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Abstract— Data integration in molecular biology and clinical 
science has become imperative for providing the comprehensive 
information extraction in systems biology.  In this review we 
evaluate the evolution and characteristics of biological databases 
and examine existing approaches to data integration in bioscience.  
Strengths and weaknesses of these approaches are identified by 
surveying several successful examples in biological data 
integration.  We point out the challenges faced and possible 
solutions in biological data integration on various levels while 
contrasting the efforts of data integration in biosciences with those 
in industry. 
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INTRODUCTION 
  Science has historically been divided into disciplines for the 

convenience of learning and of managing the complexity.  As a 
result, the scientific data have been traditionally collected and 
managed by categories.  With the advent of high throughput 
technologies in biology, the data accumulation has been 
growing exponentially; with the current state of web 
technologies and data management technologies in computer 
science, it becomes possible to understand organisms 
systematically by comprehensive data analysis and information 
extraction [1] [2]. The requirements for comprehensive 
information extraction and data analysis across diverse 
disciplines are becoming emergent for the need of our 
understanding in system biology [3] [4].  The current data marts 
or databases, most of which are originally designed for the 
purpose of data storage or repository, become incompetent in 
answering comprehensive questions related to discovery or 
decision-making in large scale [4] [5].   The efforts of data 
integration through data warehouse or data federation are 
needed to answer the complex analytical queries in the 
bioscience [6].  Although well structured solutions for data 
integration in industry already exist, the technologies for 
biological data integration are still in its infant stage and special 
care needs to be taken with respect to the unique properties of 
biological data [7] [8]. 
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CHARACTERISTICS OF BIOLOGICAL DATABASES 
The characteristics of biological databases are derived from 
their unique origin and history.  Originally, most biological 
databases were devised by a group of scientists who have 
limited database background. The major purpose of these 
databases was data storage rather than information extraction 
[8].  Furthermore, biological data is hierarchical by nature and 
its data types are tightly correlated with the specific 
technologies of data acquisition [6].  As a result, the databases 
are sporadic, data types are heterogeneous and span diverse 
domains [4] [6].  For example, biological data for human 
species traverse multiple levels, such as organism, organ, 
tissue, cell, organelle and pathways or networks, and span 
diverse domains, such as genomics, transcriptomics, 
proteomics, pheneomics, localizeomics, ORFeomics, 
pharmacogenomics, pharmacogenetics clinical trials, etc [2].   
The nature of biological data, plus its unique evolution over 
history leads to some special features of molecular databases, 
which is summarized in detail below. 
1. Molecular data are highly heterogeneous due to the 

inherent complexity in biological system and a wide array 
of technologies used to study them.  The new terminology 
“omics” is a real-life reflection of this reality [2]. The 
classification of databases based on the contents of data 
can easily be divided into the following main categories: 
genome database, gene databases, gene expression 
databases, protein databases, protein-protein interaction 
databases, pathway databases, etc.  Each of these database 
types themselves can be easily divided into several 
subtypes of databases.  For example, the protein database 
includes protein sequence databases, protein structure 
databases, protein signature, domains, profile databases.  
Table 1 listed some examples of the major molecular 
databases categorized as gene and transcripts, gene 
expression, genomes, protein sequences, protein domains 
and motifs, ptotein-protein interactions, protein structures 
and pathways.  

2. The data volume is large with unique data types, and data 
accumulation is on-going and far from complete.  For 
instance, the estimated human gene number in total is 
20,000 to 25,000 [9].  Without considering individual 
differences or ethnic differences, theoretically, a 
completed gene expression profiling database should 
contain expression profiles of all these gene in all human 
organs/tissues, cell types in particular cases, covering 
various development stages or time lines without 
considering any stress effects.  Viewed in the context of 
other molecular types such as DNA and proteins and the 
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various types of technologies used to study them, the 
volume of biological data becomes extremely high.  The 
data types are dictated by the biotechnologies used in 
experiments [6].  Data types in bioscience include the 
common data types in industry, such as integer, real 
number and other character string, also it has some unique 
data types, such as DNA sequences, graphics, images of 
2-D gels and of immunohistology, with which special care 
needs to be taken to store and to analyze them [6] [8] [10].   

3. Data sources in bioscience are highly dynamic.  The data 
dimensions in biosciences are expanding rapidly as a result 
of the development and the innovation of new 
technologies.  To pace with these changes, new data types 
or databases are emerging all the time and the existing 
databases continuously restructure their formats to 
incorporate the new data, which leads to the multiple 
generations/releases of legacy databases yearly.  For 
example, GenBank, one of the major genome, gene and 
protein data repository system, make their release 
bimonthly [1].   

4. Biological data structure is highly hierarchical by nature.  
For example, a gene is a fragment of DNA in a 
chromosome and a chromosome is located in the nucleus 
of a cell, this gene will encode one or more proteins 
through one or more mRNAs.  These proteins will likely 
function in one or many pathways in various tissues.  This 
type of deep hierarchical structure is very common in 
biology and it could be difficult to model and inefficient to 
query using traditional relational models [5] [10].   

