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Abstract— A direct adaptive neural network control system 

with and without integral action term is designed for the general 
class of continuous biological fermentation processes. The control 
system consists of a neural identifier and a neural controller, 
based on the recurrent trainable neural network model. The main 
objective is to keep the glucose concentration, which is considered 
as external substrate, close to a constant set-point reference using 
the dilution rate as manipulating function. It is illustrated by 
simulations that both adaptive neural control schemes (with and 
without integral-term) work successfully and exhibit good 
convergence. However, the control system with integral action is 
able to compensate a constant offset while the scheme without 
integration term failed. Results are presented which show a 
favorable behavior of the neural controller in comparison with 
existing solutions.  
 

Index Terms—Backpropagation learning, direct adaptive 
neural control with integral term, recurrent neural networks, 
stirred tank bioreactor.  
 

I. INTRODUCTION 
  The recent advances in understanding of the working 
principles of artificial neural networks (ANN) and the rapid 
growth of available computational resources led to the 
development of a wide number of ANN-based modelling, 
identification, prediction and control applications, [1], [2], [3], 
[4], especially in the field of chemical engineering and 
biotechnology, [5]-[22]. The ability of ANN to approximate 
complex non-linear relationships without prior knowledge of 
the model structure makes them a very attractive alternative to 
classical modelling and control techniques. Many of the 
applications currently reported are based on the classical 
Nonlinear Autoregressive Moving Average (NARMA) model, 
where a Feedforward Neural Network (FFNN) is implemented, 
[2], [5], [7], [9], [18], [22], [24], [25]. However, the FFNN has 
in general a static structure, therefore it is adequate to 
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approximate mainly static (nonlinear) relationships and their 
real-time applications for dynamical systems require the 
introduction of external time-delayed feedbacks. The 
application of the FFNN for modeling, identification and 
control of nonlinear dynamic plants caused some problems 
which could be summarized as follows: 1. The dynamic 
systems modeling usually is based on the NARMA model 
which need some information of input/output model orders, and 
input and output tap-delays ought to be used, [23]; 2. The 
FFNN application for multi-input multi-output systems 
identification needs some relative order structural information; 
3. The ANN model structure ought to correspond to the 
structure of the identified plant where four different 
input/output plant models are used, [25]; 4. The lack of 
universality in ANN architectures caused some difficulties in its 
learning and a Backpropagation through time learning 
algorithm needs to be used, [23]; 5. Most of NARMA-based 
ANN models are sequential in nature and introduced a relative 
plant-dependent time-delay; 6. Most of the ANN-based models 
are nonparametric ones, [25], and so, not applicable for an 
indirect adaptive control systems design; 7. All this ANN-based 
models does not perform state and parameter estimation in the 
same time, [2]; 8. All this models are appropriate only for 
identification of nonlinear plants with smooth, single, odd, 
nonsingular nonlinearities.  

Recurrent Neural Networks (RNN) possesses its internal 
time-delayed feedbacks, so they are promising alternative for 
system identification and control, particularly when the task is 
to model dynamical systems [2], [26], [27]. Their main 
advantage is the reduced complexity of the network structure. 
However, the analysis of state of the art in the area of classical 
RNN-based modeling and control has also shown some of their 
inherent limitations as follows: 1. The RNN input vector 
consists of a number of past system inputs and outputs and there 
is no a systematic way to define the optimal number of past 
values [27] and usually, the method of trials and errors is 
performed; 2. The RNN model is naturally formulated as a 
discrete model with fixed sampling period, therefore, if the 
sampling period is changed, the network has to be trained 
again; 3. It is assumed that the plant order is known, which 
represents a quite strong modeling assumption in general, [27]. 
Driven by these limitations, a new Recurrent Trainable Neural 
Network (RTNN) topology and the respective Backpropagation 
(BP) type learning algorithm in vector-matrix form was 
derived, [28], [29], [30], and its convergence was studied in 
[31].  

