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Abstract

De novo peptide sequencing that determines the
amino acid sequence of a peptide via tandem mass
spectrometry (MS/MS) has been increasingly used
nowadays in proteomics for protein identification.
Current de novo methods generally employ a graph
theory, which usually produces a large number of
candidate sequences and causes heavy computational
cost while trying to determine a sequence with less
ambiguity. We present a novel de novo sequencing
algorithm that greatly reduces the number of can-
didate sequences. By utilizing certain properties of
b- and y-ion series in MS/MS spectrum, we propose
a reliable two-way parallel searching algorithm to
filter out the peptide candidates that are further
pruned by an intensity evidence based screening
criterion. In addition, we define an adjusted value
required to determine the end node positions for b-
and y-ion series in the case of +2 charged precursor.
Experimental results demonstrate the efficiency and
potency of the proposed algorithm.

Keywords: tandem mass spectrometry, MS/MS spec-
trum, proteomics, de novo peptide sequencing, two-
way searching algorithm

1 Introduction

Tandem mass spectrometry (MS/MS) is a mass spec-
trometry that has more than one analyzer. It has
been recognized as one of the most powerful tools
in proteomics for protein identification [1, 2, 3, 4].
Prior to an MS/MS experiment, proteins are digested
into peptides by ionization process such as electro-
spray ionization (ESI) or matrix-assisted laser desorp-
tion ionization (MALDI). Tandem mass spectrometer
usually has two analyzers. The first analyzer selects
ions of a particular charged peptide called precursor
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or parent peptide according to the mass-charge ratio
(m/z ). The selected peptide ions are fragmented by a
process known as collision-induced dissociation (CID).
Once fragmented ions pass through the second ana-
lyzer, they are detected by an ion detector which is
connected with a data system where mass-charge ra-
tios are stored together with their relative abundances
to generate the MS/MS spectrum.

The fragmentation of a precursor peptide bond is de-
termined by the properties of the peptide and the en-
ergy of CID. Fig.1 illustrates how a peptide with four
amino acids can be cleft into different fragmentations
[5, 6]. There are three different types of bonds in
a peptide, i.e. CH-CO, CO-NH and NH-CH bonds.
Each bond breakage produces two pieces. Therefore,
there are six likely types of fragment ions for each
amino acid residue: the N-terminal a, b, c fragments
and C-terminal x, y, z fragments. The most com-
mon cleavage happens at CO-NH bonds by low-energy
CID, which makes b- and y-ions dominant fragment
types. For a peptide consisting of n amino acids, the
possible number of fragment ions is 6(n− 1).

Though the m/z ratios of fragment ions provide in-
formative information for protein identification, no
knowledge about the cleavage positions or charge of
fragments is provided. In addition, contamination
and inaccuracy of instrument may generate fake m/z
ratio peaks. Consequently successful identification
of protein structure still remains a challenging task.
Current endeavors to unambiguous peptide identifi-
cation can be generalized into two classes: database
search algorithms and de novo sequencing algorithms.
In the first, one seeks to determine a peptide sequence
by the best match by comparing the experiment spec-
trum with the theoretical spectrum generated from a
candidate peptide list which is obtained from a pro-
tein database [4, 6, 7, 8, 9, 10]. The early popular
SEQUEST [8] computes the cross correlation value
(Xcorr) between the experimental MS/MS spectrum
and the hypothetical spectra generated from candi-
date peptides in the database with the same mass.
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Figure 1: Structure of a peptide consisting of four amino acids linked by the C-N bonds. Six different types of
fragment ions are produced by CID, i.e. a, b, c type fragment ions with N-terminal and x, y, z type fragment
ions with C-terminal.

The candidate peptide producing the highest Xcorr
value comes to be the first hit. However, a drawback
of this algorithm is that its scoring function is not
based on a rigorous metric. ProteinProspector [11] is
composed of several tools for mining sequence data-
bases in conjunction with mass spectrometry experi-
ments. It takes into account the impact of mass mea-
surement accuracy on protein identification experi-
ment. Mascot [12] computes a probability based scor-
ing to obtain the significance of the observed match
between the experimental data and mass values cal-
culated from a candidate peptide. SCOPE [7] cal-
culates the probability density function based on a
two-step model, i.e. the probability of a particular
fragmentation pattern of a peptide and the probabil-
ity that the observed spectrum is generated by the
fragmentation pattern of the peptide. It is assumed
that fragments are independent in order to make its
complex probability problem computable. ProbID [4]
makes use of the Bayesian approach as the basis for
the probabilistic score function. It calculates the final
posterior probability by considering several contribut-
ing factors. Despite the simple approach, the perfor-
mance of this algorithm is comparable to industry-
standard software. Lu & Chen [9] propose a suffix
tree based approach to identify peptide sequence. The
construction and search of a suffix tree are performed
within a reasonable time. To rank candidate peptide
sequences, a SEQUEST-like scoring function is used.
Fu et al. [6] introduce a scoring algorithm by consider-
ing the correlative information among fragment ions
to improve the peptide identification accuracy. The
Kernel Spectral Dot Product (KSDP) extended from
SDP is used as a scoring method. The success of all
these algorithms depends largely on the completeness
of database and the robustness of the scoring metrics,
and can not be used for the identification of proteins
from unknown genomes.