5. Lack of standardization in data formats and in controlled 
vocabularies in scientific domains.  Molecular databases 
are highly heterogeneous due to their original formation 
and history.  As a result, the database schema of the similar 
biological data types by different databases will be quite 
different due to the technologies used.  For example, data 
formats and data types for gene expression profiling from 
affymetrix oligonucleotide arrays can be quite different 
from those of cDNA arrays.  Much more differences will 
be found in the gene expression profiling from serial 
analysis of gene expression (SAGE) technologies.  
Although all these three technologies are used in detecting 
gene expression levels in tissues or cells, one will find that 
the across-platform comparison is almost impossible at the 
data-analysis level.  Additionally, data formats vary over 
different domains and over different projects.  The 
vocabularies in describing biological objects are 
ambiguous due to the fact of widely used synonyms and 
homonyms. We end up with a vast mosaic of databases in 
one biological domain with different formats typically 
using non-standard query software specific for that 
particular database [4].  These databases and systems often 
do not have an explicit database schema, which is 
conventionally considered as a formalized catalogue of all 
interrelated tables in a database with well-defined 
attributes and well-structured indices of these tables, 
which is prevalent in industry databases [5] [11].   

6. The database management applications and data-access 
tools for biological databases are at their infant stages [8] 
[10].  Lack of standardization in data formats and the 

dynamics in data types hamper the development of 
application tools in biological database management 
system [6].  Hence the retrieval efficiency is low and 
complicated, and heterogeneous applications need to be 
developed to handle the information extraction and 
analysis [11].  

7.  Data annotation using external sources through hypertext 
has been a successful solution for integrating relevant 
external sources from diverse domains with the advance in 
web technology [12].  Hence, the hypertext constitutes a 
part of the database contents and provides added meaning 
to biological entities.  Additionally, this type of point and 
click interfaces attract biologists simply because it is easy 
to learn [8].  Nevertheless, one of the disadvantages in 
hypertext is its vulnerability to the ambiguity in identifiers 
or terminology system [4] and the reliability on the internet 
accessibility.  

 

REQUIREMENTS FOR BIOLOGICAL DATABASES AND 
APPLICATIONS 

The unique features of data or databases in biosciences hold 
some interesting requirements from biologists to the databases 
in biosciences.  For example, to answer comprehensive 
biological queries one often needs to traverse a wide range of 
object domains from many heterogeneous databases and a user 
must click through many interfaces and must make efforts to 
manage intermediate results [6] [13].  This situation constitutes 
a challenge to biologists and bioinformaticians.  Customized 
applications on top of traditional database management system 
that interfaces with a large number of databases are needed to 
achieve the satisfactory query results [4] [6] [8].  Furthermore, 
a data integration technology that recognizes which parts of 
two data sources have the same meanings or overlapped 
domains is desirable.  The detailed requirements of databases in 
biosciences can be specified below.  1) The heterogeneous 
features of biological databases require that data models and 
database management systems in biosciences are capable of 
handling data types and are flexible in dealing with data types 
[8].  Otherwise the possible constraints of data types and values 
placed on databases and database management systems could 
result in the exclusion of unexpected types and values in 
biosciences [14] and further diminish the reliability of query 
results or data analysis results.  2) The highly dynamic feature 
of biological databases challenges the database and application 
development community in biology to support database schema 
evolution and data object migration for improving information 
flow between generations/releases of databases [6] [11].  
Currently, the ability to extend the database schema to meet the 
requirements of frequent changes in the biological setting is 
unsupported in most relational and object database 
management systems [10].  However, this sort of tracking in 
history is important for biological researchers to be able to 
access and verify previous results. Therefore, mechanisms for 
aligning different biological databases with similar contents or 
different versions of formats should be supported.  Data 
alignment tools, and data integration tools based on the various 
biological workflow for legacy databases should be available 

  



 
 

 

[6] [8].  3) The deep hierarchical nature of biological data 
causes some concerns whether relational schemas will meet the 
challenge for efficient data representation and retrieval in 
highly integrated data warehouse [10].  Object-oriented 
relational database schemas or object database schemas 
considering their large potential to model hierarchical 
structures probably meet these needs better.  However, the 
progress in developments of object database management 
systems is slower than our expectation and its system query 
tools and optimizers are still in its early development phase [14] 
[15].  4) Most of the molecular databases are in the category of 
deep, primary databases with point solution (Table 2), which 
basically means that databases are highly diversified and data 
types are heterogeneous and the system application tools on the 
top of the databases are simple.  Isolated data are of less useful 
in biological systems and the meaningful information 
extraction needs highly integrated databases with complex 
contents and intensive data analysis [4].  On the other hand, 
data quality is the underlying foundation for reliable query 
results.  It is an essential requirement for biologists to have 
curated knowledge bases derived from reliable systems.  It has 
been proven that data from single high throughput method is 
more error prone than those obtained by integrating data from 
multiple approaches [2]. Currently the federated data is poorly 
transformed which leads to erroneous results.  Overall, the 
needs of biologists for high quality data to answer complex 
queries are not met yet [4] [11].   

 

COMPARISON BETWEEN DATABASES IN 
INDUSTRY AND BIOSCIENCES 

The major differences between industrial and biological 
databases and their management systems can be summarized as 
below.  First, biological databases are still in their infant stage 
and data itself are still growing exponentially both in quantity 
and new data types are emerging all the times [1] [2].  Industry 
data is increasing in quantity, but the data types are relatively 
stable [10].  Secondly, an industry database can be 
conventionally considered as a set of formalized interrelated 
tables in a database with well defined attributes for each table 
and well structured index on attributes [10].  On the top a 
commercial database management system sits and efficient data 
retrieval can be achieved with minor efforts in customization 
[5] [10].  On the other hand, the majority of the biological 
databases exist without conforming to data formats and 
contents within or across knowledge domains [8].  The function 
of the database management system needs to be substantially 
extended to meet the need of the requirements of information 
extraction and database management.  Thirdly, databases in 
bioscience are dispersed geologically over various biological 
domains, although initial efforts of data integration have 
already started and the promising results have been seen in 
spotted areas [6] [16].  However, there are no system solutions 
or approaches to solve the problem yet.  On the other hand, in 
industry a well structured solution has matured for a data 
warehouse construction using various sets of tools or systems 
for data extraction from data warehouse, data transformation, 

data loading and data analyzing [5].  In biological fields the 
development of data management application tools are still in 
their infant phases. 

