

Abstract— There is a great amount of valuable information on

the web that cannot be accessed by conventional crawler engines.
This portion of the web is usually known as the Deep Web or the
Hidden Web. Most probably, the information of highest value
contained in the deep web, is that behind web forms. In this paper,
we describe a prototype hidden-web crawler able to access such
content. Our approach is based on providing the crawler with a
set of domain definitions, each one describing a specific
data-collecting task. The crawler uses these descriptions to
identify relevant query forms and to learn to execute queries on
them. We have tested our techniques for several real world tasks,
obtaining a high degree of effectiveness.

Index Terms—Crawler, Deep Web, HTML Forms, Server-Side.

I. INTRODUCTION

Crawlers are software programs that automatically traverse
the web, retrieving pages to build a searchable index of their
content. Conventional crawlers receive as input a set of "seed"
pages and recursively obtain new ones by locating and
traversing their outbound links.

Crawling techniques have led the construction of highly
successful commercial web search engines. Nevertheless,
conventional web crawlers cannot access to a significant
fraction of the web, which is usually called the “hidden web” or
the “deep web”. The problem of crawling the “hidden web” can
be divided into two challenges:

- Crawling the “server-side” hidden web. Many websites
offer query forms to access the contents of an
underlying database. Conventional crawlers cannot
access these pages because they do not know how to
execute queries on those forms.

- Crawling the “client-side” hidden web. Many websites
use techniques such as client-side scripting languages
and session maintenance mechanisms. Most
conventional crawlers are unable to handle this kind of
pages.

Several works have tried to characterize the hidden web [4],

Manuscript received April 28, 2006. This research was supported in part by

the Spanish Ministry of Education and Science under project TSI2005-07730.
Alberto Pan’s work was supported in part by the "Ramón y Cajal" programme
of the Spanish Ministry of Education and Science.

M. Álvarez , J. Raposo, F. Cacheda and A. Pan are with the Department of
Information and Communications Technology, University of A Coruña,
Campus de Elviña s/n. 15071 A Coruña, Spain (e-mail: {mad, jrs, fidel,
apan}@udc.es).

[5]. Among their findings, we can point out that the “hidden
web” is substantially larger than the publicly indexable web
and that hidden web pages (specially the ones accessed through
query forms) usually contain data of higher quality and with a
higher degree of structure.

In addition, the hidden web size is growing rapidly: in the
four years lapse between the two cited studies, the estimated
size of the hidden web has been increased between 3 and 7
times [5].

To address the problem of crawling the hidden web, we have
built a prototype system called DeepBot. It has the following
features:

- DeepBot’s crawling processes are based on automated
“mini web browsers”, built by using standard browser
APIs (our current implementation is based on the
Microsoft Internet Explorer browser). This enables our
system to deal with client-side scripting code, session
mechanisms, managing redirections, and other
complexities related with the client-side hidden web.

- For accessing the “server-side” deep web, DeepBot can
be provided with a set of domain definitions, each one
describing a certain data-gathering task. DeepBot
automatically detects forms relevant to the defined tasks
and executes a set of pre-defined queries on them.

This paper briefly overviews the architecture of DeepBot
and describes in detail the techniques it uses for accessing the
server-side hidden web. The techniques used to deal with the
client-side deep web were described in greater detail in [1].

The rest of the paper is organized as follows. Section II
overviews the architecture of DeepBot and the main
components that participate in accessing the server-side hidden
web. Section III describes the domain definitions used to
specify a data collection task. Section IV is the core of the
paper; it describes how DeepBot detects query forms relevant
to a certain task and how it learns to execute queries on them.
Section V describes our experiments with the system. Finally,
section VI discusses related work and section VII concludes the
paper.

II. OVERVIEW / ARCHITECTURE
As well as in conventional crawling engines, the functioning

of DeepBot is based on a shared list of routes (pointers to
documents), which will be accessed by a certain number of
concurrent crawling processes, distributed into several

A Task-specific Approach for Crawling
the Deep Web

Manuel Álvarez, Juan Raposo, Fidel Cacheda and Alberto Pan

Engineering Letters, 13:2, EL_13_2_19 (Advance online publication: 4 August 2006)
__

machines.
The crawler is initialized with a list of routes. Each crawling

process picks a route from the list, downloads its associated
document and analyzes it in order to obtain new routes from its
anchors, which are then added to the master list. The process
ends when there are no routes left or when a specified depth
level is reached. The main singularities of our approach are:

- In conventional crawlers, routes are just URLs. Thus,
they have problems with sources using session
mechanisms. Our system stores, with each route, a
session object containing all the required information
(cookies, etc.) to restore the execution environment in
which the crawling process was running in the moment
of adding the route to the master list. This allows a
crawling process to access a URL added by other
crawling process (even if the original process was
running in another machine).

- Conventional engines implement crawling processes by
using http clients. Instead, our system uses lightweight
automated mini web browsers (built by using the APIs
of most popular browser technologies) as execution

environment for automated navigation. These mini web
browsers access to pages by generating actions on a web
browser interface, in the same way a human user would
generate them when browsing. For instance, to access to
the page behind an anchor, a conventional crawler
would obtain the URL from the href attribute, using it to
issue an HTTP request. Instead, our system simply
generates a click browser-event on the anchor. This
allows the crawling processes to forget about
complexities such as client-side scripting (e.g.
Javascript) or complex redirections, in the same way a
human user of a web browser is not bothered about those
issues. For specifying a navigation sequence in the
automated mini-browsers, we have created NSEQL
[15], a language which allows representing a sequence
as the list of interface events a user would need to
produce on the web browser in order to reach the desired
page. For instance, NSEQL includes commands for
actions such as generating ‘click’ events on any element
of a page (anchors, images, buttons, …), filling in
HTML forms, etc.

