and false maneuvers [8].

2) The second repository corresponds to the identification

Engineering Letters, 13:2, EL_13_2_14 (Advance online publication: 4 August 2006)
__

and notification of the human and nonhuman elements that
are sources of additional knowledge, i.e., that possess
knowledge not included in the previous repository. Its
importance lies in the fact that a KM programme should
not try to embrace all knowledge and all lessons learned
that exist in the organization. Since such a pretension is not
realistic, this repository will at least point to knowledge
that cannot be included but, nevertheless, may be useful.

Many approaches have recently arisen to define and
introduce KM programmes in an organization [9]. None of the
current proposals, however, responded to the expectations of
the developers of this type of programmes. This is mainly due
to the fact that they approach the above aspects in a prescriptive
manner: they indicate the steps that must be taken without
describing how to proceed [9]. For instance, those proposals do
not clearly advise on how to define an organizational
knowledge base, or which elements to consider in it; aspects
that are crucial in this type of programme.

This situation is caused by the fact that the research in the
KM field focused on the study of the management process (the
M) rather than on the object that is going to be managed, i.e. the
knowledge itself (the K). Only the proposal of Wiig et al. [10]
identifies a small set of descriptors that support the
explicitation—formalization—of the knowledge, but (i) this
identification is not the result of an exhaustive study of the
knowledge, and (ii) it does not allow a complete formalization,
because it is limited to certain descriptive characteristics.

In order to contribute to ameliorate this situation, and as a
step previous to, and independent of, the application of KM to
software development, we intend to refine those current generic
proposals by making them more descriptive. To achieve this
descriptive orientation, it is essential that we study the object
that is going to be managed, and thus base the definition of the
management phases on the basis of knowledge classification
and characteristics. Therefore, this paper has its basis on the
study of knowledge as a means to define the structure of the
organizational knowledge base and to articulate the
construction of a KM programme from a knowledge
descriptive approach. Our definition considers the knowledge
of the organizational environment as well as the associate
metaknowledge. Both elements will follow the formalization
scheme that we propose here.

In order to demonstrate the above, this paper is organized as
follows: Section II presents the proposed formalization scheme
for organizational knowledge base; Section III shows the
evaluation of the proposed scheme through its application to
software requirements engineering; and, finally, Section IV
presents the main conclusions of this study.

II. SCHEME OF KNOWLEDGE FORMALISATION
As it has been mentioned at the previous section, the study of

knowledge should be specially borne in mind in order to
achieve a descriptive proposal for KM. Considering this, the
authors have performed a strict study with the aim of

determining those types of knowledge that should be
formalized and conceptualized within any KM system. This
study that, has been detailed in [11], is based on:
1) The five conceptualization hypotheses, which allow us to

identify and manage the concepts that exist in any domain
[12]: abstraction, contraposition of a system of concepts
with the real world, connection between a system of
concepts and a system of language, expression of concepts
by nonsyncategorematic terms, and need for set theory.

2) The formal conceptualization definition, which establishes
the generic abstraction for any conceptualization of any
domain. In this sense, conceptualization is formally
defined as a (C, R, F) triplet [13]. This triplet includes,
respectively, the concepts (C) presumed or hypothesized to
exist in the world—universe of discourse—; the
relationships (R), in the formal sense, between
concepts—relational basis set—and the functions (F), also
in the formal sense, defined on the concepts—functional
basis set.

3) Natural language, which is considered the means par
excellence used by human beings to transmit knowledge in
any domain.

As a result of this study, we reached the conclusion that
every piece of knowledge can be classified into one of those
levels [11] [14]:
− Static: Constituted by the structural or declarative knowledge

in a particular domain. In other words, true facts about the
domain that can be used in operations: concepts, properties,
relationships and constraints.

− Dynamic: Constituted by the behavior that takes place in the
domain, that is, functionality, action, process or control, like
inferences, calculations and step sequences. This level can be
further subdivided into two sublevels:
• Strategic. Includes what to do, when to do it and in which

sequence.
• Tactical. Specifies how to obtain new declarative

knowledge.
Fig. 1 shows these levels and their interrelationships. As the

figure shows, the strategic level manages the tactical
level—arrow (1) in Fig. 1— by specifying which inferences
and calculations are needed at each nonatomic step. Moreover,
the other two levels manage the declarative level, as it contains
knowledge that is used for decision-making on the face of
different alternatives or bifurcation points that affect a step
sequence—arrow (2) in Fig. 1—and under which basis the
inferences and calculations are made—(3) in Fig. 1. The
pyramidal diagram shows that the functional levels of
knowledge are related by a support structure. The strategic
knowledge is located at the top, as it controls how the problem
is dealt with. On the other hand, the tactical knowledge needs
the declarative knowledge, which, furthermore, is the most
abundant. Therefore, the declarative level has been placed at
the base of the pyramid with the tactical level above it.

DECLARATIVE

TACTICAL

STRATEGIC
(2)

(1)

(3)

STATIC

DYNAMIC

DECLARATIVE

TACTICAL

STRATEGIC
(2)

(1)

(3)

STATIC

DYNAMIC

Fig. 1. Functional levels of knowledge and their interrelationships.

This taxonomy allows us to conceptualize and formalize the

knowledge (K) of any domain in general [14], and therefore of
the SE in particular, in order to proceed to its subsequent
management (M). Henceforth, to formalize the functional
knowledge levels that were identified, we segmented the
formalization scheme in as many subschemes as levels. Thus,
there is a static subscheme—which consists of the declarative
level—and a dynamic subscheme—which consists of the
strategic and the tactical levels.