Modeling and control of fermentation processes has been 
always a challenging problem in bioengineering due to the 
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presence of strong time-varying process characteristics and lack 
of sufficient process reproducibility, [32]. Adaptive control 
solutions based on ANNs seem to gain more interest in 
fermentation industry mainly for controlling of metabolite 
production (a metabolite is a product of the microbial activity 
during the fermentation). In [33] a comparative study of linear, 
nonlinear and NN-based adaptive controllers for a class of 
fed-batch baker’s yeast fermentation processes are reported. A 
FFNN, first introduced in [25], makes part of the identification 
and control structure, proposed, or as part of a hybrid control 
systems [5], [10], [15], [16], [17]. The FFNN (multilayer 
perceptrons [5], [7], [9], [18], [22], [25]; radial basis function 
ANNs [10]; dynamic wavelet ANNs [6]; neuro-fuzzy models 
[14]) ensures a good approximation of the nonlinear plant 
dynamics, assuming that the plant order is known, but the price 
to be paid is a high complexity of the static ANNs. All these 
ANNs are incorporated in a model reference adaptive control 
schemes [25], nonlinear predictive control schemes [7], [9], 
[13], inverse plant model control schemes (usually as a hybrid 
control systems, in combination with classical PID [10], 
Implicit Control [5], Sliding Mode Control [15], or Optimal 
Control Facilities [12], [13]). The Neural PID Control 
algorithm trained with a Gradient PID learning algorithm [11] 
raised a great popularity in the control of fermentation plants. 
The main difficulty here is the lost of stability for high order 
plants. In this case for the general class of continuous 
fermentation processes known also as aerobic continuous 
stirred tank reactors (CSTR) - an Integral- Plus –State (IPS) 
RNN Control could be applied [29].  

The aim of this paper is to propose a new improved hybrid 
RNN control with I-term, where the I-term noise reduction 
control part is independent with respect to the RNN 
proportional plus state (P-S) dynamic compensation control 
part, which simplified the control structure and improved the 
reference tracking. 

The paper is organized as follows: part two described the 
RNN topology and learning, and discussed its stability; part 
three gives block diagrams of the derived P and Integral, 
Proportional-Plus-States neural control schemes and studied its 
stability; part 4 described the baker’s yeast fermentation aerobic 
process model; part 5 gives the simulation results obtained; part 
6 represents the conclusions. 

 

II. TOPOLOGY AND LEARNING OF THE RECURRENT TRAINABLE 
NEURAL NETWORK 

A. RTNN Topology 
The Recurrent Trainable Neural Network (RTNN) model 

and the respective learning algorithm of dynamic 
Backpropagation type are introduced in [28]-[31]. The given 
there Jordan canonical topology is completely parallel with 
minimum number of parameters. The general RTNN 
architecture has the following mathematical description: 

 
( 1) ( ) (X k AX k BU k+ = + )  (1) 
( ) [ ( )]Z k X k= Γ  (2) 
( ) [ ( )]Y k CZ k= Φ  (3) 

( ); | | 1ii iiA block diag a a= − <  (4) 

Where: X(k) is a n - state vector; U(k) is a m -input vector; Y(k) 
is a l- output vector; Z(k) is an auxiliar vector variable with 
dimension n. Equations (1), (2) define the hidden layer of the 
RTNN and by equation (3) the feedforward output layer, is 
represented. The (nxn) state weight matrix A has a 
block-diagonal structure, with (aii) being the i-th diagonal block 
with (1x1) or (2x2) dimension. Variables B and C are weight 
(nxm) input and (lxn) output matrices respectively with 
structure, corresponding to the structure of A, and the integer k 
is the sampling time instant. Equation (4) is the local stability 
condition imposed on all blocks of A. The constraint (4) and the 
vector-valued sigmoid or hyperbolic tangent-activation 
functions Γ [.], Φ[.] ensure the stability of the overall RTNN 
model (see [28]-[31] for more details). 