CLASSIFICATIONS OF MOLECULAR DATABASES 
Databases in biosciences have been classified based on initial 
motivation and goals with which they were designed and built 
[11], and the contents of databases [14].  Although there are 
overlaps, grey areas and confusion occasionally, the existing 
classification does help us, both bioinformaticians and 
biologists, to figure out at what stage or level a database is and 
how sophisticated the database management system or 
application tool are on the top of the database.  The 
classification provides us with some quick guidelines to find 
out which categories and which database we should use to 
fulfill our tasks in daily work.  The major classifications of 
molecular databases and their applications are described in 
detail below.  

1. Primary versus secondary databases 
A group of scientists from 3rd Millennium Inc [11] separate 
biological databases into primary and secondary databases in 
terms of the original goals of designers to build them [11].  
Primary databases are mainly used for data repository and 
archival although almost all of them have some simple data 
retrieval functions with various complexities.   The primary 
database contains experimental results with certain degrees of 
integration presented as annotation of primary data.  The 
typical example of a primary database is GenBank and its main 
function is for nucleotide sequence data repository from 
experimental labs or projects, although the internal 
interpretation of the data and standardization of the format 
defined by GenBank is enforced during the submission [1].  On 
the other hand, secondary databases are designed to provide a 
curate review of experimental data.  It often contains data from 
several databases sources or publicly available sources, such as 
publications. The Pfam database is a typical secondary database 
that contains protein sequence structures (i.e. protein signature, 
domain) extracted automatically or manually from primary 
protein databases [17].   

2. Deep versus broad databases 
Based on the nature of database contents Cornell et al. divide 
molecular databases into deep or broad databases [14].  A broad 
database stores a single kind of data, but collects such data from 
many organisms. The example of a typical broad database is: 
SwissProt, storing protein from all organisms [18].  As for 
broad databases, the functional focus is mainly on browsing 
and visualizing rather than querying and analyzing.  On the 
other hand, a deep database focuses on one or a small number 
of species, but stores many different kinds of data generally 
including both sequences and functional data.   The typical 
examples of deep databases are SGD [19], YPD [20] and GIMS 
[14].  The original intention of deep databases is to answer 
complex queries through certain degrees of data integration.  

3. Point solution versus general solution databases 
According to the original design purposes, Wong et al. separate 
biological databases and their systems into point solution and 
general solution databases [8].  The system design goals for a 
point solution database are to address predefined specific 

  



 
 

 

problems or questions and often data sources are small with 
limited scalability.  In contrast, for a general solution database 
there are neither predefined data sources nor questions to ask 
during the system design phase.  Hence, the extensibility in 
incorporating additional data source and flexibility in 
answering general queries are considered during the design 
phases [8].   

Based on the above classification, the major molecular 
databases and their applications can be categorized as shown in 
Table 2.   

SUCCESSFUL EXAMPLES OF DATA INTEGRATION            
EFFORTS IN BIOSCIENCES 

Different from industry, in which the conventional solutions 
and technologies for data integration are mature and stable for 
the purpose of decision making, in bioscience arena the data 
types and data volumes are changing frequently, which 
presents a serious effort on the localized database maintenance 
and data model updating in data warehouse [2] [3].  Probably 
for that reason, the solution of data integration in molecular 
biology at the early stage was primarily focused on the data 
federation approach.  In this approach, resource databases in 
the system remain dispersed or autonomous and the federation 
system facilitates accessibility to a wide range of databases 
using an application wrapper which often has a common data 
model and the source database is mapped to the shared data 
schema on the fly through the internet [7].  The characteristics 
of molecular databases make the data federation a crucial 
solution for biological data integration.  SRS [21], 
DiscoveryLink [22], K2/Kleisli [6], and OPM [23] are the 
examples of data federations.  The strength of data federation 
lies in the relief of the burden of keeping up with the 
maintenance and updating of the source databases, but the 
weakness is the difficulty in data cleansing and the limitation of 
the network performance.   Additionally, due to the fact of 
heavy hypertext contents in biological database, the link-driven 
federation has been an important component in data federation 
[8] [24].  The successful example of this special type of 
federation is SRS [21].  In the data warehouse approach all data 
sources from diverse databases are pooled into one physical 
database with a common data model.  The father of the data 
warehouse, Inmon, defines a data warehouse as “a collection of 
integrated subject-oriented databases designed to support the 
decision support system function, where each unit of data is 
relevant to some moment in time” [7].   The typical example of 
data warehouses in biosciences are the UCSC genome browser 
[25], GUS [6] and REMBRANDT[26].  
A brief survey and examination of several data integration 
examples are detailed in this section.   