This partition initially seems particularly useful in SE, since
this field has not only process-oriented knowledge and
domain-oriented knowledge but also technical knowledge.

Each element, or knowledge chunk, in each of these
sublevels can be described by means of a set of descriptors that
are shown in the next subsection. Although we identified three
different subschemes, we also establish a subset of common
descriptors that characterize any knowledge asset and do not
depend on each knowledge level.

Last, we would like to point out that the above-mentioned
metaknowledge is knowledge about knowledge and, therefore,
knowledge. By this reason, our scheme is also applicable to
metaknowledge. In other words, a lesson learned can be
conceptualized and formalized on the basis of the three
knowledge levels presented here.

A. Common descriptors
The descriptors that are common to every knowledge asset,

at any knowledge level, are divided into terminological,
qualificatory and relational descriptors. Terminological
descriptors allow us to clarify the nomenclature used to make
reference to any knowledge asset in the organization.
Qualificatory descriptors characterize each knowledge asset
from the viewpoint of its utility. Finally, relational descriptors
allows us to find more details of the knowledge asset, if needed,
either pointing to an additional knowledge source (yellow
pages) or following already existing links between knowledge
and its associated metaknowledge.

The terminological descriptors are the following:
− [Name]: The main term by which the asset is known in the

organization.
− [Synonyms]: Other terms by which the asset may be known.
− [Abbreviations]: Abbreviations that are used for the asset.
− [Observations]: Any type of clarification concerning the used

terminology.
The qualificatory descriptors are:

− [Topic]: Theme(s) to which the asset deals with.

− [Reliability]: Level of trust that should be put on the asset.
− [Impact]: Relevance of the asset in the domain of interest

(business area, organizational process, etc.).
− [Validity]: Time window in which the asset is considered

valid.
− [Availability]: Time frame in which the asset is available.
− [Security]: Organizational roles that have access to the asset.
− [Language]: Language of the asset.

Finally, relational descriptors are:
− [Support sources]: Sources—human and, or,

nonhuman—that contain additional knowledge for better
understanding the asset. This descriptor allows us to integrate
a yellow pages system in a simple manner. The authors
propose a detailed description of the formalization of a
yellow pages system in [15].

− [Associate knowledge/Lessons learned]: If we are
formalizing a lesson learned, this descriptor indicates the
knowledge that is being refined. If the asset is a “basic”
knowledge asset—strategic, tactical or declarative—, this
descriptor indicates the related lessons learned that exist in
the KM programme.

− [Producing agent]: Agent that provides the knowledge asset.
This descriptor allows us to put into operation the
mechanisms that recognize and guarantee each knowledge
supplier and thus cover the first key aspect that was
mentioned in the introduction: a culture of exchange and
collaboration.

B. Strategic subscheme
The strategic subscheme formalizes the step sequence

needed for a certain organizational function; that is to say, it
defines what to do, when, and in which order.

Since a KM programme must provide knowledge to various
access profiles (coordinators and executors), we formalized the
complete decomposition of a function into its constitutive
steps, considering both the nonterminal (decomposed) steps
and low-level atomic steps (nondecomposed).

Descriptors for decomposed steps are:
− [Description]: Description of the strategic step in terms of the

coordinator.
− [Decomposition structure]: Description of the decomposition

associated to this step, considering the substeps into which it
is decomposed.

− [Execution structure]: Description of the execution order of
the substeps into which the step is decomposed.

− [Preconditions]: Previous requisites that are necessary to
carry out the step. They agree with the preconditions of the
constitutive substeps.

− [Postconditions]: Output requisites that are necessary to
finalize the execution of the step. They are coherent with the
postconditions of the constitutive substeps.

− [Inputs]: Elements—concepts, relationships and
properties—that are necessary for the execution of the step.
The list of inputs depends on the inputs of the constitutive
substeps.

− [Outputs]: Elements—concepts, relationships and
properties—that are generated as a consequence of the step’s
execution. The list of outputs depends on the outputs of the
constitutive substeps.

− [Control elements]: Elements—concepts, relationships and
properties—that are implied at each bifurcation point of the
execution order. This descriptor allows us to reflect
relationship (2) in Fig. 1.

− [Coordinator]: The organizational role that is responsible for
the coordination of the step.

− [Observations]: Any related observation, e.g. the justification
of the need to execute the step, or its purpose.
The nondecomposed steps are formalized by the following

descriptors:
− [Description]: Description of the step in terms of the

executor.
− [Preconditions]: Necessary previous requisites.
− [Postconditions]: Requisites to finalize the step.
− [Inputs]: Elements—concepts, relationships and

properties—that are necessary to execute the step. These
elements are determined by the Operational mode, which is
the descriptor of the associated tactical knowledge.

− [Outputs]: Elements—concepts, relationships and
properties—that are generated by the execution of the step.
These elements are determined by the Operational mode,
which is the descriptor of the associated tactical knowledge.

− [Operational mode]: Reference to the tactical knowledge that
obtains the outputs from the inputs. This descriptor allows us
to reflect interrelationship (1) in Fig. 1.

− [Executor]: Organizational role charged with the execution
of the step.

− [Observations]: Any related observation, e.g. the final
purpose of the step.

C. Tactical subscheme
This subscheme formalizes knowledge that indicates the way

in which a certain task should be carried out. It is connected to
the nondecomposed steps—the task it is associated
with—defined in the strategic subscheme.
− [Description]: Description of the considered tactical

knowledge.
− [Basic elements]: Elements—concepts, relationships and

properties—that are required to proceed with the definition.
This descriptor allows us to reflect part of interrelationship
(3) of Fig. 1.