B. RTNN Learning 
The learning of the network weights is based on the dynamic 

Backpropagation algorithm. Standard BP is a gradient descent 
algorithm in which the network weights are moved in the 
steepest descent direction i.e. along the negative of the gradient 
of the performance index. This is the direction in which the 
performance index is decreasing most rapidly. The term 
Backpropagation refers to the manner in which the gradient is 
computed. One k-iteration of the most general BP updating rule 
[28]-[31], is described by: 

 
( 1) ( ) ( ) ( 1ij ij ij ijW k W k W k W kη α )+ = + ∆ + ∆ −  (5) 

 
Where: Wij is a general notation, denoting each weight matrix 
element (Cij, Aij, Bij) subject to adaptation in the RTNN model; 
∆Wij, (respectively ∆Cij, ∆Aij, ∆Bij), is the weight correction of 
Wij, while η and α are learning rate parameters. The weight 
matrix corrections of the network model (∆Cij, ∆Aij and ∆Bij) are 
defined by the following update equations: 

 
'( ) [ ( ) ( )] [ ( )] ( )ij i i i jC k T k Y k Y k Z k∆ = − Φ  (6) 
'( )[ ( ) ( )] [ ( )]i i i iG C k T k Y k Z k= − Γ  (7) 

( ) ( 1)ij jA k GX k∆ = −  (8) 

( ) ( )ij jB k GU k∆ =  (9) 

 
Where: Tj is the j-th element of the target vector (the actual 
process output); Yj is the j-th element of the RTNN output; Xi is 
an i-th element of the state vector; Zi is the i-th element of the 
output vector of the hidden layer; Γ’, Φ’ are first-order 
derivative of the activation functions; G is an auxiliary variable. 
A vector-matricial version of this BP-learning algorithm is 
derived in [31]. Stability proof of the RTNN and convergence 
of the BP learning algorithm are given also in [31], where the 
proved Theorem of stability is defined as follows: 

C. Theorem of Stability 
Let the RTNN with Jordan Canonical Structure, is given by 

equations (1), (2), (3) and the nonlinear plant model is supposed 
to be: 

( 1) [ ( ), ( )pX k f X k U k+ = ]    (10) 



 
 

 

( ) [ ( ), ( )]pY k h X k U k=    (11)
 

Where Xp(k), U(k) and Yp(k) are plant state, input and output 
vector variables with dimensions n, m, l, respectively; h(.), f(.) 
are smooth bounded nonlinear functions. Under the 
assumptions made, the application of the BP learning algorithm 
for A(k), B(k), C(k), in general matricial form, described by (5), 
and the learning rates η(k), α(k), normalized with respect to the 
error, and derived using the following Lyapunov function: 

 
( ) || ( ) || || ( ) || || ( ) ||L k A k B k C k= + +  (12) 

 
Then the identification error is bounded, and: 
 

2 2( ) ( ) | ( ) | ( ) | ( 1) |L k k E k k E kη α∆ ≤ − − − +
( ) ( ) ( )p

d
E k Y k Y k= −  

(13) 

 
Where ∆L(k) = L(k) - L(k-1), the learning parameters η(k), α(k) 
are normalized and depends on the error structure with the 
following bounds: 0 ≤ ||η(k)|| ≤1, 0 ≤ || α(k)|| ≤1, and d is 
bounded error perturbation term. 

The described above RTNN is applied for identification and 
direct adaptive control of a baker’s yeast fermentation process. 
 

III. DIRECT ADAPTIVE NEURAL CONTROL WITH INTEGRAL 
TERM 

Block-diagrams of the proposed direct adaptive control 
system without and with integral (I)-term are given in Fig.1 and 
Fig.2, respectively. The control scheme, given in Fig. 2 consists 
of two RTNNs and a discrete-time integrator. The first RTNN is 
a neural identifier, which supplies the estimated state vector as 
an entry to the second RTNN, being the neural controller. An 
additional entry to the neural controller is the control error, i. e. 
Ec(k) = R(k) – Yp(k), where R(k) is the reference vector variable 
with dimension l. The control action includes as an additional 
part the integral of the control error. Both networks are trained 
by the BP algorithm summarised by equation (5). 

 

 
Fig. 1. Block-diagram of the direct adaptive neural control without 
I-term. 

 
 
Fig. 2. Block-diagram of the direct adaptive neural control with I-term. 
 