1. Successful examples of data federation 
SRS (Sequence Retrieval System) marketed by Lion 
Bioscience of Heidelberg, Germany, is one of the earliest data 
federation systems with wrappers for over about 400 source 
databases including biological sequences, metabolic pathways 
and literature abstracts [21].  SRS is built on the indexing 
technology of flat files using Icarus as a parsing language.  A 
front end interface simplifies the query formulation and the 

result view from source databases.  Additionally, on top of 
SRS, Lion Bioscience provides the SCOUT suite of 
applications that integrates with SRS with each SCOUT 
application designed for an analysis of a given biological 
domain [21].  However, SRS itself is more a navigational tool 
with limited data joining and data restructuring capabilities.  It 
does not offer additional applications in organizing or 
transforming the retrieved results in a way that might be needed 
for setting up an analytical pipeline.  For this reason, SRS is 
considered as a link-driven data retrieval system instead of data 
integration tool [8] [11].  Different from SRS, DiscoveryLink, 
an IBM system, possesses an explicit relational data model, 
which facilitates the relational data representation and query 
formulation with standard SQL [22].  The wrappers in 
DiscoveryLink are written in C++, which falls into the industry 
standard also.  DiscoveryLink’s strength lies in its use of SQL 
as its query language and its sophisticated query optimization 
technology [8].  Different from SRS, DiscoveryLink is 
designed to query relational databases rather than to access flat 
files.  Kleisli, developed by the University of Pennsylvania, 
provides a view integration environment through data 
federation approach [8].  A global nested relational data model 
allows the relationships in source data to be mapped [8].  The 
wrapper for data source is written in Collection Programming 
Language and the query language is an extension of SQL called 
sSQL.  Java and Perl application programming interfaces are 
available for writing applications that interact with the 
middleware.  Strengths of K1 are that it does not require the 
data schema to be available and has a nested relational data 
model and a data exchange format that external databases and 
software systems can easily translate into.  K2, descendant of 
Kleisli, inherits the nested data model, but use SQL as the query 
language for fast and completed data access of SQL query 
formulation instead of sSQL [8].   

2. The successful examples of data warehouse  
University of California Santa Cruz (UCSC) Genome Browser 
database is a data warehouse originally developed to support 
the human genome project and is now one of the main genomic 
browsers including sequences from human and mouse 
currently across a couple of releases [25].  Besides genomic 
sequences, the EST and mRNA sequences are also stored in the 
database and extensive annotations from sequence alignments 
as well as from external resources can be easily retrieved from 
this system [25] [27].  The Integr8 project, a jointly efforts 
among several European bioinromatics groups, is aimed at 
creating a framework that integrates genomics and proteomics 
data into one database and provides an entity-centric view of 
integrated data [13].  This project utilized advanced application 
tools  in bioinformatics fields and brought together 
approximately 25 legacy databases in a diverse biological 
domains [16] [27].  The heterogeneous data is modeled using a 
unified data model in universal modeling language and a n-tier 
architecture is implemented on top of the underlying relational 
database [27].  This is a broad database with current contents of 
data from over 240 different species [13].  Genomics Unified 
Schema (GUS) is a data warehouse containing DNA, RNA and 
protein sequences and annotation information from major 
legacy databases [6].  GUS transforms the sequence-centric 
entities in external source database into gene-centric entities 

  



 
 

 

and the identification of erroneous annotation was done during 
the data transformation [6].  Repository of molecular brain 
neoplasia data (REMBRANDT, 
http://rembrandt-db.nci.nih.gov ), a recently jointed effort 
between the Neuro-oncology branch and the National Cancer 
Institute Center for Bioinformatics of NIH, is targeted to 
develop a national molecular, genetics and clinical database 
containing primary brain tumor data from large number of 
patients.  Furthermore, molecular classification schema for 
primary brain tumor will be established by intensive data 
analysis of these data.  Currently, the data warehouse contains 
gene expression profiling data from cDNA microarray and 
affymetrix oligoneucleiotide microarrays as well as genetic 
abnormality profiling data using Affymetric SNP arrays as well 
as clinical data of about 200 patients.  On the backend 
REMBRANDT is a n-tier architecture, the conceptual model is 
designed using universal modeling language and implemented 
using J2EE.  The unique feature of REMBRANDT lies in its 
emphasis on addressing the complex queries through 
computationally intensive data analysis in the context of 
primary data integration.  Additionally, the extension with 
caBIO and caCORE will greatly improve the annotation 
capabilities of the biological entities in the data warehouse [28]. 
An recent business call between IBM and Lion with intention 
to integrate SRS to DiscoveryLink can potentially bring the 
data integration to another level both in data contents and in 
performances because of the complementary features of these 
two systems.   
XML 
With the tremendous diversity of data elements and frequent 
changes in data types in the biological domain, an extensive 
and flexible data model for data storage, representation and 
data exchanges has to be used.  XML, a meta language 
supporting the specification of other languages [29], is 
becoming increasingly important for meeting this challenge 
[30].  XML is able to represent the hierarchical structure in 
biological data, and to uniformly represent ontological data, 
presenting additional strength to meet with challenges in 
biological data  integration [31].  Native XML database 
systems such as PharmGKB [32] have been developed to 
manage the biological data, which indicates the feasibility 
using XML to handle the complex relationships [32] [33].  
Alternatively, XML and relational databases are integrated into 
each other, seemingly which is more attractive and popular in 
the biological data integration [34].  A collection of extended 
markup languages specifically representing a given type of 
biological data have been developed.  The systems biology 
markup language (SBML) is a standard exchange format for 
computational models of biochemical networks [31].  The 
microarray gene expression markup language (MAGE-ML) is 
designed to describe microarray designs, microarray 
experiment designs, gene expression data and data analysis 
results and is a widely used XML standard for describing and 
exchanging information among microarray community [35]. 
Annotated gel markup language (AGML) and human proteome 
markup language (HUP-ML) are created to describe proteomic 
analysis data from 2-D gel experiment and mass spectrometry 
data [5] [36].  The Omic Space Markup Language (OSML) for 
representing a variety of omic knowledge is used in data 

integration of several omic domains [37].  However, the 
difficulty with XML is to accommodate and to represent 
complex relationships.  Furthermore, XML formats, like flat 
file formats, can be large, and complex, making data access 
inefficient and impractical in large scale data integration [4] 
[23].   

