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Abstract: In this paper, we show realization of macro-
level ternary reversible 2-qudit Feynman gate, 3-qudit
controlled Feynman gate, and 3-qudit Toffoli gates using
ternary reversible 1-qudit gates and 2-qudit
Muthukrishnan-Stroud gates, which are theoretically
realizable using quantum technology such as liquid ion
trap [10]. Then we show the design of ternary reversible
multiplexer and demultiplexer using the macro-level
gates.
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1. Introduction
Ternary reversible/quantum logic synthesis is a new

and immature research area [1-9]. Papers [4, 7] presented
ternary quantum logic synthesis methods using 2-qudit
(quantum digit) Generalized Ternary Gate (GTG) family
[1], which is a macro-level gate family and is needed to
be realized using primitive quantum gates. Papers [2, 3, 5,
6] presented ternary quantum logic synthesis methods
using multi-qudit macro-level gates, which are also
needed to be realized using primitive quantum gates.
Papers [1-7] presented generalized synthesis techniques
but did not give synthesis examples of practically
important ternary circuits like adder, subtractor, encoder,
decoder, multiplexer, demultiplexer, etc., except the
synthesis of ternary adder circuits in [4, 5]. These circuits
are major sub-circuits needed for digital system design.
Synthesis of ternary reversible/quantum adder/subtractor
is given in [8] and realization of ternary
reversible/quantum encoder and decoder is given in [9].
In this paper we present design of reversible/quantum
realization of ternary multiplexer and demultiplexer
circuits. For this purpose, we show realization of macro-
level ternary reversible 2-qudit Feynman gate, 3-qudit
controlled Feynman gate, and 3-qudit Toffoli gates using
ternary reversible 1-qudit gates and 2-qudit
Muthukrishnan-Stroud gates, which are theoretically
realizable using quantum technology such as liquid ion
trap [10]. Then we show the design of ternary reversible
multiplexer and demultiplexer using the macro-level
gates.

2. Ternary 1-qudit permutative gates
Any transformation of the qudit state represented by

a 3×3 unitary matrix specifies a valid 1-qudit ternary
quantum gate. There are many such non-trivial 1-qudit
gates. However, in this work, we use only the unitary

permutative transforms as shown by permutative matrices
of Figure 1. Transforms )1(+Z  and )2(+Z  shift the qudit
states by 1 and 2, respectively. Transform )12(Z permutes
the qudit states 1  and 2 , )01(Z permutes the qudit

states 0  and 1 , and )02(Z permutes the qudit states

0  and 2  without affecting the other qudit state. The
input-output relationships of these 1-qudit gates are
shown in truth table form in Table 1. The ternary
reversible 1-qudit gates are elementary gates and can be
theoretically realized using quantum technology such as
liquid ion trap technology [10]. Therefore, we assign them
a cost of 1.

Figure 1. 1-qudit ternary unitary permutative transforms.

Table 1. Truth table of 1-qudit ternary reversible gates.
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If two 1-qudit gates x and y in cascade have the
resultant effect that the input signal to the gate x is
restored at the output of the gate y, then the gate y is said
to be the inverse gate of the gate x. Table 2 shows the
inverse gates of all the 1-qudit gates.

Table 2. 1-qudit ternary reversible gates and their inverse
gates.

Gate )1(+Z )2(+Z )12(Z )01(Z )02(Z

Inverse
gate

)2(+Z )1(+Z )12(Z )01(Z )02(Z
















=+

010
001
100

)1(Z















=+

001
100
010

)2(Z
















=

010
100
001

)12(Z















=

100
001
010

)01(Z
















=

001
010
100

)02(Z

Engineering Letters, 13:2, EL_13_2_3 (Advance online publication: 4 August 2006)
______________________________________________________________________________________



3. Ternary Muthukrishnan-Stroud gates
Muthukrishnan and Stroud [10] proposed a family of

2-qudit d-valued gates, which applies a 1-qudit unitary
transform on the second qudit conditional on the first
qudit being (d – 1). Figure 1 and Table 1 show five such
ternary (d = 3) unitary permutative transforms and Figure
2 gives the symbolic representation of ternary
Muthukrishnan-Stroud (M-S) gates. The ternary M-S
gates can be theoretically realized using quantum
technology such as liquid ion trap technology as an
elementary gate [10]. Therefore, we assign these gates a
cost of 1.

Figure 2. Symbol of 2-qudit ternary Muthukrishnan-
Stroud gates [cost = 1].

4. Ternary Feynman gates
We propose ternary counter part of binary Feynman

gate in Figure 3(a), where the output AP =  and the
output BAQ +=  (GF3). The realization of the gate using
M-S gates is shown in Figure 3(b). The second 12 gate
along the input line A is the inverse gate of the first 12
gate, which restores the input signal A. The truth tables
along the input line B verify that the output BAQ +=
(GF3). The cost of the realization is 4.