− [Conclusion elements]: Elements—concepts, relationships
and properties—that are obtained by the definition. This
descriptor allows us to complete the formalization of
interrelationship (3) of Fig. 1, partially formalized by the
previous descriptor.

− [Definition]: Algorithm, mathematical expression, inference
or procedure that describes the considered tactical
knowledge.

− [Observations]: Any related observation, e.g. limitations in
the application of the definition.

D. Declarative subscheme
This section presents the descriptors that formalize the

conceptual elements at the declarative level: concepts,
relationships and properties. Constraints identified in the
previous section are incorporated as part of the element they
affect, i.e. in the properties and the relationships.

The descriptors that are used for the formalization of the
concepts are the following:
− [Description]: Description of the concept.
− [Properties]: Characteristics that describe the concept.
− [Relationships]: Associations maintained with other

concepts.
− [Observations]: Any related observation, e.g. the justification

of the need of the concept, or its purpose in an entrepreneurial
function.
The descriptors used for formalizing the relationships are the

following:
− [Description]: Description of the identified relationship.
− [Elements]: Concepts that take part in this relationship.
− [Type]: The type of the relationship:

generalization/specialization, aggregation, instantiation or
domain defined (see [11]).

− [Properties]: The characteristics that describe the
relationship.

− [Constraints]: Limitations to which the relationship is
subject, i.e. restrictions that are applicable to the occurrences
of the concepts that can participate in the relationship.

− [Observations]: Any related observation, such as the
relevance of the relationship in the organizational operation
considered.
For formalizing the properties, the following descriptors

were established:
− [Description]: Description of the property considered, be it

the property of a concept or of a relationship.
− [Element]: Concept or relationship to which the property is

linked and which allows its description.
− [Data category]: Type of values of the property and, if

necessary, the measure and precision units that are required.
− [Range]: Allowable values taken by the property.
− [Constraints]: Limitations of the property, both in terms of its

own nature (e.g. compulsoriness or optionality) and its
possible values (e.g. dependency on the value of other
properties).

− [Source]: The human or nonhuman source that provides the
values assigned to the property.

− [Observations]: Any related observation, e.g. a value by
default or the justification of the need of the property or of its
purpose.

E. Formalization strategy
The strategy we propose in order to obtain the relevant

knowledge involves the elaboration of the knowledge pyramid
(Fig. 1) from top to bottom. The first step goes from the
strategic level to the tactical one (relationship labeled (1)). As
strategic and tactical knowledge are being identified, the

relevant declarative one can be obtained (relationships (2) and
(3)). Given that “relevant” means “declarative knowledge
directly related with strategic and tactical knowledge”, a more
focused bottom-up search should be done at the pyramid. Of
course, the pyramid shape has not been arbitrarily chosen, since
it reflects that there are fewer elements at the top (strategic
level) than at the basis (the declarative level).

This order is, of course, only an approximation, as each case
will have its own particularities. Additionally, there was no
clear difference; we only indicate what naturally emerged
predominantly.

For each identified asset of knowledge, the proposed
formalization scheme will help to find a generic and exhaustive
set of descriptors. Nevertheless, there will always be a
necessary adaptation of the scheme to each particular domain
or situation (like, for instance, SE).

Once the knowledge base is complete, the lessons learned
that appear in the course of time must be gathered, codified in
the proposed scheme and incorporated into the repository.

In this way we can obtain a KM system where knowledge
and metaknowledge are unified under the same framework.

III. EVALUATION OF THE FORMALISATION SCHEME
The practical evaluation of the defined scheme will be shown

through its application to a particular domain within SE, more
concretely the Silva’s method for detection, classification and
resolution of discrepancies among requirements [16] [17]. This
method is currently being applied to an entrepreneurial
environment [17]. By this reason, the knowledge acquisition
process was greatly simplified, so the work was mainly focused
on the proposed scheme for the formalization of the relevant
knowledge. We consider, however, that the scheme will be also
applicable to other areas of SE, and even with less difficulty
than requirements engineering (RE), as RE deals with more
socio-technical and “soft” difficulties that other more technical
areas like design, testing, etc.

The method itself can be resumed in few words: Some
proposals, named as Viewpoint-Based RE (VBRE), focused on
the study and analysis of the multiplicity of stakeholder
viewpoints, have emerged in the RE field (a survey has been
published on the subject [18]). These proposals consider that
there is a multiplicity of stakeholders that take part in a
requirements process, inevitably leading to discrepancies
(conflicts and inconsistencies) among them. The two main
points of VBRE are that (i) discrepancies are not undesirable,
as they can be used to improve the elicitation of requirements
[19] [20] and (ii) discrepancies require (not necessarily
immediate) actions to be handled. Systematic VBRE
approaches need to properly diagnose each discrepancy found,
before making any decision about what to do next. This
diagnosis includes not only discrepancies location and
identification, but also their classification. Once diagnosed,
discrepancies should be handled accordingly [19].

This new approach to VBRE [16] started from the

assumption that management of discrepancies could be
enhanced when taking into account the different categories of
statements managed during the requirements process, in order
to properly compare one statement against another.
Categorization of those statements into domain knowledge,
requirements, interface descriptions, etc. can help the
requirements engineer at the time of comparing them and
classifying the discrepancies found, hence speeding up the
VBRE process. For categorizing the statements we used the
KSR model [21], widely known in the RE community. Our
assumption was empirically tested in [17] and a software tool
was built for helping process management, in order to facilitate
its industrial uptake.

The following sections show the formalization that resulted
from the application of the proposed KM scheme to the selected
domain. We also present an example of the formalization of a
lesson learned.