CHALLENGES OF DATA INTEGRATION IN BIOSCIENCE 
The problems of modeling, storing and querying data in 
bioscience is not solved satisfactorily yet [3].  One of the 
challenges we face is to represent the relationships in 
bioscience in a precise and unambiguous manner.  Obviously, 
developing a single global data schema for data integration 
seems impossible and difficult [4].  One proposal for solving 
this problem is to develop mediated schemas which focus and 
represent one domain of knowledge each and to further 
integrate into a mediated schema to represent the global and 
complex knowledge domains [4].  This approach is called peer 
data management system [4].  Although no successful 
examples have been reported yet it presents a hopeful approach 
for solving the problem [3].  It is unlikely that one satisfactory 
solution will solve all the problems in biological data 
integration.  Alternatively, the current data integration efforts 
should probably focus on identifying the common domains 
with emphasis on either well studied organisms, such as yeast, 
or mature knowledge domains, such as genomics related to 
disease.  The successful example of this kind is PharmGBK 
[33].  Aligning the efforts of data integration will avoid the 
difficulties in designing global complex data schema and 
nurture the maturity in challenging issues such as controlled 
vocabulary, and data representation, as well as providing 
localized solutions to the demanding needs in biosciences.  
Secondly, lack of standardizations and centralized authorities 
for naming systems represent another challenge of data 
integration in biosciences.  Relational data models or object 
relational data models will ensure the industry standard for fast 
retrieval and comprehensive access.  However, precise, 
unambiguous relationships must be enforced for relational 
model and data must be complete and structured.  
Unfortunately, our understanding of relationships and our 
knowledge in biosciences are rarely precise and complete.  
There are sporadic efforts for nomenclature standardizations in 
molecular biology field.  For example, the HUGO gene 
nomenclature committee focuses on standardizing human gene 
symbols [38] [39] and the RefSeq database has its own 
systematic identifiers for their curated non-redundant 
sequences [40].  The reality is that we are still lacking a 
centralized authority or conformation for the entire field of 
biosciences and the semantic inconsistency is bottlenecking our 
data modeling and representation. The efficiency and accuracy 
of our data analysis and query formulations are hampered by 
this reality in existing systems [24].  Thirdly, the visualization 
of query results in an intuitive way and in a style that appeals to 
biologists represents an additional challenge considering the 
complexity of data elements and the diversities of knowledge 
domains in search results.  For example, to visualize the 
sequence of a particular gene that encodes several isoforms and 
its protein sequence domains or motifs as well as structures 
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often requires a user to navigate through many user interfaces. 
Simplifying this type of multiple-clicks navigations not only 
represents a challenge to UI designers but also to programmers.  
My personal experience with query result visualizations comes 
from my involvement in the development of a commercial 
product, the Vector PathBlazerTM system in Invitrogen Inc [41], 
which was an early product tempted to integrate metabolic, 
signal transduction and regulatory pathways from several 
legacy sources.  One of the major challenges we faced was to 
present the complicated protein-protein interaction network in 
an intuitive way and dynamically present the biological 
pathway in a style that biologists are familiar with without 
sacrificing the information contents.  Vector PathBlazerTM 
implemented many presentation styles in graphic theories to 
visualize the network or pathways, but it never reached the 
point to satisfy the biologist’s requirements for many reasons.  
The complexity of a backend data model could also limit the 
visualization if the degree of details is not modeled properly.   
In conclusion, our understanding of biological systems and 
relationships among enormous data elements and knowledge 
domains will be a long time effort.  There is no single system 
that will provide all the solutions in bioinformatics arena now 
or in the future.  Biological data integration efforts in the near 
future should focus on areas with demanding needs or with 
relatively matured data accumulations such as model 
organisms.  One of the hot spot has been and will continue to be 
the integration of clinical data with biological data for the 
purpose of data-driven biomedical diagnostics, therapy and 
drug discovery and understanding the molecular mechanisms 
of the disease. The data-driven genome medicine will be the 
underlying foundation for individualized health care and surely 
will improve the efficiency and accuracy for the new drug 
discovery in the future [42] [43].   
Kimball et al. predict that future data warehouses in industry 
will consist of dozens or hundreds of separates machines with 
widely different operation systems and database systems [5].  
He holds the opinion that these machines can share a uniform 
architecture of conformed dimensions, which will allow them 
to be fused into a coherent whole if designed properly [5]. This 
prophecy probably reflects the future of the biological 
databases also.  However, the particular characteristics of 
biological databases and user requirements will always have 
some influence on database models, database management 
systems and application tools in the future.   
 

ACKNOWLEDGMENT 
The author wishes to thank Dr. Howard A. Fine for his support and for his 

valuable comments.  Special thank also goes to Dr. Maarten Leerkes for  his 
reading this article and for his valuable comments.    

REFERENCES 
[1] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. 

Wheeler, "GenBank," Nucleic Acids Res, vol. 34, pp. D16-20, 2006. 
[2] H. Ge, A. J. Walhout, and M. Vidal, "Integrating 'omic' information: 

a bridge between genomics and systems biology," Trends Genet, 
vol. 19, pp. 551-60, 2003. 

[3] B. Louie, P. Mork, F. Martin-Sanchez, A. Halevy, and P. 
Tarczy-Hornoch, "Data integration and genomic medicine," J 
Biomed Inform, 2006. 