Fig. 1. Crawler Architecture

- When the system reaches a new page, in addition of
using its anchors to generate new routes, it also
examines each HTML form and ranks its relevance with
respect to a set of pre-configured domain definitions
(remember that each domain definition describes a
specific data-collection task). If the system finds that the
form is relevant, it is used to execute a set of queries
defined by the domain, thus reaching to new pages.

A. Crawler Architecture
The architecture of the system is shown in Fig. 1. When the

crawler engine starts, it reads its configuration parameters from
the Configuration Manager component.

These parameters include the ones typically needed by a
conventional crawler engine: the list of initial routes to begin
the crawl, the desired navigation depth for each initial route,
download handlers for different kinds of documents, content
filters, a list of regular expressions representing URLs to be
included and excluded from the crawling, etc.

In addition, the crawler is also configured with a set of
domain definitions. As we will see in section III, each domain
definition describes a specific data-collection task in the
server-side deep web.

The Route Manager is responsible for maintaining the
master list of routes to access; all crawlers share this list. Once
the crawling processes start, each one picks a route from the
Route Manager. It is important to notice that each crawling
process can be executed either locally or remotely to the server,
thus allowing for distributed crawling. As we have already
remarked, each crawling process is a mini web-browser able to
execute NSEQL sequences.

Then the crawling process loads the session object
associated to the route and downloads the associated document
(it uses the Download Manager Component to choose the right
handler for it, such as HTML, PDF, MS Word, etc).

The content from each downloaded document is then
analyzed by using the Content Manager Component. This
component specifies two chains of filters. The first chain is
used to decide if the document is considered relevant and,
therefore, if it should be stored and/or indexed. For instance,
the system includes filters, which allow checking if the
document verifies a keyword-based boolean query in order to
decide whether to store/index it or not.

The second chain of filters is used to post-process the
document. For instance, this chain includes filters to extract the
useful content from HTML pages and to generate a short
document summary. Nevertheless, the main function of this
second chain is obtaining new routes from the analyzed
documents and adding them to the master list. There are two
filters involved in this task:

- The Obtain Links filter selects all the anchors in the page
and generates a new route for each one. Since scripting
languages can dynamically generate and remove
anchors in response to user actions (e.g. pop-up menus),
this involves some complexities for a hidden-web
crawler (see [1]). It is also possible to specify a certain

regular expression that the URL of the anchors must
verify in order to be considered.

- The Form Analyzer filter analyzes each form in the page
and determines if it is relevant for any of the
pre-configured domain definitions. In the case a form is
considered relevant, a new route will be added for each
query specified by the domain definition. Subsequent
sections will provide more detail about this filter.

The architecture also includes components for indexing and
searching the crawled contents, using state of the art algorithms
(our current implementation is based on Apache Lucene1). The
crawler generates an XML file for each crawled document,
including metainformation such as its URL and the NSEQL
sequence needed to access it.

The NSEQL sequence is used by another component of the
system architecture: the ActiveX for automatic navigation
Component. This component receives as a parameter a NSEQL
program, downloads itself into the user browser and makes it
execute the given navigation sequence. In our system, this is
used to solve the problem of accessing to documents at a later
time. When the user executes a search against the index, the list
of answers may contain some results that cannot be directly
accessed by using its URL, due to session issues. In that case,
the anchors associated to those results in the response listing
will invoke the ActiveX component passing as parameter the
NSEQL sequence associated to the page. Then, if the users
click on the anchor, the ActiveX will make their browser
automatically navigate to the desired page.

III. DOMAIN DEFINITIONS
In this section, we describe the domain definitions used to

describe a data-collection task. A domain definition is
composed of the following elements:

- A set of attributes A={a1, a2,…,an}. Each attribute ai has
associated:

- a name,
- a set of aliases { ai _alias1,…, ai _aliask}, and
- a specificity index si.

- A set of queries Q={q1, q2,…,qm} we want to execute on
the discovered relevant forms. Each query qj is a list of
pairs (attribute, value), where attribute is an attribute of
the domain and value is a string (it can be empty).

- A relevance threshold denoted as µ.
An attribute represents a field that may appear in the query

forms that are relevant to the data-collection task.
The aliases represent alternative labels that may identify the

attribute in a query form. For instance, the attribute AUTHOR,
from a domain used for collecting data about books, could have
aliases such as “writer” or “written by”. It is important to notice
that the study in [5] concluded that the aggregate schema
vocabulary of web forms in the same domain tends to converge
at a relatively small size. In addition, they also detected a

1 http://lucene.apache.org

Zipf-like distribution of attribute frequencies (thus, a small set
of “dominant” attributes are much more frequent in the forms
of the domain than the rest of attributes). This supports the
feasibility of creating effective domain specifications in an easy
and fast way: exploring a few sources in the domain is usually
enough to find the most important attributes and aliases.

For each attribute, the domain also includes a specificity
index. The specificity index (denoted si) of an attribute ai is a
number between 0 and 1 indicating how probable is that a query
form containing such attribute is actually relevant to the
domain. For instance, in an example domain for collecting
book data, we could have the following specificity indexes:

- the attribute ISBN would have a very high value (e.g.
0.95), since a query form allowing queries for the ISBN
attribute is almost certainly a form allowing to search

books.
- the PRICE attribute would have a low value such as

0.05, since a query form allowing queries for the PRICE
attribute could be a query form allowing to search any
kind of product, not only books.