For the neural identifier (RN-1), the identification error Ei(k) 
= Yp(k) – Y(k) is used as the training signal and for the neural 
controller the control error Ec(k) is the training signal. The 
linear approximation of the neural identifier model RN-1 (see 
equations (1)-(3)) is given by the following equations: 
 

( 1) ( ) (e eX k AX k BU k+ = + )

)

 (14) 
( ) ( )eY k CX k=  (15) 

 
Where: the state weight matrix A cope with the constraint (4). 
Similarly, the linear form of the neural controller model RN-2 
is: 
 

* * *( ) ( )U k C X k=    (16) 
* * *

1 2( 1) ( ) ( ) (e cX k A X k B X k B E k+ = − +    (17) 
( ) ( ) ( )c pE k R k Y k= −    (18) 

 
Where: X*(k) is nc-dimensional state vector of the neural 
controller; U*(k) is an input vector with dimension m; Ec(k) is a 
control error with dimension l; C*, A*, B1, B2 are weight 
matrices with compatible dimensions, where the state weight 
matrix A* cope with the constraint (4). The reference signal R(k) 
is a train of pulses and the control objective is that the control 
error tends to zero when k tends to infinity. The control action is 
sum of two components: 
 

*( ) ( ) ( )iU k U k U k= +  (19) 

0( 1) ( ) (i i
i cU k U k T K E k+ = + )  (20) 

 
Where: Ui(k) is the output of the integrator with dimension l (it 
is supposed that l = m); T0 is the period of discretization; Ki is an 
integrator (lxl) gain matrix. Applying the z-transformation we 
could obtain the following expressions and z-transfer functions: 
 

1
0( ) ( 1) ( )i

i cU z z T K E z−= −     (21) 
* * 1

1 1( ) ( )Q z C zI A B−= −    (22) 
* * 1

2 2( ) ( )Q z C zI A B−= −    (23) 



 
 

 

1( ) ( ) ; ( ) ( ) ( )eP z zI A B X z P z U z−= − =    (24) 
1( ) ( )p p pW z C zI A B−= − p

c

i

p

; 

( ) ( )[ ( ) ( )]p pY z W z U z Of z= +    (25) 

 
Where: Of(.) is an offset variable with dimension m, which 
represents the imperfections of the plant. Equation (21) defines 
the I-term dynamics, equation (24) describes the hidden layer 
dynamics of the neural identifier RN-1, derived from equations 
(14) and (15), and equations (25) represents the plant dynamics, 
derived in linear state-space form. The z-transformation of the 
linearized description of RN-2 (equations (16), (17)), using also 
(22) and (23), yields: 
 

*
1 2( ) ( ) ( ) ( ) ( )e cU z Q z X z Q z E z= − +    (26) 

 
Substituting Xe(z) from (24) in (26), and together with (21), in 
the z-transformed equation (19), the following control signal 
expression is derived: 
 

1 1
1 0 2( ) [ ( ) ( )] [( 1) ( )] ( )iU z I Q z P z z T K Q z E z− −= + − +    (27) 

 
Using the error Ec(z) from (18), the control U(z) from (27) and 
the plant model (25), we finally get an expression for the closed 
loop dynamics of the control system with proportional, integral, 
and state feedbacks. The z-operational form of the closed loop 
dynamics is as follows: 
 

1
1 0

1
2 1

0 2

{( 1) ( )[ ( ) ( )] [
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−

− + + +

− = +

+ − + −

 
  (28) 

 
Equation (28) describes the dynamics of the closed-loop system 
with I-term neural control. Note that if (25) represents a stable 
and minimum phase plant and the neural networks RN-1, RN-2 
are convergent, i.e. transfer functions (22), (23) and (24) are 
also stable and minimum phase, then the closed-loop system 
(28) will be stable. Since the term (z-1) is equivalent to a 
discrete-time derivative, then a constant offset Of(k) can be 
compensated by the I-term and the control error tends to zero 
(Ec(k) →0) when k →∞. 
 