A. Formalization of the knowledge
Next, and to give an example, we present several fragments

of the knowledge base that resulted from application of the
process shown at section II.E. Some aspects have been
simplified because they are too extensive and because the
purpose of this section is not to describe discrepancy
management, but to show the application of the proposed
formalization scheme.

Table I presents the formalization of the decomposed
strategic step “Discrepancy detection and resolution.” We
observe how knowledge contained in [16] that is associated to
this step is represented according to the descriptors that were
defined in section III.

TABLE I. DECOMPOSED STRATEGIC STEP “DISCREPANCY DETECTION AND

RESOLUTION”
Description Process by which the discrepancies between two

given viewpoints are resolved.
Decomposition
structure

Decomposition tree shown in Fig. 2.

Execution
structure

Discrepancy
resolution

Structuration
of viewpoints

yes

noAny
discrepancies?

Discrepancy
identification

Discrepancy
resolution

Structuration
of viewpoints

yes

noAny
discrepancies?

Discrepancy
identification

Preconditions Having realized the process of requirements

eduction on various viewpoints.
Postconditions There is no discrepancy between the considered

viewpoints.
Inputs Statement, Equivalence class, Discrepancy

criterion, Overlap criterion.
Outputs Statement.
Control elements Discrepancy.
Coordinator Requirements engineer.
Observations VBRE is based on the fact that several actors,

that consider the problem from different
perspectives or viewpoints, intervene in any
requirements process.
Since there are several viewpoints, they can be
discrepant. The identification of these situations
provides a way of anticipating errors from the
early development phases, when the cost of
resolving them is much smaller.

Table I shows that, in order to detect and resolve
discrepancies, we must carry out three activities: structure the
viewpoints, identify the existing discrepancies and, finally,
resolve them. Fig. 2 shows how to synthesize (represent)—on
the basis of the defined descriptors—the knowledge associated
to the nondecomposed strategic substep “Discrepancy
identification”, and how to formalize the associated tactical

knowledge.
Fig. 3 shows the formalization of the concept

“Specification”—one of the key elements in the domain—and
of its recursive relationship “Discrepancy.” It also illustrates
the representation of the property “Discrepancy Criterion”,
which is a property of the previous relationship.

Discrepancy
detection and

resolution

Discrepancy
identification

Discrepancy
resolution

Structuration of
viewpoints

K’S’R’
discrepancy
resolution

K’S’R
discrepancy
resolution

K’SR’
discrepancy
resolution

KS’R’
discrepancy
resolution

K’SR
discrepancy
resolution

KS’R
discrepancy

resolution

KSR’
discrepancy

resolution

Discrepancy
detection and

resolution

Discrepancy
identification

Discrepancy
resolution

Structuration of
viewpoints

K’S’R’
discrepancy
resolution

K’S’R
discrepancy
resolution

K’SR’
discrepancy
resolution

KS’R’
discrepancy
resolution

K’SR
discrepancy
resolution

KS’R
discrepancy

resolution

KSR’
discrepancy

resolution

Nondecomposed strategic step Discrepancy identification
Description Step that identifies the existing discrepancies between

two viewpoints in order to direct their subsequent
resolution.

Preconditions The viewpoints that must be analyzed were structured
according to the KSR model

Postconditions All the existing discrepancies were identified and
classified.

Inputs K, S, R, Equivalent class, Discrepancy criterion,
Overlap criterion.

Outputs Discrepancy.
Operational mode Discrepancy detection and classification.
Executor Requirements engineer.
Observations VBRE proposes an early identification of the

discrepancies, since they will allow us to direct the
eduction process. However, the early identification of
the discrepancies does not imply that they must be
resolved immediately.

Support sources KSR Model [21]

Tacit Knowledge Discrepancy detection and classification
Description Procedure that identifies the discrepancy types and the discrepant statements that

exist between two viewpoints.
Basic elements K, S, R, Equivalence class, Discrepancy criterion, Overlap criterion.
Conclusion elements Discrepancy.
Definition 1. Obtain K (Ki U Kj), S (Si U Sj) and R (Ri U Rj)

2. For each equivalence class of S:
2.1. Obtain the kernel of the discrepancy (Sker)
2.2. If it is discrepant in S, check if the discrepancy originates in K:

2.2.1. Obtain the overlap of Sker and K
2.2.2. Obtain the kernel of the discrepancy (Kker)
2.2.3. If it is discrepant in K, check if the discrepancy has repercussions on R:

2.2.3.1. Obtain the overlap of Kker and R
2.2.3.2. Obtain the kernel of the discrepancy (Rker)
2.2.3.3. If it is discrepant in R, the discrepancy type is K’S’R’

The discrepant statements are: Sker, Kker and Rker
2.2.3.4. If it is not discrepant in R, the discrepancy type is K’S’R

The discrepant statements are: Sker and Kker
2.2.4. If it is not discrepant in K, check if the discrepancy in S has repercussions

on R:
2.2.4.1. Obtain the overlap of Sker and R
2.2.4.2. Obtain the kernel of the discrepancy (Rker)
2.2.4.3. If it is discrepant in R, the discrepancy type is KS’R’

The discrepant statements are: Sker and Rker
2.2.4.4. If it is not discrepant in R, the discrepancy type is KS’R

The discrepant statements are: Sker
2.3. If it is not discrepant in S, check if there are discrepancies in K:

2.3.1. Obtain the overlap of the partition of S and K
2.3.2. Obtain the kernel of the discrepancy (Kker)
2.3.3. If it is discrepant in K, check if it has repercussions on R:

2.3.3.1. Obtain the overlap of Kker and R
2.3.3.2. Obtain the kernel of the discrepancy (Rker)
2.3.3.3. If it is discrepant in R, the discrepancy type is K’SR’