Finally, the domain also includes a relevance threshold µ.
The specificity indexes and the threshold will be used to
determine if a given form is relevant to a domain.

Fig. 2 shows an example domain definition for the task of
collecting pages containing data about books on the subject of
Java and XML programming. The relevance threshold for this
domain is set to 0.9.

IV. PROCESSING FORMS WITH THE FORM ANALYZER
In this section, we describe how the crawler processes each

found form (see Fig. 3). The performed steps are:
- For every domain, the system tries to match its attributes

with the fields of the form, using visual distance and text
similarity heuristics (described in subsection A).

- By using the output of the previous step, the system
determines if the form is relevant with respect to the
domain (see subsection B).

- If the form is relevant, the crawler uses it to execute the
queries defined in the domain. For each query, we
obtain a new route to add to the list of routes. The new
route will be dealt with as any other route fetched by the
crawler (see subsection C).

The following sub-sections detail each of these steps.

A. Associating Form Fields and Domain Attributes
Given a form f located in a certain HTML page and a domain

d describing a data-collecting task, our goal at this stage is to
determine whether f allows executing queries for the attributes
of the domain d or not. The method we use consists of the
following steps:

1. Determining which texts are associated with each field
of the form. This step is based on heuristics using visual
distance measures between the form fields and the texts
surrounding them.

2. Trying to relate the fields of f with the attributes of d.
The system performs this step by obtaining text
similarity measures between the texts associated with
each form field and the texts associated with each
attribute in the domain definition d.

Measuring visual distances. At this step, we consider the

texts in the page and compute their visual distance with respect
to each field2 of the form f. The visual distance between a text
element t and a form field f is computed as follows:

1. The browser APIs are used to obtain the coordinates of a

2 We consider the radio button and checkbox elements with the same value

for the name attribute as a single field. The system tries to associate texts for
each radio button or checkbox, and texts for the compound field they represent
(group of radio buttons or checkboxes).

Fig. 2. Example domain definition for Books

Fig. 3. Form Analyzer Architecture

rectangle enclosing f and a rectangle enclosing t. If t is
into an HTML table cell, and it is the unique text inside
that table cell, then the coordinates of the table cell
rectangle are assigned to t.

2. We obtain the minimum distance between both
rectangles. This involves finding the shortest line
joining any point in one rectangle and any point in the
other; the distance will be the length of this line.
Distances are not computed in pixels but in more
coarse-grained units (we use cells of the approximated
visual size of one character).

3. We also obtain the angle of the shortest line joining both
rectangles. The angle is approximated to the nearest
multiple of π/4.

Fig. 4a shows one example query form corresponding to an
Internet bookshop. We show the distance and angles obtained
for some of its texts and fields.

Associating texts and form fields. For each form field, our

goal is to obtain the texts “semantically linked” with it in the
page. For instance, in the Fig. 4a the strings semantically linked
to the first field are “Book Title” and “(example: ‘Thinking in
Java’)”. For pre-selecting the “best texts” for a field f, we apply
the following steps:

1. First, we add all the texts having the shortest distance d
with respect to f to the list.

2. Those texts having a distance lesser than k·d with
respect to f are added to the list ordered by distance (k is
a configurable factor usually set to 5). This step discards
those texts that are significantly further from the field
than the closest ones.

3. Texts with the same distance are ordered according to its
angle (note that since our distances are rather measured
in coarse-grained units than pixels, it is relatively usual
to have several texts at the same distance from the same
field). The preference order for angles privileges texts
aligned with the fields (that is, angle multiple of π/2); it

also privileges left with respect to right and top with
respect to bottom.

As output of the previous step we have an ordered list of
texts, which are probably associated to each form field. Then
we post-process the lists as follows:

1. We ensure that a given text is only present in the list of
one field. The rationale for this is that at the following
stage of the form ranking process (which consists in
matching form fields and “searchable” attributes), we
will need to associate unambiguously a certain text with
a given form field. Note that although there may be texts
in the form which are semantically related to more than
one field (e.g. the text “Refine your search:” in Fig. 4a),
those semantic associations will typically be irrelevant
for our purposes; because these texts are related to more
than one field, they usually do not describe precisely any
of them.

2. We ensure that each field has at least one associated text.
The rationale for this is that, in real pages, a given form
field always has some associated text to allow the user to
identify its function. For instance, if the list of a field f1
contained the texts t1 and t2 (in that order), and the list of
a field f2 only contained the text t1, then we would
choose to remove t1 from the list of f1, since removing it
from the list of f2 would leave the field with an empty
list. Note that this would be done even if t1 were actually
closer to f1 than to f2.

Fig. 4b shows the process for the example form of Fig. 4a.
For each field3 of the form, we show the ordered list of texts
obtained by applying the visual distance and angle heuristics.
The texts remaining in the lists after the post-processing steps
are boldfaced in the figure. For instance, for the field f1 the final
associated texts are “(example: Thinking in Java)” and “Book

3 Note how the system models the Format ‘checkbox’ field as a field with
three subfields. f5 refers to the whole set of checkboxes while f51, f52 and f53 refer
to individual checkboxes.

Fig. 4a. Example query form and visual distances and angles for field f1

Title:”.

Associating form fields and domain attributes. At this step

we try to detect the form fields which correspond to attributes
of the target domain.

At this stage, we distinguish between two kinds of fields:
- Bounded fields. We term as bounded those fields

offering a finite list of possible query values, such as
select-option fields, checkbox fields or radio buttons,

- Unbounded fields. We term as unbounded those fields
whose query values are not limited, such as text boxes.