On the other hand, de novo algorithms rely heav-
ily on the MS/MS spectrum for the determination of
peptide sequence, and often do not use a database.
SHERENGA [1] constructs an optimal path scoring
in the spectrum graph, and automatically learns frag-
ment types and intensity thresholds from test spec-
tra. Lutefisk [13] converts an experimental spectrum
into a spectrum graph with corresponding b type ion
masses to make a sequence graph. To identify vari-
ants of known proteins in database, sequence candi-
dates obtained from Lutefisk can be used as input.
PEAKS [3] uses dynamic programming to compute
10000 sequences with the highest scores. It shows not
only the confidence level of each output sequence but
also the confidence level of each amino acid in the se-
quence. For each mass, this method first computes
the reward and penalty. The reward is given, if there
is a peak close to the mass; otherwise penalty. This
algorithm tries to find a sequence such that its y and
b ions maximize the total rewards at their mass val-
ues. Yan et al. [14] propose a novel graph approach
to solve the problem of separating b-ions from y-ions,
in which two types of edges are considered: a type-1
edge connects two peaks possibly of the same ion types
and a type-2 edge connects two peaks possibly of dif-
ferent ion types. This algorithm does not deal with
the PTM (Post-Translational Modification) problem.
Jarman et al. [15] present a partial peptide identifica-
tion based on a model of random sequence probability
and the evidence defined as the instances of consec-
utive subsequences. In the approach, sequence hier-
archy is used to represent a family of partial peptide
candidates. Recently, Frank and Pevzner [16] present
a new peptide sequencing algorithm using a proba-
bilistic network as a scoring scheme that assigns a rel-
evance score to peptide prefix masses. The probabilis-
tic network represents three different types of relations
such as correlations between fragment ions, the posi-



tional influence of the cleavage site and the influence
of flanking amino acids to the cleavage site. These
factors help to improve the accuracy of the peptide se-
quencing algorithm. Majority of de novo algorithms
employ graph theory through which the experimen-
tal spectrum is transformed into a spectrum graph.
Each peak in the spectrum is converted into several
nodes representing different ion types. Two nodes are
connected by an edge if the mass of an amino acid is
approximately equal to the difference between the two
nodes. For the final resulting directed acyclic graph
(DAG), each path from start node to end node corre-
sponds to a candidate sequence.

Regardless of the different mechanisms, a lot of re-
search focus has been put on effective scoring met-
rics which is doubtlessly essential for unambiguous
peptide identification. However, robust selection of
peptide candidates can not only improve the com-
putation, but also can eliminate false positives. In
this paper, we will present an effective and efficient
two-way de novo searching algorithm to reduce the
number of candidate sequences dramatically by utiliz-
ing the properties of MS/MS spectrum and the con-
fidence measurement based on the intensity values of
spectrum. Moreover, to make a spectrum graph, the
decision of start and end position is very important.
We will also introduce our new positioning method
for precursors with charge +1 and +2. Experimental
results demonstrate the performance and efficacy of
our novel approach.

This paper is organized as follows. In Section 2, we
give a detailed description of our algorithm which em-
bodies properties of MS/MS spectrum, relation be-
tween the precursor m/z and mass of peptide, normal-
ity test, and an elaboration of our two-way searching
algorithm. Then in Section 3, we test our algorithm
on public data, and finally we close our paper by con-
clusion and future work.