IV. MATHEMATICAL MODEL OF THE BAKER’S YEAST 
FERMENTATION AEROBIC PROCESS 

In this section, the model of the baker’s yeast fermentation 
process is considered as a special case of the general model of 
biochemical aerobic processes introduced in [16]. The kinetic 
model for cellular productivity of a continuous culture of 
Saccharomyces cerevisiae, more commonly known as baker’s 
yeast is studied and exemplified by numerous authors, 
referenced in [34]. The dynamical model is obtained from a 
mass balance of the components, and it is assumed that the 
reactor is well mixed, the yield coefficients are constant, and the 
dynamics of the gas phase can be neglected. The yeast 
fermentation goes through three pathways: sugar oxidation, 

ethanol oxidation and sugar fermentation with ethanol as an end 
product. Following the detailed description of the model in 
[34], the continuous mode operation of this process can be 
described in the form: 
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Where the state variables are: 
S(t) Substrate concentration  (glucose) in the reactor;  
x(t) Biomass concentration (yeast) in the reactor; 
C(t) Concentration of the dissolved in the reactor; 2CO

E(t) Ethanol concentration in the reactor; 
O(t) Dissolved oxygen concentration in the reactor. 
 
And further variables and constants are: 
D(t) Dilution rate considered as input; 

0>ijc  Stoichiometric (or yield) coefficients  
corresponding to the production of one unit  
of biomass (i.e. yeast) in each reactor;  

Sin Glucose concentration in the feed; 
O* Equilibrium concentration of dissolved oxygen; 
kLa Oxygen mass transfer constant; 

)(2 tCCOk Gaseous  outflow rate proportional to C(t).  2CO

 
The main objective is to keep the glucose concentration, 

which is considered as external substrate, close to the reference 
values using the dilution rate D(t) as manipulating function. For 
technical reasons, the input must be bounded. The model is 
based on a limited oxidation capacity, which is a function of the 
oxygen concentration in the liquid phase. If the oxidation 
capacity is sufficiently high to oxidize all glucose consumed, 
then no ethanol is produced. If in this situation the ethanol is 
present in the medium as well, then co-consumption of ethanol 
is possible. If not, then all glucose can be oxidized and the 
surplus glucose will be consumed according to the reductive 
metabolism, resulting in ethanol formation. The process of 
yeast growth on glucose with ethanol production is described 
by three metabolic reactions. All constants involved are 
positive. The specific growth rate, corresponding to the reaction 
- respiratory growth on glucose, is: 
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Where: 

max,sq  Maximal specific uptake rate of glucosa;  

max,cq  Maximal specific uptake rate of oxygen; 

Ks Saturation parameters for glucose uptake;  
Kc Saturation parameters for oxygen  uptake; 
a = c01 c11

-1 Stoichiometric coefficient of oxygen. 
 
If the oxidation capacity is sufficiently high to oxidize both 
ethanol and glucose, then their co-consumption is possible. In 
this case respiratory growth on ethanol reaction is considered 
with the respective specific growth rate: 
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Where:  

max,eµ  Maximal specific ethanol growth rate;  
Ki Inhibition parameter (free glucose inhibits ethanol 

uptake); 
Ke Saturation parameter for growth on ethanol;  
βo Saturation parameter for the free respiratory 

capacity available. 
 
Finally the specific growth rate of the reaction fermentative 
growth on glucose is: 
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Since the growth capacity of microorganisms population is 
strongly limited, the specific growth rates are bounded. The 
upper bounds are: 
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Usually, the exact values of these parameters are not available 
but the range of their variations is well known, [34]. Therefore 
the maximal growth capacity of the yeast population in each 
reaction is known. Furthermore, the upper bound of the 
biomass concentration x(t) is usually known in applications.  

From the above findings, the model of the baker’s yeast 
fermentation process is a special case of the general model of 
biochemical aerobic processes, and it will be used further. 

 

V. SIMULATION RESULTS 
In this section we simulate the application of the adaptive 

neural control illustrated by Fig.2 to the baker’s yeast 
fermentation process. The process model is given by equations 
(29)-(36). The following kinetic data, taken from [34], are used:  
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Where: , and  denote gram glucose, gram 

oxygen and gram biomass respectively. The stoichiometric 
matrix K=[c

glucg
2Og biomassg

ij] in (29) and the vector [ ]021 OOo cck −−=  
in (30) are: 
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The initial values of the state variables are: 
 

95.0)0( =S ; 066.0)0( =O ; 1.0)0( =X ; 
000325.0)0( =C ; 0001.0)0( =E ;  