The basic idea to rank the “similarity” between a field f and
an attribute a is to measure the textual similarity between the
texts associated with f in the page (obtained as shown in the
previous step) and the texts associated with a in the domain (the
attribute name and the aliases). When the field is bounded, the
system also takes into account the text similarities between the

possible values of f in the page4 and the query input values
specified for a in the domain queries. Text similarity measures
are obtained using a method proposed in [7] that combines
TFIDF and the Jaro-Winkler edit-distance algorithm. Before
computing similarities, the texts are normalized by removing
stopwords and non alphanumeric characters. The words in the
text are ordered alphabetically. Stemming techniques are not
used because word suffixes are very useful to differentiate
aliases (e.g. “Published” and “Publisher”).

We use the following method to rank the similarity between
a field f and a searchable attribute a:

1. We indicate the texts describing a (that is, the attribute
name and its aliases specified in the domain) as the set
{a_alias1,…,a_aliasn}. We obtain the texts associated

4 Obtaining these values is a trivial step for select-option tags, since their

possible values appear in the HTML code enclosed in option tags. For checkbox
and radio tags we apply visual distance techniques similar to the ones
previously discussed.

Fig. 4b. Texts associated to each field in the form of Fig. 4a

with f in the page using the methods seen in the previous
section; we notate them as {f_text1,…,f_textm}.

2. If f is a bounded field, then we also obtain its possible
values from the page {f_value1,…,f_valuep}. We also
examine the queries from the domain to obtain the set of
input values used in them for attribute a
{a_value1,…,a_valueq}.

3. Now we compute the text similarity between each pair
(a_aliasi,f_textj),i=1..n, j=1..m. Then we obtain sim1 as in
(1), i.e. the maximum of the obtained text similarities.

(){ }
mjniji textfaliasatextSimsim

..1,..11 _,_max
==

=
 (1)

4. If f is bounded, then we also compute the text similarity
between each pair (f_valuek,a_valuer),k=1..p, r=1..q. Then
we obtain sim2 as in (2), i.e. the mean of the maximum
similarities obtained for each a_valuer,r=1..q.

(){ }()∑ = ==
qr pkkr qvaluefvalueatextSimsim

..1 ..12 /_,_max
 (2)

5. If f is bounded, then the similarity between a and f is set
to max {sim1, sim2}. If f is unbounded, then the similarity
is set to sim1.

As result of applying the previous steps, we obtain a table
with the estimated similarities between each form field and
each attribute. Then we proceed as follows:

- The pairs from the table that do not reach a minimum
similarity threshold are discarded.

- If the table does not contain two entries for the same
attribute, the process finishes and the table contains the
valid associations between form fields and attributes. If
the table contains more than one entry for the same
attribute, we choose for each attribute the entry with a
higher similarity but trying to guarantee that no field
with an entry above the threshold is left unassigned. For
instance, if the field f2 were the best option for two
attributes a1 and a2, and we also had f1 as an additional
option for a1, we would make the assignments f1-a1 and
f2-a2 instead of the sole assignment f2-a2.

The output of this stage is a set of assignments between form

fields and domain attributes. Each of these assignments has a
certain confidence, which the system sets to the similarity
obtained between the field and the attribute participating in the

assignment.
Fig. 5 shows the assignments obtained for the form in Fig.

4a, using the domain definition shown in Fig. 2.

B. Determining the Relevance of a Form to a Domain
The output of the previous stage is a set of assignments

{A1,…,Ak} between form fields and domain attributes. Each of
these assignments has a certain confidence, expressed as a
number between 0 and 1. We indicate the confidence of
assignment Ai as ci.

The method we use to determine if a form is relevant to a
domain consists of adding the confidences of each assignment,
pondered by the specificity index of the attribute involved in it,
and checking if the sum exceeds the relevance threshold µ.
That is, the system checks if the inequality in (3) is verified.

µ>∑
= ki

ii sc
..1

 (3)

For instance, considering the domain definition shown in
Fig. 2, and the assignments shown in Fig. 5, we would obtain
(4).

0.71 · 0.6 + 1 · 0.7 + 1 · 0.25 = 1.376 > µ = 0.9 (4)

C. Executing Queries
Once the system determines that a form is relevant to a

certain domain d, a new route must be added for each query
specified in d. Executing a query in the form involves:

- Filling in the form according to the query.
- Submitting the form.
The first task can be easily done from the assignments which

associate form fields and domain attributes.
The second task has its own complications. Although the

lightweight mini-browsers the system uses as crawling
processes may directly issue a SUBMIT event on the form once
it has been filled in, this simple strategy does not work in some
websites. This is due to the frequent use of client-side scripting
languages to manage form submission. To overcome these
difficulties, the system proceeds as follows:

Fig. 5. Assignments obtained for the form in Fig.4a, using the domain definition shown in Fig.2

1. The system searches for input elements in the form of
the types submit, image or button (in that order). Each
found element is used to try to submit the form by
generating a click event on it. After each try, the system

checks if the event caused a new navigation in the
browser. If it was not the case, it tries the next element.

2. If the previous step is unsuccessful (typically because
the searched types of input elements do not exist), the
system concludes that the way used to submit the form is
clicking on an anchor with some associated
client-scripting code (typically Javascript). Therefore,
the system looks for anchors located visually close to the
form and having associated some client-side script in
either the href or the onClick attributes.

3. The anchors obtained in the previous step are ordered
according to its visual proximity to the form and to the
text similarity between their associated texts and a set of
pre-defined texts commonly used to indicate form
submission (e.g. ‘search’, ‘go’, ‘submit’,…).

4. The system tries to generate a click event on the anchors
in the list and checks if the event caused a new
navigation in the browser. If it is not the case, it tries the
next element.