2 Algorithms

2.1 Random peptide sequence denotation

We will first introduce several peptide notations be-
fore moving on to the proposed algorithms. Let Σ be
the alphabet set consisting of 20 amino acids. Each
amino acid with a distinctive mass is represented by
m(a), a ∈ Σ. By denoting the product of Σ1 and Σ2

as Σ1 × Σ2 = {ab | a ∈ Σ1 and b ∈ Σ2}, the follow-
ing expressions, Σ1 = Σ, Σ2 = Σ × Σ, and Σn = Σ
× Σn−1, are possible. Σn means a set that includes

all possible sequences with length n, whose number of
elements |Σn| is 20n. So the set Σ+ consisting of all
possible sequences with different lengths made by 20
amino acids can be written as,

Σ+ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn ∪ · · · =
∞⋃

i=1

Σi. (1)

Obviously Σ = {A, C, . . . , Y}, and the power expres-
sions of Σ indicating peptides with different lengths
are defined recursively as Σ1 = {A, C, . . . , Y}, Σ2 =
{AA, AC, . . . , AY, CA, CC, . . . , CY, YA, YC, . . . ,
YY}, etc.. The union of all possible peptides is Σ+

= {A, C, . . . , Y, AA, AC, . . . , YY, AAA, AAC, . . . ,
YYY, . . . }.
A parent peptide P = p1p2 . . . pn is a sequence of
amino acids, which consists of n amino acids. The
mass of peptide P is m(P ) =

∑n
i=1 m(pi) where P ∈

Σn and the mass of each amino acid is m(pi). Let T
be an element of Σ+, i.e. T ∈ Σ+. If the mass of T
is approximately equal to that of the target peptide
P , i.e. |m(T ) −m(P )| < ε, T will be one candidate
sequence with respect to the parent peptide. ε is the
tolerant error the mass spectrometer has.

2.2 Properties of MS/MS spectrum

The actual mass of peptide P can be written as
18+m(P ). Number 18 comes from two extra hydro-
gen atoms and one extra oxygen atom at the C- and
N-terminals where the mass of one hydrogen atom
is approximately 1 Da (Dalton) and the mass of one
oxygen atom is approximately 16 Da. The mass of
b-ion with i amino acids, represented by bi, can be
computed as

bi = 1 + m(p1) + · · ·+ m(pi) = 1 +
i∑

j=1

m(pj), (2)

where mass 1 comes from one hydrogen atom attached
to the b-ion type fragments. Similarly, the mass of
y-ion with i amino acids, denoted by yi, can be cal-
culated by

yi = 19+m(pn−i+1)+· · ·+m(pn) = 19+
n∑

j=n−i+1

m(pj),

(3)
where mass 19 is due to three hydrogen atoms and
one oxygen atom linked to the y-ion type fragments.

The difference of m/z ratio of two adjacent singly-
charged b- or y-ions is the exact mass of one residue.
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Figure 2: Hypothetical MS/MS spectrum and amino acid sequences.

However, in real MS/MS spectra, an ion may be
charged with different values (+1, +2, . . . ), which
make several different peaks. In addition, there
is no information about the fragment ion type (b,
y, . . . ) and fragmenting position. For a tandem
mass spectrometry, we suppose that each fragment
ion has a unique mass-charge ratio and each amino
acid is fragmented [6, 7]. Therefore, the m/z value
of an ion is equal to the mass of the ion. Before
introducing our Two-way Searching Algorithm in
Section 2.5, following two properties will be presented:

Property One: If the mass-charge ratio of
precursor is given, then the positions of start and end
nodes for both b- and y-ion series are known. (More
details will be provided in Section 2.3).
Proof: Start nodes are always at 1 m/z for b-ion
series and 19 m/z for y-ion series in the spectrum
because of the extra attachments as explained above.
And the end nodes of b- and y-ion series will happen
at m(P )+1 m/z and m(P )+19 m/z, respectively by
Eqs. (2) and (3). Therefore, the m/z positions of b1,
y1, bn−1, and yn−1 can be expressed as b1 = 1+m(p1),
y1 = 19 + m(pn), bn−1 = m(P ) + 1 − m(pn), and
yn−1 = m(P ) + 19−m(p1), respectively.

Furthermore, let S = {(Si, Ii) | 1 ≤ i ≤ k} be an
MS/MS spectrum ordered by m/z values where Si

and Ii denote the position and intensity of the i-th
peak, and k is the number of peaks. Then the position
of bi in the spectrum is determined by the m/z value
with the largest intensity Ij within the tolerant error.

bi = argmax︸ ︷︷ ︸
Sj

{Ij | |Sj − bi−1 −m(a)| < ε} (4)

where a ∈ Σ. The same rule is applied to yi position
locating.

Property Two: There exists a pair-wise rela-
tionship between peaks in the b- and y-ion series.
That is, the sequence identified in the b-ion series is
the same as that identified in the y-ion series in the
reversed order.
Proof: We can derive the equation bi + yn−i =
20 + m(P ) from Eqs. (2) and (3). Therefore, bi and
yi can be expressed as bi = 20 + m(P ) − yn−i and
yi = 20 + m(P )− bn−i, respectively. This means that
the sequence of b-ion series is the same as that of
y-ion series in the reverse order. Fig. 2 shows the two
properties of an MS/MS spectrum.