The discrepant statements are: Kker and Rker
2.3.3.4. If it is not discrepant in R, the discrepancy type is K’SR

The discrepant statements are: Kker
2.3.4. If it is not discrepant in K, check if there are discrepancies in R:

2.3.4.1. Obtain the overlap between R and the elements of K overlapped with
the partition of S

2.3.4.2. Obtain the kernel of the discrepancy (Rker)
2.3.4.3. If it is discrepant in R, the discrepancy type is KSR’

The discrepant statements are: Rker
2.3.4.4. If it is not discrepant in R, there is no discrepancy

Observations The order that is established for the detection of discrepancies (first S, then K and
finally R) is based on the following heuristic considerations:
1. When starting with S, we first identify the discrepancies that affect the interface of
the system, which assures us that we start with discrepancies that are relevant to the
system.
2. When continuing with K, we obtain descriptive information, whose discrepancies
may provoke discrepancies in R. Once the discrepancies in K are located, we can
therefore trace their consequences into R.

Discrepancy
detection and

resolution

Discrepancy
identification

Discrepancy
resolution

Structuration of
viewpoints

K’S’R’
discrepancy
resolution

K’S’R
discrepancy
resolution

K’SR’
discrepancy
resolution

KS’R’
discrepancy
resolution

K’SR
discrepancy
resolution

KS’R
discrepancy

resolution

KSR’
discrepancy

resolution

Discrepancy
detection and

resolution

Discrepancy
identification

Discrepancy
resolution

Structuration of
viewpoints

K’S’R’
discrepancy
resolution

K’S’R
discrepancy
resolution

K’SR’
discrepancy
resolution

KS’R’
discrepancy
resolution

K’SR
discrepancy
resolution

KS’R
discrepancy

resolution

KSR’
discrepancy

resolution

Nondecomposed strategic step Discrepancy identification
Description Step that identifies the existing discrepancies between

two viewpoints in order to direct their subsequent
resolution.

Preconditions The viewpoints that must be analyzed were structured
according to the KSR model

Postconditions All the existing discrepancies were identified and
classified.

Inputs K, S, R, Equivalent class, Discrepancy criterion,
Overlap criterion.

Outputs Discrepancy.
Operational mode Discrepancy detection and classification.
Executor Requirements engineer.
Observations VBRE proposes an early identification of the

discrepancies, since they will allow us to direct the
eduction process. However, the early identification of
the discrepancies does not imply that they must be
resolved immediately.

Support sources KSR Model [21]

Tacit Knowledge Discrepancy detection and classification
Description Procedure that identifies the discrepancy types and the discrepant statements that

exist between two viewpoints.
Basic elements K, S, R, Equivalence class, Discrepancy criterion, Overlap criterion.
Conclusion elements Discrepancy.
Definition 1. Obtain K (Ki U Kj), S (Si U Sj) and R (Ri U Rj)

2. For each equivalence class of S:
2.1. Obtain the kernel of the discrepancy (Sker)
2.2. If it is discrepant in S, check if the discrepancy originates in K:

2.2.1. Obtain the overlap of Sker and K
2.2.2. Obtain the kernel of the discrepancy (Kker)
2.2.3. If it is discrepant in K, check if the discrepancy has repercussions on R:

2.2.3.1. Obtain the overlap of Kker and R
2.2.3.2. Obtain the kernel of the discrepancy (Rker)
2.2.3.3. If it is discrepant in R, the discrepancy type is K’S’R’

The discrepant statements are: Sker, Kker and Rker
2.2.3.4. If it is not discrepant in R, the discrepancy type is K’S’R

The discrepant statements are: Sker and Kker
2.2.4. If it is not discrepant in K, check if the discrepancy in S has repercussions

on R:
2.2.4.1. Obtain the overlap of Sker and R
2.2.4.2. Obtain the kernel of the discrepancy (Rker)
2.2.4.3. If it is discrepant in R, the discrepancy type is KS’R’

The discrepant statements are: Sker and Rker
2.2.4.4. If it is not discrepant in R, the discrepancy type is KS’R

The discrepant statements are: Sker
2.3. If it is not discrepant in S, check if there are discrepancies in K:

2.3.1. Obtain the overlap of the partition of S and K
2.3.2. Obtain the kernel of the discrepancy (Kker)
2.3.3. If it is discrepant in K, check if it has repercussions on R:

2.3.3.1. Obtain the overlap of Kker and R
2.3.3.2. Obtain the kernel of the discrepancy (Rker)
2.3.3.3. If it is discrepant in R, the discrepancy type is K’SR’

The discrepant statements are: Kker and Rker
2.3.3.4. If it is not discrepant in R, the discrepancy type is K’SR

The discrepant statements are: Kker
2.3.4. If it is not discrepant in K, check if there are discrepancies in R:

2.3.4.1. Obtain the overlap between R and the elements of K overlapped with
the partition of S

2.3.4.2. Obtain the kernel of the discrepancy (Rker)
2.3.4.3. If it is discrepant in R, the discrepancy type is KSR’

The discrepant statements are: Rker
2.3.4.4. If it is not discrepant in R, there is no discrepancy

Observations The order that is established for the detection of discrepancies (first S, then K and
finally R) is based on the following heuristic considerations:
1. When starting with S, we first identify the discrepancies that affect the interface of
the system, which assures us that we start with discrepancies that are relevant to the
system.
2. When continuing with K, we obtain descriptive information, whose discrepancies
may provoke discrepancies in R. Once the discrepancies in K are located, we can
therefore trace their consequences into R.

Fig. 2. Navigation through the knowledge “Discrepancy identification.”