5. If all the previous steps fail, the system generates a
SUBMIT event on the form.

V. EXPERIENCE

A. Experimental Setting
To evaluate the performance of our approach, we tested it on

two different domains: Books Shopping and Music Shopping
websites.

Fig. 6. Domain definitions: Books and Music

Table 1. Basic and advanced datasets for Books Shopping and Music Shopping domains

Domain

Dataset
Books Shopping Music Shopping

Amazon.com - http://www.amazon.com Amazon.com Music - http://www.amazon.com
Barnes&Noble - http://www.barnesandnoble.com Barnes&Noble Music - http://www.barnesandnoble.com
Powell’s Books - http://www.powells.com Tower Records - http://www.towerrecords.com
eCampus.com - http://www.ecampus.com Rough Trade - http://www.roughtrade.com
Dymocks Booksellers - http://www.dymocks.com.au Sam Goody - http://www.samgoody.com
Tattered Cover Bookstore - http://www.tatteredcover.com Schott Musik International - http://www.schott-music.com
BookFinder4U.com - http://www.bookfinder4u.com A&B Sound - http://catalog2.absound.ca
Cody’s Books - http://www.codysbooks.com Collectors’ Choice Music - http://www.ccmusic.com
Daedalus Books&Music - http://www.daedalusbooks.com CD Quest - http://www.cdquest.com

Basic

Bolen - http://www.bolen.bc.ca AudibleFaith – http://www.audiblefaith.com
The Book Pl@ce - http://www.thebookplace.com Cyber Music Surplus - http://www.cybermusicsurplus.com
Blackwell’s Bookshop - http://bookshop.blackwell.co.uk ClassicTrax.co.uk - http://www.classictrax.ltd.uk
The American Book Center - http://www.abc.nl MyMusic.com - http://www.mymusic.com
Oxbow Books - http://www.oxbowbooks.com Mojo Sounds - http://www.mojosounds.com
Strand Book Store - http://www.strandbooks.com Looney Tunes - http://www.looneytunescds.com
Globe Pequot Press - http://www.globepequot.com Buy Cd - http://www.buycd.com
Northshire Bookstore - http://www.northshire.com Record Exchange - http://www.buymusichere.net
Green Apple Books&Music-http://www.greenapplebooks.com Musica Obscura - http://www.musicaobscura.com
Thomson Gale - http://www.gale.com ProMusicFind.com - http://www.promusicfind.com

Advanced

The Scholar’s Bookshelf - http://www.scholarsbookshelf.com Ladyslipper Music - http://www.ladyslipper.org

The process for creating the domain definitions was the
following: for each domain, we manually explored 10 sites at
random, from the respective Yahoo Directory5 category and
used them to define the attributes and aliases. The specificity
indexes and the relevance threshold were also manually chosen
from our experience visiting these sites. The resulting domain
definitions are shown in Fig. 6.

Once the domains were created, we used DeepBot to crawl
20 websites of the respective Yahoo Directory category. The
websites visited by DeepBot for each domain are shown in
Table 1. The websites used to define the attributes and aliases
are grouped in a dataset named Basic, while the remaining sites
are grouped in a dataset named Advanced.

To check the accuracy of the results obtained, we manually
analyzed the websites and compared the results with those
obtained by DeepBot.

B. Metrics
The metrics defined to measure the performance of DeepBot,

make use of the following variables:
- TextFieldADeepBot: set of the associations between texts

and form fields discovered by DeepBot.
- TextFieldAReal: set of the associations between texts and

form fields discovered by the manual analysis.
- FieldAttributeADeepBot: set of the associations between

form fields and domain attributes discovered by
DeepBot.

- FieldAttributeAReal: set of the associations between form
fields and domain attributes discovered by the manual
analysis.

- FormDomainADeepBot: set of the associations between
forms and domains discovered by DeepBot.

- FormDomainAReal: set of the associations between
forms and domains discovered by manual analysis.

- SubmittedFormsDeepBot: set of forms successfully
submitted by DeepBot.

We defined the following metrics:
- Metrics for associating texts and form fields in (5).

5 http://dir.yahoo.com

Real

RealDeepBot

DeepBot

RealDeepBot

TextFieldA

TextFieldATextFieldA
:Re

TextFieldA

TextFieldATextFieldA
:Pr

∩
=

∩
=

TextFieldA

TextFieldA

call

ecision (5)

- Metrics for associating form fields and domain
attributes in (6).

Real

RealDeepBot

DeepBot

RealDeepBot

buteAFieldAttri

buteAFieldAttributeAFieldAttri
:Re

buteAFieldAttri

buteAFieldAttributeAFieldAttri
:Pr

∩
=

∩
=

buteAFieldAttri

buteAFieldAttri

call

ecision
 (6)

- Metrics for Global associations between forms and
domains in (7).

RealDeepBot

Real

RealDeepBot

DeepBot

RealDeepBot

AFAFormDomain
:Pr

AFormDomain

AFAFormDomain
:Re

AFormDomain

AAFormDomain
:Pr

ormDomain

ormsSubmittedF
ecision

ormDomain
call

FormDomain
ecision

DeepBot
ormsSubmittedF

AFormDomain

AFormDomain

∩
=

∩
=

∩
= (7)

C. Experimental Results
Table 2 summarizes the obtained experimental results. For

each domain, it shows the values obtained for all the metrics in
the Basic dataset (the sites used to define the domains), the
Advanced dataset (the remaining sites) and in the Global
dataset (Basic + Advanced).