 
The control objective is to regulate the glucose concentration 

S(t) to follow a constant reference concentration Sref =0.05. 
The control design can be divided in two stages –system 

identification (provided by RN-1) and control action (provided 
by RN-2), see Fig.1 and Fig.2. Both networks (RN-1, RN-2) are 
trained by the same BP learning rule. The topology and learning 
parameters of the neural identifier RN-1 are: (1, 5, 1), η=0.1, 
α=0.01. Since the output of RN-1 Y(k) is a normalized signal, 
the plant output Yp(k) has to be normalized in the same range, to 
get compatible terms in the identification error, Ei(k)= Yp(k)- 
Y(k), required for the adaptation of the neural weights. The 
neural controller RN-2 has the topology (6, 5, 5, 1), which 
means that it has a second hidden layer with 5 neurons. The 
learning parameters for RN-2 are: η=0.25, α=0.01. The period 
of discretization is kept in all simulations as T0=0.01. The 
identification results are given in the next part. 



 
 

 

A. System Identification 
We choose a closed-loop strategy for initial system 

identification. A control input U(.) is generated by the 
λ-tracking control, [34], and it is supplied simultaneously as the 
plant input and as the input of RN-1.  The λ-tracking control is 
an adaptive control strategy thoroughly discussed in [34]. It is a 
proportional output feedback of the error: 
 

[0, max]( ) ( ) ( ); ( ) [ ( ) ( )]p UE t Y t R t U t sat K t E t= − =  

(| ( ) | ) , | ( ) |
( )

0, | ( ) |
E t r if E t

K t
if E t

λ λ
δ

λ
− >⎧

= ⎨ ≤⎩
 

  (37) 

Where: R(0) = 0.05, Umax = 0.0385, λ = 0.0025, δ=45 and r = 1 
are design parameters that influence the transient behavior of 
the closed-loop system crucially. Once the initial RN-1 is 
successfully trained, the control source is changed and now it is 
provided by the neural controller RN-2. The simulation results 
of system identification are show in Fig.3 together with the 
results of Direct Adaptive Control (DANC) without I-term. 

B. Direct Adaptive Neural Proportional Control System 
Free of Perturbations 
The graphical results are summarized in Fig.3a-h and 

illustrate the ideal (free of noise and offset) case. The 
simulations are performed over a period of 24 hours, which 
captures a typical period of the process behavior. Therefore 
Fig.3a and Fig.3b illustrate the initial phase of 5 h. and the 
remaining 5-24 h. respectively. Note that the control Mean 
Squared Error (MSE) at the end of the simulation run (24 h.) 
reached the value of 1.446% (Fig.3f) and the plant 
identification MSE reached 1.06%. Comparison of the output 
of the plant and the output of the neural identifier RN-1, the 
instantaneous control and identification errors, the control 
signal, and the systems states, issued by the neural identifier 
RN-1 and used for control, are depicted in Fig.3 c-h, 
respectively.  

 

 
Fig. 3. Graphical results of the Proportional DANC. a) Comparison of 
the plant output and the set point signal in (0-5 hrs.); b) the same as a) 
in (5-25 hrs.); c) Comparison of the plant output and the output of the 
RN-1; d) Instantaneous error of control; e) Instantaneous error of 
identification; f) MSE of control; g) Control signal; h) System states.  

The next simulations comprise the realistic case when noise is 
corrupting the plant output and an input offset is detected. A 
10% white Gaussian noise, commonly used to simulate noisy 
measurement, is added to the output data and an offset equal of 
Of(.)=0.02 is added to the plant input. 

C. Lambda (λ)-Tracking Control System 
For the purpose of comparison, plant operation with the 

λ-tracking control (see equations (37)) was equally simulated 
and the graphical results are depicted in the Fig. 4 and Fig. 5. 
Note that the introduced offset causes a displacement of the 
plant output (Fig. 4d) and a substantial increment of the control 
MSE (Fig.5b), which reached the value of 2.358% at the end of 
the simulation run (24 h.). The results obtained with DANC 
without I-term (Fig.6 and Fig.7) show the same tendency, 
though the performance is slightly better, i.e. the MSE at about 
24 h. goes to 2.354% (Fig.7d). Nevertheless, it has to be 
recognized that the λ-tracking controller would manage to keep 
the tracking if the tolerated error is increased, which is one of 
the design parameters. 
 