Concept Specification

Description Description of the interface between the future system and its
environment.

Properties NA
Relationships It is a statement (generalization/specialization relationship),

Discrepancy, K and S determine R.
Observations The specification of the system can only take place when we

know the phenomena of the domain that were used for the
construction of the K and R sets. The requirements engineer,
together with the user, should delimit the borders of the
environment and the system, by identifying the phenomena
that may be shared with the machine, and the way in which
this partition will take place (of course, several possibilities
may indeed exist).

Abbreviations S.

Relationship Discrepancy
Description Situation in which, due to the consideration of a set of

statements, other statements cannot be considered. This
situation is determined by a discrepancy criterion.

Elements K, S, R.
Type Defined by the domain.
Properties Discrepancy criterion, Discrepancy Type, Discrepancy

overlap.
Constraints This relationship is only meaningful between statements of

the same type (e.g., a statement that belongs to K can only
be discrepant with another statement of K).

Observations The term discrepancy that is used here includes the
concepts of inconsistency and conflict in the terms used by
Finkelstein et al [20] and Easterbrook et al [22]:
− Inconsistency: Occurs when a rule that establishes a

necessary relationship between two elements is
broken. For instance, if all children below a given age
are supposed to attend school and one child does not
follow this rule.

− Conflict: Occurs when the goals of one party interfere
with the goals of the other, that is, what one party
wants is not shared by the other. For instance, if the
tutor of a child opposes to its schooling, there are
conflicting interests between the State and the tutor,
and a conflict is generated.

Property Discrepancy criterion
Description This criterion determines whether two or more statements

are discrepant.
Element Discrepancy.
Data category NA (depends on the type of notation used to express the

viewpoints).
Range NA.
Constraints Compulsory.
Source Requirements engineer.
Observations This criterion depends on the type of notation used in the

eduction process. We can also use different criteria as the
development progresses, e.g., in early stages we can use a
more flexible criterion, which becomes more restrictive in
the course of the process.

Concept Specification
Description Description of the interface between the future system and its

environment.
Properties NA
Relationships It is a statement (generalization/specialization relationship),

Discrepancy, K and S determine R.
Observations The specification of the system can only take place when we

know the phenomena of the domain that were used for the
construction of the K and R sets. The requirements engineer,
together with the user, should delimit the borders of the
environment and the system, by identifying the phenomena
that may be shared with the machine, and the way in which
this partition will take place (of course, several possibilities
may indeed exist).

Abbreviations S.

Relationship Discrepancy
Description Situation in which, due to the consideration of a set of

statements, other statements cannot be considered. This
situation is determined by a discrepancy criterion.

Elements K, S, R.
Type Defined by the domain.
Properties Discrepancy criterion, Discrepancy Type, Discrepancy

overlap.
Constraints This relationship is only meaningful between statements of

the same type (e.g., a statement that belongs to K can only
be discrepant with another statement of K).

Observations The term discrepancy that is used here includes the
concepts of inconsistency and conflict in the terms used by
Finkelstein et al [20] and Easterbrook et al [22]:
− Inconsistency: Occurs when a rule that establishes a

necessary relationship between two elements is
broken. For instance, if all children below a given age
are supposed to attend school and one child does not
follow this rule.

− Conflict: Occurs when the goals of one party interfere
with the goals of the other, that is, what one party
wants is not shared by the other. For instance, if the
tutor of a child opposes to its schooling, there are
conflicting interests between the State and the tutor,
and a conflict is generated.

Property Discrepancy criterion
Description This criterion determines whether two or more statements

are discrepant.
Element Discrepancy.
Data category NA (depends on the type of notation used to express the

viewpoints).
Range NA.
Constraints Compulsory.
Source Requirements engineer.
Observations This criterion depends on the type of notation used in the

eduction process. We can also use different criteria as the
development progresses, e.g., in early stages we can use a
more flexible criterion, which becomes more restrictive in
the course of the process.

Fig. 3. Navigation through the concept Specification.

The formalization scheme proposed, as it should, a generic
and exhaustive set of descriptors. Nevertheless, there is always
a necessary adaptation of the scheme to each particular
situation. In this application, specifically, we adapted the
terminological, qualifying and relational descriptors: given that
we wanted to avoid unnecessary detail in the process and the
result, we only used those descriptors that were required at any
given moment. For example, the descriptor “Support sources”,
annexed to the nondecomposed strategic step “Discrepancy
identification” in Fig. 2, was used to clarify the bibliographic
reference that describes the KSR model (in other words, [21]).

B. Formalization of the metaknowledge
Once the knowledge base is complete, those lessons learned

that appear in the course of time must be gathered and
incorporated into this repository. As mentioned in section II,
the proposed scheme is perfectly apt for this task, since
metaknowledge is just knowledge that refines already existing
knowledge.

Table II shows an extract from a lesson learned which is
directly related with the previously mentioned tactical
knowledge. In this Table, the effect of the lesson learned on the
already formalized knowledge is highlighted. This lesson
originated from the suggestion of a requirements engineer who,
in the third cycle of the application of the discrepancy detection
and classification process, realized that she was revising
nondiscrepant knowledge for the second time. Past
discrepancies were resolved and, after that, the engineer
wondered why she should revise statements whose
discrepancies had already been resolved in previous cycles.
This lesson provoked the refinement of the previously
presented tactical knowledge, and the appearance of a new
property—“Marked”—associated to the concepts K, S and R.