Table 2. Experimental results

Books Shopping Music Shopping
Metrics / Datasets Basic Advanced Global Basic Advanced Global
Form-Domain Associations

PrecisionFormDomainA 13/13 = 1.00 11/11 = 1.00 24/24 = 1.00 10/10 = 1.00 9/9 = 1.00 19/19 = 1.00

RecallFormDomainA 13/13 = 1.00 11/11 = 1.00 24/24 = 1.00 10/10 = 1.00 9/10 = 0.90 19/20 = 0.95

PrecisionSubmittedForms 13/13 = 1.00 11/11 = 1.00 24/24 = 1.00 10/10 = 1.00 9/9 = 1.00 19/19 = 1.00

Field-Attribute Associations
PrecisionFieldAttributeA 54/55 = 0.98 50/50 = 1.00 104/105 = 0.99 37/37 = 1.00 31/33 = 0.94 68/70 = 0.97
RecallFieldAttributeA 54/54 = 1.00 50/53 = 0.94 104/107 = 0.97 37/37 = 1.00 31/37 = 0.84 68/74 = 0.92

Text-Field Associations
PrecisionTextFieldA 129/142= 0.91 101/137 = 0.73 230/279 = 0.82 93/110 = 0.83 107/132 = 0.81 199/242 =0.82
RecallTextFieldA 129/132 = 0.98 101/127 = 0.79 230/259 = 0.88 92/94 = 0.98 107/109 = 0.98 199/203 = 0.98

It is important to notice that, in order to calculate the metrics
for form-domain and field-attribute associations, “quick

search” and authentication forms have not been considered.
The results include only multi-field forms of the kind usually

Table 3. Experimental results for each site in Books Shopping domain

Form-Domain
Associations

Field-Attribute
Associations

Text-Field
Associations

Datasets / Metrics

Precision Recall Precision
SubmittedForms

Precision Recall Precision Recall

Amazon.com 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 7/7= 1.00 7/7 = 1.00 17/19 = 0.89 17/17 = 1.00

Barnes&Noble 2/2 = 1.00 2/2 = 1.00 2/2 = 1.00 6/7 = 0.86 6/6 = 1.00 9/11 = 0.82 9/9 = 1.00

Powell’s Books 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 6/6 = 1.00 6/6 = 1.00 16/17 = 0.94 16/16 = 1.00

eCampus.com 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 7/7 = 1.00 7/7 = 1.00

Dymocks Booksellers 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 7/8 = 0.88 7/7 = 1.00

Tattered Cover Bookstore 2/2 = 1.00 2/2 = 1.00 1/1 = 1.00 5/5 = 1.00 5/5 = 1.00 7/8 = 0.88 7/7 = 1.00

BookFinder4U.com 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 6/6 = 1.00 6/6 = 1.00 24/27 = 0.89 24/25 = 0.92

Cody’s Books 2/2 = 1.00 2/2 = 1.00 2/2 = 1.00 5/5 = 1.00 5/5 = 1.00 7/8 = 0.88 7/7 = 1.00

Daedalus Books&Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 7/7 = 1.00 7/7 = 1.00 30/32 = 0.94 30/32 = 0.94

Bolen 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 5/5 = 1.00 5/5 = 1.00

The Book Pl@ce 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 8/9 = 0.89 8/9 = 0.89

Blackwell’s Bookshop 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 7/7 = 1.00 7/7 = 1.00 12/33 = 0.36 12/28 = 0.43

The American Book Center 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 5/5 = 1.00 5/6 = 0.83 13/13 = 1.00 13/13 = 1.00

Oxbow Books 2/2 = 1.00 2/2 = 1.00 2/2 = 1.00 6/6 = 1.00 6/6 = 1.00 12/15 = 0.80 12/12 = 1.00

Strand Book Store 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 7/7 = 1.00 7/8 = 0.88 11/13 = 0.85 11/12 = 0.92

Globe Pequot Press 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 5/5 = 1.00 5/5 = 1.00 6/6 = 1.00 6/6 = 1.00

Northshire Bookstore 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 6/6 = 1.00 6/6 = 1.00 13/14 = 0.93 13/14 = 0.93

Green Apple Books&Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/4= 0.75 6/9 = 0.67 6/9 = 0.67

Thomson Gale 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 6/7 = 0.86 6/7 = 0.86

The Scholar’s Bookshelf 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 14/18 = 0.78 14/17 = 0.83

Table 4. Experimental results for each site in Music Shopping domain

Form-Domain
Associations

Field-Attribute
Associations

Text-Field
Associations

Datasets / Metrics

Precision Recall Precision
SubmittedForms

Precision Recall Precision Recall

Amazon.com Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 0.00 4/4 = 1.00 14/16 = 0.88 14/14 = 1.00

Barnes&Noble Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 7/10 = 0.70 7/7 = 1.00

Tower Records 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 6/6 = 1.00 6/6 = 1.00 19/19 = 1.00 19/19 = 1.00

Rough Trade 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 3/4 = 0.75 3/4 = 0.75

Sam Goody 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 8/10 = 0.80 8/8 = 1.00

Schott Musik International 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 12/14 = 0.86 12/12 = 1.00

A&B Sound 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 1/4 = 0.25 1/3 = 0.33

Collectors’ Choice Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 5/5 = 1.00 5/5 = 1.00 5/8 = 0.63 5/5 = 1.00

CD Quest 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 2/2 = 1.00 2/2 = 1.00 10/11 = 0.91 10/10 = 1.00

AudibleFaith 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 13/14 = 0.93 13/13 = 1.00

Cyber Music Surplus 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/6 = 0.67 20/22 = 0.91 20/20 = 1.00

ClassicTrax.co.uk 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/4 = 1.00 8/9 = 0.88 8/9 = 0.89