 
Fig. 4. Graphical results of the λ-tracking control with 10% white 
measurement noise and an offset in the plant input; a) Comparison of 
the plant output and the set point signal in (0-25 hrs.); b) the same as a) 
in (0-5 hrs.); c) the same as a) in (5-20 hrs.); d) the same in (20-24 hrs.) 
 

 
Fig. 5. Graphical results of the λ-tracking control with 10% white noise 
and offset. a) Instantaneous error of control; b) MSE of control; c) 
Control signal; d) Adaptive gain. 



 
 

 

D. Direct Adaptive Neural Proportional Control System 
Perturbed by Measurement Noise and Input Offset 
The results of DANC without I-term perturbed by 

measurement noise and offset in the plant input are shown on 
Fig. 6, and Fig.7. The results are better then the previous case 
but the perturbation effect is still substantial.  

E. Direct Adaptive Neural Control System with I-term, 
Perturbed by Measurement Noise and Input Offset 
The graphical results are summarized in Fig.8, Fig.9 and 

Fig.10. The simulations are performed assuming that the I-term 
gain (see equation (20)) is set to Ki=0.09. DANC with I-term 
exhibits better performance with respect to the previous control 
structures discussed 
 

 
 
Fig. 6. Graphical results of the Proportional DANC with 10% white 
measurement noise and an offset in the plant input. a) Comparison of 
the plant output and the set point signal in the time interval 0-25 hrs.; 
b) the same as a) in the time interval 0-5 hrs.; c) the same as a) in the 
time interval 5-20 hrs.; d) the same as a) in the time interval 20-24 hrs. 
 

 
 
Fig. 7. Graphical results of the Proportional DANC with 10% white 
measurement noise and an offset in the plant input. a) Comparison of 
the plant output and the output of the identification RN-1; b) 
Instantaneous error of control; c) Instantaneous error of identification; 
d) MSE of control; e) Control signal; f) Five system states, issued from 
the identification RN-1, applied for control. 

Note that the control MSE at the end of the simulation run (24 
h.) reached the value of 1.525% (Fig.9d), which is quite close to 
the ideal case (Fig.3f). The other variables – biomass, ethanol, 
dissolved oxygen and carbon dioxide, tend to their steady states 
within 17, 30, 15, 20 h. respectively (see Fig.10). These results 
ensure that the DANC with I-term is able to compensate 
constant offsets, it can reduce substantially the noise in the 
control system and thus, a good set-point tracking is achieved.  
 

VI. CONCLUSION 
In this work we reported the design of a direct adaptive neural 

control system with and without I-term and its application to the 
class of continuous biochemical aerobic processes represented 
by a mathematical model of the baker's yeast fermentation. 
 

 
Fig. 8. Graphical results of I-term DANC with 10% white 
measurement noise and an offset in the plant input. a) Comparison of 
the plant output and the set point signal in the time interval 0-25 hrs.; 
b) the same as a) in the time interval 0-5 hrs.; c) the same as a) in the 
time interval 5-20 hrs.; d) the same as a) in the time interval 20-24 hrs. 
 

 
Fig. 9. Graphical results of I-term DANC with 10% white 
measurement noise and an offset in the plant input. a) Comparison of 
the plant output and the output of the identification RN-1; b) 
Instantaneous error of control; c) Instantaneous error of identification; 
d) MSE of control; e) Control signal; f) Five system states of RN-1. 



 
 

 

 
 
Fig. 10. Graphical results of the I-term DANC with 10% measurement 
noise and an offset in the plant input. a) Biomass produced; b) Ethanol; 
c) Dissolved oxygen; d) Carbon dioxide [g/l]. 
 

The system contains a neural identifier and a neural 
controller, based on the Recurrent Trainable Neural Network 
model. The performance of the two Direct Adaptive Neural 
Control schemes (with and without I-term) was evaluated on its 
own and relatively to the observed behavior of λ-tracking 
control. All control schemes studied work successfully for the 
ideal (free of noise and offset) case. However, the DANC with 
an integral term proved to exhibit favorable behavior in the 
presence of considerable noise and constant offset. 
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