TABLE II. EXTRACT OF THE LESSON LEARNED ABOUT DISCREPANCY DETECTION

AND CLASSIFICATION
… …

Definition 1. If we wish to analyze again all the affirmations,
including those that were already considered,
obtain: K (Ki U Kj), S (Si U Sj) and R (Ri U Rj)
2. If we do not wish to analyze again the already
considered affirmations, obtain: K as the set of
unmarked statements of (Ki U Kj), S as the set of
unmarked statements of (Si U Sj), and R as the set of
unmarked statements of (Ri U Rj)
3. For each equivalence class of S:

…
Observations 1. The order that is established for the detection of

discrepancies (first S, then K and finally R) is based
on the following heuristic considerations:

…
2. Since the detection and classification of
discrepancies takes place in several cycles, it is
adequate not to contemplate statements related to
discrepancies that were resolved in previous cycles
(marked).

The lesson learned is connected to the knowledge it refines
by the descriptor “Associate knowledge/Lessons learned.” We
also incorporated the descriptor “Producing agent” pointing to
the engineer that suggested the lesson. This feature carries out
the reward policy for knowledge contribution [6]. Similarly, we
associated the tactical knowledge “Discrepancy detection and
classification” with this lesson through its descriptor
“Associate knowledge/Lessons learned.”

IV. CONCLUSIONS
This paper has presented a generic formalization scheme that

responds to general knowledge needs that exist in any domain,
and in software engineering in particular. This scheme
particularly focuses on the definition of the structure of an
organizational knowledge base; a repository that, together with
the yellow pages, constitutes one of the most relevant elements
of a KM programme: the corporate memory.

In order to obtain this scheme, we analyzed the object that
has to be managed (the knowledge), its types, and its
descriptors. Starting from (i) the formal definition of a
conceptualization, (ii) the hypotheses of conceptualization and
(iii) the natural language, we obtained a formalization scheme
of the knowledge by considering its types (functional
taxonomy) and its defining characteristics (descriptors).

The proposed scheme allows to:
1) Create a formal and systematic definition of the

organizational knowledge base. This situation avoids the
ad hoc definition of a corporate memory.

2) Establish the necessary basis to adequately acquire,
formalize and transmit the knowledge and experiences that
exist in the organization, with the aim of obtaining an
institutional learning.

In the particular case of software development organizations
that was exposed, we noted that the application of the scheme
has provided the following improvements:
1) Facilitate the adaptation of the software process, in this

case by considering innovative research results. This
adaptation (i) was facilitated in time and shape (ii) was
uniformly assumed and applied, and (iii) was globally
transmitted to the involved software engineers.

2) Give support to the continuous improvement and
adaptation of the defined software process (cf. Table II),
considering the knowledge contributions of the software
engineers, who really furnish the best knowledge assets
thanks to their experience.

It also should be noted that the proposed scheme is not only
useful for formalizing a corporate memory, as it also serves as a
basis for defining KM support tools. In the present case, we
defined a tool that currently support knowledge management
related to the above viewpoint-oriented method and that is
described in [23]. Moreover, this scheme allows describing and
directing the activities of a KM initiative. In fact, the proposed
scheme has allowed us to articulate the most relevant phases of
a descriptive KM methodological framework, whose first
version is described, applied and evaluated in [8]. Particularly,

the phases that most benefit from the scheme are knowledge
acquisition and assimilation (conceptualization and
representation), as can be concluded from the example
provided here.

Finally, it should be highlighted that not all the aspects of
this experience have been so positive, since not always is easy
to involve the workers for providing their expert knowledge.
This intrinsic situation to any KM system shows their need for
being complemented with programmes that motivate
knowledge sharing [24].

ACKNOWLEDGMENT
We would like to thank Valérie Bruynseraede (Research

Transfer Office of the University of A Coruña) for her
invaluable help in translating this paper.

REFERENCES
[1] I. Rus, and M. Lindvall, “Knowledge management in software

engineering,” IEEE Software, vol. 19(3), 2002, pp. 26-38.
[2] J. S. Edwards, “Managing software engineers and their knowledge,” in

Managing Software Engineering Knowledge, A. Aurum, R. Jeffery, C.
Wohlin, and M. Handzic, Eds., Berlin: Springer-Verlag, 2003, pp. 5-27.

[3] A. Birk, T. Dingsoyr, and T. Stalhane, “Postmortem: never leave a project
without it,” IEEE Software, vol. 19(3), 2002, pp. 43-45.

[4] T. H. Davenport, and L. Prusak, Working Knowledge: How Organizations
Manage What They Know. Boston: Harvard Business School Press, 2000.

[5] K. Wiig, Knowledge Management Foundations: Thinking about
Thinking. How People and Organizations Create, Represent and Use
Knowledge. Texas: Schema Press, 1993.

[6] G. Van Heijst, R. Van Der Spek, and E. Kruizinga, “Corporate memories
as a tool for knowledge management,” Expert Systems with Applications,
vol. 13(1), 1997, pp. 41-54.

[7] R. Weber, D. W. Aha, and I. Becerra-Fernandez, “Intelligent lessons
learned systems,” Expert Systems with Applications, vol. 17, 2001, pp.
17-34.

[8] S. Rodríguez, Un Marco Metodológico para la Gestión del Conocimiento
y su Aplicación a la Ingeniería de Requisitos Orientada a Perspectivas.
PhD Thesis, Department of Information and Communications
Technologies, University of A Coruña. 2002.

[9] B. Rubenstein-Montano, J. Liebowitz, J. Buchwalter, D. Mccaw, B.
Newman, and K. Rebeck, “A systems thinking framework for knowledge
management,” Decision Support Systems, vol. 31, 2001, pp. 5-16.

[10] K. Wiig, R. de Hoog, and R. Van Der Spek, “Supporting knowledge
management: a selection of methods and techniques,” Expert Systems
with Applications, vol. 13(1), 1997, pp. 15-27.