[4] L. D. Stein, "Integrating biological databases," Nat Rev Genet, vol. 
4, pp. 337-45, 2003. 

[5] R. Kimball, L. Veeves, M. Ross, and W. Thornthwaite, The data 
warehouse lifecycle toolkit: John Wiley & Sons, Inc, 1998. 

[6] S. B. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen, C. 
Overton, and C. Stoeckert, "K2/Kleisli and GUS: experiments in 
integrated access to genomic data sources," IBM Systems Journal, 
vol. 40, pp. 1-23, 2001. 

[7] W. H. Inmon, C. Imhoff, and R. Sousa, Corporate information 
factory,, 2nd edition ed: Wiley, 2001. 

[8] L. Wong, "Technologies for integrating biological data," Brief 
Bioinform, vol. 3, pp. 389-404, 2002. 

[9] International Human Genome Sequencing Consortium, "Finishing 
the euchromatic sequence of the human genome," Nature, vol. 431, 
pp. 931-45, 2004. 

[10] R. Elmasri and B. S. Navathe, Fundamentals of database systems: 
Addison-Wesley, 2000. 

[11] 3rd Millennium Inc, "Practical data integration in pharmaceutical 
R/D: strategies and technologies," in White paper, May, 2002. 

[12] G. A. Thorisson, A. V. Smith, L. Krishnan, and L. D. Stein, "The 
International HapMap Project Web site," Genome Res, vol. 15, pp. 
1592-3, 2005. 

[13] M. Pruess, P. Kersey, and R. Apweiler, "The Integr8 project--a 
resource for genomic and proteomic data," In Silico Biol, vol. 5, pp. 
179-85, 2005. 

[14] M. Cornell, N. W. Paton, C. Hedeler, P. Kirby, D. Delneri, A. 
Hayes, and S. G. Oliver, "GIMS: an integrated data storage and 
analysis environment for genomic and functional data," Yeast, vol. 
20, pp. 1291-306, 2003. 

[15] M. Stonebraker, P. Brown, and D. Moore, The next great wave in 
DBMS technology. In Object-relational DBMSs: Tracking the next 
great wave: Morgan Kaufmann Publisher Inc, 1999. 

[16] Nature technology feature, "Bioinformatics: Bring it all together," 
Nature, vol. 419, pp. 751-757, 2002. 

[17] A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R. 
Eddy, S. Griffiths-Jones, K. L. Howe, M. Marshall, and E. L. 
Sonnhammer, "The Pfam protein families database," Nucleic Acids 
Res, vol. 30, pp. 276-80, 2002. 

[18] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. 
Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, 
I. Phan, S. Pilbout, and M. Schneider, "The SWISS-PROT protein 
knowledgebase and its supplement TrEMBL in 2003," Nucleic 
Acids Res, vol. 31, pp. 365-70, 2003. 

[19] K. R. Christie, S. Weng, R. Balakrishnan, M. C. Costanzo, K. 
Dolinski, S. S. Dwight, S. R. Engel, B. Feierbach, D. G. Fisk, J. E. 
Hirschman, E. L. Hong, L. Issel-Tarver, R. Nash, A. Sethuraman, B. 
Starr, C. L. Theesfeld, R. Andrada, G. Binkley, Q. Dong, C. Lane, 
M. Schroeder, D. Botstein, and J. M. Cherry, "Saccharomyces 
Genome Database (SGD) provides tools to identify and analyze 
sequences from Saccharomyces cerevisiae and related sequences 
from other organisms," Nucleic Acids Res, vol. 32, pp. D311-4, 
2004. 

[20] M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. 
Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, 
P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I. 
Garrels, "YPD, PombePD and WormPD: model organism volumes 
of the BioKnowledge library, an integrated resource for protein 
information," Nucleic Acids Res, vol. 29, pp. 75-9, 2001. 

[21] E. M. Zdobnov, R. Lopez, R. Apweiler, and T. Etzold, "The EBI 
SRS server--new features," Bioinformatics, vol. 18, pp. 1149-1150, 
2002. 

[22] L. M. Haas, J. E. Rice, P. M. Schwarz, W. C. Swope, P. Kodali, and 
E. Kotlar, "DiscoveryLink: A system for integrated access to life 
sciences data sources," IBM Systems Journal, vol. 40, pp. 489-511, 
2001. 

[23] I. M. Chen and V. M. Markowitz, "An overview of the 
object-protocol model (OPM) and OPM data management tools," 
Informatics System, vol. 20, pp. 395-418, 1995. 

[24] R. Nagarajan, M. Ahmed, and A. Phatak, "Database challenges in 
the integration of biomedical data sets," Proceedings of the 30th 
VLDB conference, Toronto, Canada, 2004, pp. 1202-1213, 2004. 

[25] D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs, 
Y. T. Lu, K. M. Roskin, M. Schwartz, C. W. Sugnet, D. J. Thomas, 

  



 
 

 

R. J. Weber, D. Haussler, and W. J. Kent, "The UCSC Genome 
Browser Database," Nucleic Acids Res, vol. 31, pp. 51-4, 2003. 

 
 

[26] REMBRANDT, "REMBRANDT: enpowering the translational 
research for brain tumor studies." 

Table 1. Examples of molecular databases by categories in biosciences 

[27] P. J. Kersey, L. Morris, H. Hermjakob, and R. Apweiler, "Integr8: 
enhanced inter-operability of European molecular biology 
databases," Methods Inf Med, vol. 42, pp. 154-60, 2003. 