MyMusic.com 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 4/4 = 1.00 4/6 = 0.67 9/11 =0.82 9/9 = 1.00

Mojo Sounds 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/4 = 0.75 3/4 = 0.75 11/12 = 0.92 11/11 = 1.00

Looney Tunes 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/4 = 0.75 3/3 = 1.00 13/18 = 0.72 13/14 = 0.93

Buy Cd 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 9/14 = 0.64 9/9 = 1.00

Record Exchange 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 9/13 = 0.69 9/9 = 1.00

Musica Obscura 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 13/13 = 1.00 13/13 = 1.00

ProMusicFind.com - 0/1 = 0.00 - 1/1 = 1.00 1/2 = 0.50 2/12 = 0.17 2/2 = 1.00

Ladyslipper Music 1/1 = 1.00 1/1 = 1.00 1/1 = 1.00 3/3 = 1.00 3/3 = 1.00 13/18 = 0.72 13/13 = 1.00

employed for “advanced search” forms. In addition, the results
for the field-attribute associations have been measured
independently of the results of the previous stage (text-field
associations).

The obtained results are quite promising: all the metrics
show high values and some of them even reach 100%.

Now we discuss the reasons behind the mistakes committed
by DeepBot at each stage.

Recall in associating forms and domains reached 100% in
every case but in the Advanced dataset of the Music domain.
The reason was that the ProMusicFind source used an alias for
the “Artist” attribute which did not match with any of the
aliases defined in the domain. In addition, the form only had
two fields so, even though the system correctly assigned the
other one to a domain attribute (“Album Title”), it was not
enough to exceed the relevance threshold.

The precision and recall values obtained for the associations
between texts and form fields exceeded 80% except in the
Advanced dataset of the Books domain (0.73 precision and 0.79
recall). The majority of the errors in this dataset came from a
single source (Blackwell’s Bookshop). If we did not have into
account this source, the metrics would take values similar to
those reached by the other ones.

The failures at this stage came mainly from bounded fields
that did not have any globally associated text in the form (the
form only included the texts corresponding to its values). That
is contrary to one of our heuristics, which assumed that every
form field should have at least one associated text to “explain”
the function of the field to the user. It actually turns out that the
values of the bounded field may be auto-explicative and, in
some rare cases, the form creators choose to not include an
additional text label.

For instance, from a list of radio buttons including the
options “hardcover” and “paperback”, the user may infer the
buttons are used to express a query condition on the format
attribute, even when there is not additional text label indicating
it.

Finally, Recall and Precision also reach high values (> 90%
except in one case) in the associations between form fields an
attributes. The mistakes at this stage typically occurred because
the domain did not include the alias used in the form for some
attribute.

Tables 3 and 4 show the obtained experimental results for
each website.

VI. RELATED WORK
In recent years, several works have addressed the problem of

accessing the hidden web using a variety of approaches.
The system more similar to ours is Hiwe [14]. Hiwe is a

task-specific crawler able to automatically recognizing and
filling in forms relevant to a given data-collecting task. As well
as DeepBot, Hiwe also uses visual distance measures to find the
texts associated to each field in a form, and textual similarity
measures to match form fields and domain attributes.

When analyzing forms, Hiwe only associates one text to each
form field. The text is chosen in the following way: first, Hiwe
finds the four closest texts to the field; second, it chooses one of
them according to a set of heuristics. These heuristics take into
account the relative position of the candidate texts with respect
to the field (texts at the left and at the top are privileged), and
their font sizes and styles.

To learn how to fill in a form, Hiwe matches the text
associated with each form field and the labels associated to the
attributes defined in its LVS table (a concept that plays a similar
role to our domain definitions). In this process, Hiwe has the
following restriction: it requires the LVS table to contain an
attribute definition matching with each unbounded form field.

Now we discuss the differences between Hiwe and our
system. The process followed by DeepBot has several
advantages:

- DeepBot may use a form, even though it has some fields
that do not match any attribute of the domain. For
instance, the domain definition in Fig. 2 does not have
any attribute matching with the “Publisher” field in Fig.
4a, but DeepBot would be able to use the form anyway.

- DeepBot correctly detects when a field has more than
one associated text; this can result in better accuracy
when matching form fields and domain attributes.

- In addition, the decision of assigning a text to a field is
not based only on conditions “local” to the field: the
context provided by the whole form is also taken into
account in our heuristics. For instance, in our example
form of Fig. 4a, Hiwe would erroneously assign the text
“Hardcover” to the second radio button element (f52),
since the text is the closest one and, in addition, it is
located at the left of the field. Nevertheless, our system
correctly assigns the text “e-Books & Docs” to f53,
“Paperback” to f52 and “Hardcover” to f51. That is
because DeepBot guarantees that every field will be
associated to at least one text (the assignments made by
Hiwe would let f51 without any assigned text or would
assign the same text to two fields).

- Finally, another important advantage of DeepBot is that
it fully supports Javascript sources, while Hiwe does
not.

Reference [3] presents another system for domain-specific
crawling of the hidden web. Nevertheless, they only deal with
full text search forms; these forms have a single field allowing
search by keyword on unstructured document collections. In
turn, our system focuses on the multi-attribute forms typically
used to query structured data.

Reference [13] addresses the problem of automatically
generating keyword queries to crawl all the content behind a
web form. New techniques are proposed to automatically
generate new search keywords from previous results, and to
prioritize them in order to retrieve the full content behind the
form, using the minimum number of queries. The ability to
automatically generate new queries from the results of previous
ones would be an interesting new feature for DeepBot, so this
work is complementary to ours. Nevertheless, the presented

techniques would need to be significantly adapted since they
focus only on keyword search forms and do not deal with
multi-attribute forms.