Figure 3. 2-qudit ternary Feynman gate [cost=4].

We propose a 3-qudit controlled Feynman gate as
shown in Figure 4(a). The outputs are AP = , BQ = , and

CBR += (GF3) if 2=A , otherwise CR = . The
realization of the gate using M-S gates is shown in Figure
4(b). The output P is always equal to A. When 2=A ,
then the 12 gates along the input line B will be active and
the circuit will become equivalent to the circuit of Figure

3(b) and the outputs will be BQ =  and CBR += (GF3).
If 2≠A , then the 12 gates along the input line B will not
be active and the output Q will be equal to B. In this
situation, if 2≠B , then the  +2 and +1 gates along the
input line C will not be active and the output R will be
equal to C. But, if 2=B , then the +2 and +1 gates along
the input line C will be active, but as +1 gate is the
inverse gate of +2 gate, there will be no change of input C
and the output R will be equal to C. The cost of the
realization is 4.

Figure 4. 3-qudit ternary controlled Feynman gate
[cost=4].

5. Ternary Toffoli gates
We propose a 3-qudit ternary Toffolli gate as shown

in Figure 5(a), where 1X  and 2X  are two controlling
inputs and 3X  is the controlled input. If the two
controlling input values are 2, then Z transform is applied
on the controlled input, otherwise the controlled input is
passed unchanged. Realization of this gate using M-S
gates is shown in Figure 5(b), where a constant input 0 is
changed to 2 by using two +1 transforms controlled from
the two controlling inputs 1X  and 2X , and then the
resultant constant 2 is used to control the input 3X . The
right most two gates are the inverse gates of the left most
two gates used to restore the constant input 0. The cost of
this realization is 5.

Figure 5. 3-qudit ternary Toffoli gate [cost=5].
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6. Ternary Reversible Decoder with Active-2 Outputs
We will use ternary reversible decoder with active-2

outputs for designing both ternary reversible multiplexer
and demultiplexer. The design of ternary reversible
decoders is discussed in [9]. The truth table of a 2×9
ternary decoder with active-2 output is shown in Table 3.
For a given input combination, only the selected output
will be 2 and the remaining outputs will be 0. Realization
of the ternary reversible decoder is shown in Figure 6
adopted from [9]. The cost of this realization is
5×9+12=57.

Table 3. Truth table of a 2×9 ternary decoder with active-
2 output

A1 A0 O8 O7 O6 O5 O4 O3 O2 O1 O0
0 0 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 2 0
0 2 0 0 0 0 0 0 2 0 0
1 0 0 0 0 0 0 2 0 0 0
1 1 0 0 0 0 2 0 0 0 0
1 2 0 0 0 2 0 0 0 0 0
2 0 0 0 2 0 0 0 0 0 0
2 1 0 2 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0

7. Realization of Ternary Reversible Multiplexer
The truth table of a 9×1 ternary multiplexer is shown

in Table 4, where the output is equal to the selected input.
The realization of the multiplexer is shown in Figure 7.
Depending on the select combination, one of the decoder
outputs becomes 2 and the other decoder outputs remain
0. The 0-outputs do not drive the corresponding
controlled Feynman gates. The 2-output drives the
corresponding controlled Feynman gate and the
multiplexer output becomes exactly equal to the
corresponding multiplexer input. For example, if 00 =A
and 01 =A , then the decoder output 0O  becomes 2 and
the remaining decoder outputs become 0. In this situation,
only the first controlled Feynman gate from the left will
be active and the multiplexer output will be equal to 0I .
The cost of the realization is 102.

8. Realization of Ternary Reversible Demultiplexer
The truth table of a 1×9 ternary demultiplexer is

shown in Table 5, where only the selected output is equal
to the input I and the remaining outputs are 0. The
realization of the demultiplexer is shown in Figure 8.
Depending on the select combination, one of the decoder
outputs becomes 2 and the other outputs remain 0. The 0-
outputs do not drive the corresponding controlled
Feynman gates. The 2-output drives the corresponding
controlled Feynman gate and the corresponding
demultiplexer output becomes exactly equal to the
demultiplexer input. For example, if 00 =A  and 01 =A ,

then the decoder output 0O  becomes 2 and the remaining
decoder outputs become 0. In this situation, only the first
controlled Feynman gate from the left will be active and
the demultiplexer output 0O  will be equal to the
demultiplexer input I and the other demultiplxer outputs
will be 0. The cost of the realization is 102.