[28] P. A. Covitz, F. Hartel, C. Schaefer, S. De Coronado, G. Fragoso, H. 
Sahni, S. Gustafson, and K. H. Buetow, "caCORE: a common 
infrastructure for cancer informatics," Bioinformatics, vol. 19, pp. 
2404-12, 2003. 

[29] M. V. Mannino, Database design, application development and 
administration: McGraw-Hill Irwin. 

[30] X. Wang, R. Gorlitsky, and J. S. Almeida, "From XML to RDF: how 
semantic web technologies will change the design of 'omic' 
standards," Nat Biotechnol, vol. 23, pp. 1099-103, 2005. 

[31] A. Finney and M. Hucka, "Systems biology markup language: Level 
2 and beyond," Biochem Soc Trans, vol. 31, pp. 1472-3, 2003. 

[32] M. Hewett, D. E. Oliver, D. L. Rubin, K. L. Easton, J. M. Stuart, R. 
B. Altman, and T. E. Klein, "PharmGKB: the Pharmacogenetics 
Knowledge Base," Nucleic Acids Res, vol. 30, pp. 163-5, 2002. 

[33] T. E. Klein and R. B. Altman, "PharmGKB: the pharmacogenetics 
and pharmacogenomics knowledge base," Pharmacogenomics J, 
vol. 4, pp. 1, 2004. 

[34] F. Achard, G. Vaysseix, and E. Barillot, "XML, bioinformatics and 
data integration," Bioinformatics, vol. 17, pp. 115-25, 2001. 

[35] P. T. Spellman, M. Miller, J. Stewart, C. Troup, U. Sarkans, S. 
Chervitz, D. Bernhart, G. Sherlock, C. Ball, M. Lepage, M. Swiatek, 
W. L. Marks, J. Goncalves, S. Markel, D. Iordan, M. Shojatalab, A. 
Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B. J. Aronow, 
A. Robinson, D. Bassett, C. J. Stoeckert, Jr., and A. Brazma, 
"Design and implementation of microarray gene expression markup 
language (MAGE-ML)," Genome Biol, vol. 3, pp. 
RESEARCH0046, 2002. 

[36] R. Stanislaus, C. Chen, J. Franklin, J. Arthur, and J. S. Almeida, 
"AGML Central: web based gel proteomic infrastructure," 
Bioinformatics, vol. 21, pp. 1754-7, 2005. 

[37] Y. Hasegawa, M. Seki, Y. Mochizuki, N. Heida, K. Hirosawa, N. 
Okamoto, T. Sakurai, M. Satou, K. Akiyama, K. Iida, K. Lee, S. 
Kanaya, T. Demura, K. Shinozaki, A. Konagaya, and T. Toyoda, "A 
flexible representation of omic knowledge for thorough analysis of 
microarray data," Plant Methods, vol. 2, pp. 5, 2006. 

[38] H. M. Wain, M. J. Lush, F. Ducluzeau, V. K. Khodiyar, and S. 
Povey, "Genew: the Human Gene Nomenclature Database, 2004 
updates," Nucleic Acids Res, vol. 32, pp. D255-7, 2004. 

[39] R. B. MacIntosh, "Hugo Obwegeser: forty years later," N Y State 
Dent J, vol. 71, pp. 42-4, 2005. 

[40] K. D. Pruitt, T. Tatusova, and D. R. Maglott, "NCBI Reference 
Sequence (RefSeq): a curated non-redundant sequence database of 
genomes, transcripts and proteins," Nucleic Acids Res, vol. 33, pp. 
D501-4, 2005. 

[41] Informax, "For biological pathways analysis Vector PathBlazer," 
2004. 

[42] C. Sander, "Genomic medicine and the future of health care," 
Science, vol. 287, pp. 1977-8, 2000. 

[43] H. F. Willard, M. Angrist, and G. S. Ginsburg, "Genomic medicine: 
genetic variation and its impact on the future of health care," Philos 
Trans R Soc Lond B Biol Sci, vol. 360, pp. 1543-50, 2005. 

 
 
 
 
 
 
 
 
  

Category Names Databases Contents Types URL 

EMBL 

DNA sequences and 
derived protein 
sequences hosted by 
EBI 

Flat file 

http://www.
ebi.ac.uk/em
bl/

Genes & 
transcript 

UniGene 

Clustering of human, 
mouse, and rat DNA 
and EST sequences 
into gene-oriented, 
non-redundant clusters 
hosted by NCBI 

ASN.1 

http://www.
ncbi.nlm.nih
.gov/entrez/
query.fcgi?d
b=unigene
 

GEO 

A gene expression and 
hybridization array 
repository system 
hosted by NCBI 

R1

http://www.
ncbi.nlm.nih
.gov/geo/

Gene 
expr. 

ArrayExpr
ess 

A public microarray 
data repository system 
hosted by EBI 

R1

http://www.
ncbi.nlm.nih
.gov/geo/
 

MGD
Mouse genome data 
hosted by Jackson 
Laboratory 

Flat file 
http://www.i
nformatics.j
ax.org/Genome  

UCSC 
Human, mouse, rat 
genomic sequences 
hosted by UCSC 

R1
http://genom
e.ucsc.edu/

Protein SWISS-P
ROT

Protein sequences and 
annotation hosted by 
EBI 

Flat file 
http://us.exp
asy.org/

InterPro 

Protein families, 
domains and functional 
sites in which 
identifiable features 
found in known 
proteins hosted by EBI 

R1

http://www.
ebi.ac.uk/int
erpro/
 Protein 

domains 
& motifs 

Pfam

Protein sequence 
alignments and domain 
profiles hosted by 
Sanger Institute 

R1

http://pfam.
wustl.edu/

BIND 

Biomolecular 
interaction database 
hosted by Blueprint 
Institute of Mount 
Sanai Hospical, 
Canada 