The problem of extracting the full content behind a web form
has been also addressed in [12]. Nevertheless, this system does
not deal with forms requiring textbox fields to be filled in.

The hidden web can also be accessed using the meta-search
paradigm instead of the crawling paradigm. In meta-search
systems, a query from the user is automatically redirected to a
set of underlying relevant sources, and the obtained results are
integrated to return a unified response.

The meta-search approach is more lightweight than the
crawling approach, since it does not require indexing the
content from the sources; it also guarantees up to date data.
Nevertheless, users will get higher time responses since the
sources are queried in real-time. Some systems using the
meta-search approach are MetaQuerier [6], [9], [18] and
QProber [8], [10], [11].

Finally, several techniques [2], [16], [17] have been
proposed to automatically extract structured data from web
pages conforming to a certain template. Since a substantial
portion of the hidden web is composed of forms providing
access to underlying structured databases, these techniques are
also complementary to our work

VII. CONCLUSIONS
In this paper, we have described the architecture of DeepBot,

a crawling system able to access the contents of the hidden web.
We have focused on the techniques used to access the content
behind web forms (server-side deep web). Our approach is
based on a set of domain definitions, each one describing a
data-collecting task. From the domain definition, the system
uses several heuristics, based on visual distance and text
similarity measures, to automatically identifying relevant query
forms and learning how to execute queries on them.

We have tested our techniques for several real-world
data-collecting tasks, obtaining a high degree of effectiveness.

VIII. REFERENCES
[1] Alvarez, M., Pan, A., Raposo, J., Hidalgo, J. Crawling Web Pages with

Support for Client-Side Dynamism. To be published in Lecture Notes in
Computer Science 4016, pp. 252-262, 2006. Issue corresponding to
Proceedings of the 7th International Conference on Web Age Information
Management (WAIM06). 2006.

[2] Arasu, A. and Garcia-Molina, H. Extracting Structured Data from Web
Pages. In Proceedings of the ACM SIGMOD International Conference on
Management of data. 2003.

[3] Bergholz, A., Chidlovskii, B. Crawling for Domain-Specific Hidden Web
Resources. In Proceedings of the 4th International Conference on Web
Information Systems Engineering (WISE). 2003.

[4] Bergman, M. The Deep Web. Surfacing Hidden Value.
http://brightplanet.com/technology/deepweb.asp. 2001.

[5] Chen-Chuan Chang, K., He, B., Patel, M., Zhang, Z. Structured Databases
on the Web: Observations and Implications. SIGMOD Record, 33(3).
September 2004.

[6] Chen-Chuan Chang, K., He, B., Zhang, Z. MetaQuerier over the Deep
Web: Shallow Integration Across Holistic Sources. In Proceedings of the

VLDB Workshop on Information Integration on the Web
(VLDB-IIWeb'04). 2004.

[7] Cohen, W., Ravikumar., P., Fienberg, S. A Comparison of String Distance
Metrics for Name-Matching Tasks. In Proceedings of IJCAI-03
Workshop (IIWeb-03). 2003.

[8] Gravano, L., Ipeirotis, P., Sahami, M. QProber: A System for Automatic
Classification of Hidden-Web Databases. In ACM Transactions on
Information Systems, vol. 21(1), Jan. 2003

[9] He, B., Chen-Chuan Chang, K. Automatic Complex Schema Matching
across Web Query Interfaces: A Correlation Mining Approach. In ACM
Transactions on Database Systems (TODS), vol. 31(1), March 2006

[10] Ipeirotis P., Gravano L. Distributed Search over the Hidden Web:
Hierarchical Database Sampling and Selection. In Proceedings of the 28th
International Conference on Very Large Databases (VLDB2002). 2002.

[11] Ipeirotis, P., Ntoulas A., Cho, J., Gravano, L. Modeling and Managing
Content Changes in Text Databases. In Proceedings of the 21st IEEE
International Conference on Data Engineering (ICDE 2005), 2005

[12] Liddle , S., Embley , D., Scott, Del., Yau Ho, Sai. Extracting Data Behind
Web Forms. Proceedings of the 28th Intl. Conference on Very Large
Databases (VLDB2002). 2002.

[13] Ntoulas, A., Zerfos, P., Cho, J. Downloading Textual Hidden Web
Content Through Keyword Queries. In Proceedings of the 5th ACM/IEEE
Joint Conference on Digital Libraries (JCDL05). 2005.

[14] Raghavan S., Garcia-Molina, H. Crawling the hidden web. Technical
Report 2000-36, Computer Science Department, Stanford University,
December 2000. Available at http://dbpubs.stanford.edu/pub/2000-36)

[15] Pan , A., Raposo, J., Álvarez, M., Hidalgo, J. and Viña, A.
Semi-Automatic Wrapper Generation for Commercial Web Sources. In
Proceedings of IFIP WG8.1 Working Conference on Engineering
Information Systems in the Internet Context (EISIC). 2002.

[16] Wang J., Lochovsky F. Data Extraction and Label Assignment for Web
Databases. In Proceedings of the 12th World Wide Web Conference.
2003

[17] Zhai, Y., Liu, B. Web Data Extraction Based on Partial Tree Alignment.
In Proceedings of the 2005 World Wide Web Conference (WWW2005).
ACM Press. 2005

[18] Zhang, Z., He, B., Chen-Chuan Chang, K. Light-weight Domain-based
Form Assistant: Querying Web Databases On the Fly. In Proceedings of
the 31st Very Large Data Bases Conference (VLDB 2005), 2005.