Table 4. Truth table of a 9×1 ternary multiplexer.
01 AA Output, O

00
0I

01 1I
02 2I
10 3I
11 4I
12 5I
20 6I
21 7I
22 8I

Table 5. Truth table of a 1×9 ternary demultiplexer.
A1 A0 O8 O7 O6 O5 O4 O3 O2 O1 O0
0 0 0 0 0 0 0 0 0 0 I
0 1 0 0 0 0 0 0 0 I 0
0 2 0 0 0 0 0 0 I 0 0
1 0 0 0 0 0 0 I 0 0 0
1 1 0 0 0 0 I 0 0 0 0
1 2 0 0 0 I 0 0 0 0 0
2 0 0 0 I 0 0 0 0 0 0
2 1 0 I 0 0 0 0 0 0 0
2 2 I 0 0 0 0 0 0 0 0

9. Conclusion
In this paper, we propose macro-level ternary

reversible 2-qudit Feynman gate and 3-qudit controlled
Feynman gate and show their realizations using ternary
reversible 1-qudit gates and 2-qudit Muthukrishnan-
Stroud gates, which are theoretically realizable using
quantum technology such as liquid ion trap technology
[10]. We also propose macro-level ternary reversible 3-
qudit Toffoli gates and show its realization using ternary
reversible 1-qudit and 2-qudit Muthukrishnan-Stroud
gates. We also show the realization of a 2×9 ternary
reversible decoder with active-2 outputs adopted from [9].
Finally we show realization of a 9×1 ternary reversible
multiplexer and a 1×9 ternary reversible demultiplexer.
The cost of these realization is 102 each. Using the
similar techniques, ternary reversible multiplexers and
demultiplexers of any size can be realized.

In our future works, we are planing to realize ternary
reversible circuits for incrementer, decrementer, normal
ternary to ternary Gray code converter, ternary Gray code



to normal ternary code converter, any code to other code
converters, etc.

10. References
[1] PERKOWSKI, M., AL-RABADI, A., and

KERNTOPF, P., ‘Multiple-Valued Quantum Logic
Synthesis’, Proc. 2002 Int. Sump. On New Paradigm
VLSI Computing, Sendai, Japan, 12-14 December
2002, pp. 41-47

[2] KHAN, M. H. A., PERKOWSKI, M. A., and
KERNTOPF, P., ‘Multi-Output Galois Field Sum of
Products Synthesis With New Quantum Cascades’,
Proc. 33rd Int. Symp. On Multiple-Valued Logic,
Tokyo, Japan, 16-19 May 2003, pp. 146-153

[3] KHAN, M. H. A., PERKOWSKI, M. A., KHAN, M.
R., and KERNTOPF, P., ‘Ternary GFSOP
Minimization Using Kronecker Decision Diagram
and Their Synthesis With Quantum Cascades’, J.
Multiple-Valued Logic and Soft Computing, vol. 11,
no. 5-6, 2005

[4] KHAN, M. H. A., and PERKOWSKI, M. A.,
‘Genetic Algorithm Based Synthesis of Multi-Output
Ternary Functions Using Quantum Cascade of
Generalized Ternary Gates’, Proc. 2004 Congress on
Evolutionary Computation, Portland, OR, USA, 19-
23 June 2004, pp. 2194-2201

[5] MILLER, D. M., DUECK, G., and MASLOV, D., ‘A
Synthesis Method for MVL Reversible Logic’, Proc.
34th Int. Symp. On Multiple-Valued Logic, Toronto,
Canada, 19-22 May 2004, pp. 74-80

[6] CURTIS, E., PERKOWSKI, M., ‘A Transformation
Based Algorithm for Ternary Reversible Synthesis
Using Universally Controlled Ternary Gates’, Proc.
IWLS, 2004

[7] DENLER, N., YEN, B., PERKOWSKI, M., and
KERNTOPF, P., ‘Synthesis of Reversible Circuits
from Quantum Realizable “Generalized Multi-
Valued Gates”, Proc. IWLS, 2004

[8] KHAN, M. H. A., and PERKOWSKI, M. A.,
'Quantum Realization of Ternary Parallel
Adder/Subtractor with Look-Ahead Carry', Proc. 7th

Int. Symp. On Representations and Methodology of
Future Computing Technologies (RM2005), Tokyo,
Japan, 5 - 6 September 2005

[9] KHAN, M. H. A., and PERKOWSKI, M. A.,
'Quantum Realization of Ternary Encoder and
Decoder', Proc. 7th Int. Symp. On Representations
and Methodology of Future Computing Technologies
(RM2005), Tokyo, Japan, 5 - 6 September 2005

[10] MUTHUKRISHNAN, A., and STROUD, Jr., C
R. ‘Multivalued Logic Gates for Quantum
Computation’, Physical Review A, vol. 62, no. 5,
2000, pp. 052309/1-8

Figure 6. Realization of a 2×9 ternary reversible decoder with active-2 outputs [cost = 57].
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Figure 7. Realization of a 9×1 ternary reversible multiplexer [cost = 102].

Figure 8. Realization of a 1×9 reversible demultiplexer [cost = 102].
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