[11] J. Andrade, J. Ares, R. García, S. Rodríguez, and A. Silva,
“Human-centered conceptualization and natural language,” in
Encyclopedia of Human Computer Interaction, C. Ghaoui, Ed., Hershey:
Idea Group, Inc., 2006, pp. 280-286.

[12] J. A Díez, and C. U. Moulines, Fundamentos de Filosofía de la Ciencia.
Barcelona: Ariel S. A. 1997.

[13] J. Ares, and J. Pazos, “Conceptual modelling: an essential pillar for
quality software development,” Knowledge-Based Systems, vol. 11, 1998,
pp. 87-104.

[14] J. Andrade, J. Ares, R. García, J. Pazos, S. Rodríguez, and A. Silva, “A
Methodological Framework for Generic Conceptualization:
Problem-Sensitivity in Software Engineering,” Information and Software
Technology, vol. 46 (10), 2004, pp. 635-649.

[15] J. Andrade, J. Ares, R. García, S. Rodríguez, and S. Suárez, “Lessons
learned for the knowledge management systems development,” in
Proceedings of the 2003 IEEE International Conference on Information
Reuse and Integration, W. W. Smari, Ed., Las Vegas: IEEE Systems, Man
and Cybernetics Society, 2003, pp. 471-477.

[16] A. Silva, “Requirements, domain and specifications: a viewpoint-based
approach to requirements engineering,” in Proceedings of the
Twenty-Fourth International Conference on Software Engineering, W.
Tracz, Ed., New York: ACM Press, 2002, pp. 94-104.

[17] J. Andrade, J. Ares, F. J. López, J. Pazos, S. Rodríguez, and A. Silva,
“Computer-assisted Discrepancy Management. A Case Study in Research
Transfer to Industry,” Journal of Research and Practice in Information
Technology, vol. 36(4), 2004, pp. 295-315.

[18] P. Darke, and G. Shanks, “Stakeholder viewpoints in requirements
definition: A framework for understanding viewpoint development
approaches,” Requirements Engineering, vol. 1(2), 1996, pp. 88-105.

[19] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging inconsistency in
software development,” IEEE Computer, vol. 4, 2000, pp. 24-29.

[20] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency handling in multiperspective specifications,” IEEE
Transactions on Software Engineering, vol. 20(8), 1994, pp. 569-578.

[21] P. Zave, and M. Jackson, “Four dark corners of requirements
engineering,” ACM Transactions on Software Engineering and
Methodology, vol. 6(1), 1997, pp. 1-30.

[22] S. Easterbrook, and B. Nuseibeh, “Using viewpoints for inconsistency
management,” Software Engineering Journal, vol. 11(1), 1996, pp. 31-43.

[23] M. Seoane, Desarrollo de una Herramienta de Soporte a la Gestión
Explícita del Conocimiento Organizativo. BSc Project, Department of
Information and Communications Technologies, University of A Coruña.
2003.

[24] G. P. Huber, “Transfer of knowledge in knowledge management systems:
unexplored issues and suggested studies,” European Journal of
Information Systems, vol. 10(2), 2001, pp. 72-79.

Javier Andrade. Dr. Andrade is Associate Professor in the Information and
Communications Technologies Department at the University of A Coruña,
Spain. His research interests in computer science include conceptual modeling,
knowledge management and natural language processing. He worked as
software engineering and technological solutions consultant at IAL Software
Engineering and Norcontrol Soluziona (Quality and Environment Department).
He has a B.S. and Ph.D. in computer science. He is author of several book
chapters and publications in software engineering.

Juan Ares. Dr. Ares is Director of the Information and Communications
Technologies Department at the University of A Coruña, Spain. He is Associate
Professor and co-Director of the Software Engineering Laboratory at this
University. His research interests in computer science include conceptual
modeling, knowledge management and software process assessment. He
worked as director and consultant in several organizations, including
Norcontrol Soluziona and Arthur Andersen. He has a B.S. and Ph.D. in
computer science. He is editor of several books and author of numerous
chapters and publications in software engineering.

Rafael García. Dr. García is Director of the Computer Training Unit at the
University of A Coruña, Spain. He is Associate Professor and co-Director of the
Software Engineering Laboratory at this University. His research interests in
computer science include conceptual modeling, knowledge management and
project management. He was project leader in several organizations, including
Quibus Computers and Sistema Base. He has a B.S. and Ph.D. in computer
science. He is editor of several books and author of numerous chapters and
publications in software engineering.

Santiago Rodríguez. Dr. Rodríguez is Associate Professor in the Information
and Communications Technologies Department at the University of A Coruña,
Spain. His research interests in computer science include conceptual modeling,
knowledge management and distributed systems development. He was project
leader in several Spanish organizations. He has a B.S. and Ph.D. in computer
science. He is author of several book chapters and publications in software
engineering.

Sonia Suárez. Mrs. Suárez received the Computing Engineer degree from the
University of A Coruña, Spain. Actually, she is a PhD. Student at the
Polytechnical University of Madrid, Spain. Her research interests in computer
science include knowledge management, e-learning, validation and
experimentation. She is author of several publications in software engineering.

	I. INTRODUCTION
	II. SCHEME OF KNOWLEDGE FORMALISATION
	A. Common descriptors
	B. Strategic subscheme
	C. Tactical subscheme
	D. Declarative subscheme
	E. Formalization strategy
	III. EVALUATION OF THE FORMALISATION SCHEME
	A. Formalization of the knowledge
	B. Formalization of the metaknowledge

	IV. CONCLUSIONS