Object 

http://www.
bind.ca/

PPI 

DIP 

Protein-protein 
interaction database 
hosted by Harward 
Hughes Medical 
Institute 

R1

http://dip.do
e-mbi.ucla.e
du/

MMDB 

Curated protein 
structures, related 
sequences and 
literatures hosted by 
NCBI 

Flat file 

http://www.
ncbi.nlm.nih
.gov/Structu
re/

Protein 
structures 

PDB 

Experimentally 
determined 3-D 
structures of biological 
macromolecules hosted 
by RCSB 

R1

http://www.r
csb.org/pdb/

Pathways TransPath 
Signal transduction 
pathways and reactions 
hosted by BioBase 

Object 

http://www.
biobase.de/p
ages/product
s/transpath.h
tml

1: relational database  
  
   
  
 
Table  2.  Classification of molecular databases
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 Name Pri Sec D B PS GS  Rep Bro Vis Query Ana 
GenBank ✓   ✓ ✓  ✓ ✓ ✓ ✓  
EMBL ✓   ✓ ✓  ✓ ✓ ✓ ✓  
DDBJ ✓   ✓ ✓  ✓ ✓ ✓ ✓  
RefSeq  ✓  ✓ ✓   ✓ ✓ ✓  
UniGene  ✓  ✓ ✓   ✓ ✓ ✓  

G
en

es
 &

  t
ra

ns
c 

dbEST ✓   ✓ ✓  ✓ ✓ ✓ ✓  
Flybase ✓  ✓  ✓  ✓ ✓ ✓ ✓  
MGD ✓  ✓   ✓ ✓ ✓ ✓ ✓  
SGD ✓  ✓   ✓ ✓ ✓ ✓ ✓  

G
en

om
es

 

UCSC  ✓    ✓  ✓ ✓ ✓  
GEO ✓   ✓  ✓ ✓ ✓ ✓ ✓  
ArrayExpress ✓   ✓  ✓ ✓ ✓ ✓ ✓ ✓ Ex

pr
 

REMBRANDT ✓  ✓  ✓  ✓ ✓ ✓ ✓ ✓ 
 GXD ✓  ✓  ✓  ✓ ✓ ✓ ✓  

Swissprot ✓   ✓ ✓  ✓ ✓ ✓ ✓  
Trembl ✓   ✓ ✓  ✓ ✓ ✓ ✓  
Enzyme ✓   ✓ ✓  ✓ ✓ ✓ ✓  
UniProt ✓   ✓ ✓  ✓ ✓ ✓ ✓  
MIPS ✓   ✓ ✓  ✓ ✓ ✓ ✓  Pr

ot
ei

ns
 

BRENDA ✓   ✓ ✓   ✓ ✓ ✓ ✓ 
HUGO ✓  ✓  ✓   ✓ ✓ ✓  

N
o

m
e 

Enzyme nome. ✓   ✓ ✓  ✓ ✓ ✓ ✓  
InterPro  ✓  ✓ ✓   ✓ ✓ ✓ ✓ 
Prosite ✓   ✓ ✓   ✓ ✓ ✓  
ProDom ✓   ✓ ✓   ✓ ✓ ✓  
SMARTS ✓   ✓ ✓   ✓ ✓ ✓  
PRINTS ✓   ✓ ✓   ✓ ✓ ✓  
BLOCKS ✓   ✓ ✓   ✓ ✓ ✓  P 

se
q.

 &
 m

ot
ifs

 

PFAM        ✓ ✓ ✓  
PDB ✓  ✓  ✓  ✓ ✓ ✓ ✓  
MMDB  ✓  ✓ ✓  ✓ ✓ ✓ ✓  
FSSP/Dali  ✓  ✓ ✓   ✓ ✓ ✓  
SCOP  ✓  ✓ ✓   ✓ ✓ ✓  
CATH  ✓  ✓ ✓   ✓ ✓ ✓  

Pr
ot

ei
n 

st
ru

ct
ur

e 

HSSP        ✓ ✓ ✓  
YPD  ✓ ✓  ✓  ✓ ✓ ✓ ✓  
BIND ✓   ✓ ✓  ✓ ✓ ✓ ✓  
DIP ✓   ✓ ✓  ✓ ✓ ✓ ✓  PP

I 

MINT ✓  ✓  ✓  ✓ ✓ ✓ ✓  
PathDB ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ 
TransPath ✓   ✓ ✓   ✓ ✓ ✓ ✓ 
Kegg  ✓  ✓ ✓  ✓ ✓ ✓ ✓  
MPW ✓   ✓ ✓  ✓ ✓ ✓ ✓  Pa

th
w

ay
s 

UM-BBD ✓   ✓ ✓  ✓ ✓ ✓ ✓  
Gene Ontology ✓   ✓  ✓ ✓ ✓ ✓ ✓  
Taxonomy  ✓  ✓ ✓  ✓ ✓ ✓ ✓  

A
nn

ot
 

OMIM ✓   ✓ ✓  ✓ ✓ ✓ ✓  
 
Note: the classifications are based on design goals and the contents of the databases as well as the applications on the databases.  Abbreviations in 
table: pri-primary database, sec-secondary database, D-deep database, B-broad database, PS- point solution, GS-general solution, rep-repository, 
bro-browser, vis-visualizing, ana-analysis, transc-transcripts, expr-expression, nome-nomenclature, ppi-protein-protein interaction, 
annot-annotation. 
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