2.3 Relation between the precursor m/z
and mass of peptide

To simultaneously identify peptide from both the start
and end nodes, knowledge of the positions of these
nodes is important. Since the end nodes of b- and
y-ion series happen at m(P ) + 1 m/z and m(P ) + 19
m/z, information about the mass of the target peptide
sequence is required which can be obtained based on
the precursor information. Let the m/z of precursor
be P z, where z is the charge of the ion. When z = 1,
the positions of end node of b- and y-ion series are
P 1 − 18 and P 1, because of P 1 − 19 ≈ m(P ).

For z ≥ 2 the above equation can not be used any
more. Through experiment, the following equation is
formed based on some heuristic δ value:

P 2 × 2− δ − 19 ≈ m(P ), (5)

where 0.9 ≤ δ ≤ 1.0. Therefore, for P 2 the positions



Table 1: Upper tail percentage points for Anderson-Darling statistic A∗.
α 0.2 0.15 0.1 0.05 0.025 0.01 0.005

A∗α 0.509 0.561 0.631 0.752 0.873 1.035 1.159

Table 2: Normality test for distribution of measured mass-charge ratios.
i X(i) (X(i) − µ)/σ F (Z(i)) ln(F (Z(i)))+ ln(1− F (Z(r+1−i)))

1 0.006 -1.168 0.121 -5.314

2 0.009 -1.119 0.132 -12.626

3 0.028 -0.844 0.199 -17.774

4 0.037 -0.715 0.237 -16.947

5 0.043 -0.634 0.263 -19.084

6 0.089 0.029 0.512 -15.255

7 0.094 0.110 0.544 -11.885

8 0.109 0.321 0.626 -11.097

9 0.161 1.065 0.857 -6.411

10 0.171 1.210 0.887 -4.958

11 0.208 1.744 0.959 -3.588

of end nodes of b- and y-ion series are P 2× 2− δ− 18
and P 2×2−δ, respectively. The position of start node
in P 2 is the same as that of P 1. We used δ = 0.95
in our experiment and showed δ can be used as the
pertinent adjusted value.

2.4 Normality test

One assumption we used in our de novo peptide se-
quencing is that the measured mass-charge ratio can
be modelled as a normal distribution as other re-
searchers have done [7, 11]. We performed a goodness
of fit test to confirm whether we can use the normal
distribution as analysis model for our experiment data
set or not. There are several approaches for assess-
ing the underlying distribution of a data set. Among
them, Anderson-Darling (AD) test which belongs to
a class of distance test is known as a more powerful
test than other distance tests. AD test shows a good
performance in small samples as well as large sam-
ples. When the number of measured mass-charge ra-
tios with respect to the center one within the tolerant
error is sparse, AD test is more appropriate because of
applying the cumulative distribution function(CDF)
of the data set.

To test the normality, we define hypotheses:
H0 : The distribution for the data set is a normal
distribution.
H1 : The distribution for the data set is a non-normal
distribution.
Let X be a random sample with X =
(X(1), X(2), . . . , X(r)) sorted in the ascending or-

der with sample size r. The standardized value is
Z(i) = (X(i) − µ)/σ where µ and σ denote mean and
standard deviation for the sample data. The AD
normality test is calculated by the following function:

AD = −1
r
{

r∑

i=1

(2i−1)ln(F [Z(i)](1−F [Z(r+1−i)]))}−r

(6)
where F is the standard normal cumulative probabil-
ity and ln is the natural logarithm (base e). Eq. (6)
is further modified by computing:

A∗ = AD(1 +
0.75
r

+
2.25
r2

). (7)

If A∗ exceeds the selected critical values given in Ta-
ble 1, we will reject the null hypothesis at the 100α%
level.

As an example for peptide YLYELAR spectrum
shown in Fig. 3, we normalize the intensities of all
peaks such that the highest peak is one and keep peaks
with more than 1 % (0.00208) of maximum intensity
(0.208). So we obtain the sample data (0.006, 0.009,
0.043, 0.089, 0.161, 0.171, 0.208, 0.109, 0.094, 0.037,
0.028). Mean and standard deviation of these intensi-
ties are µ = 0.087 and σ = 0.069. We obtained AD =
0.358 and A∗ = 0.389 through the procedure shown
in Table 2. At significance level of 0.1, A∗ = 0.389 ≤
α = 0.631. Therefore, we can assume normality for
distribution of measured mass-charge ratios. Fig. 3
represents the distribution of measured mass-charge
ratios and normal distribution. In general, if the p-
value is 0.1 or more, we can assume normality.



175.085 175.097 175.109 175.121 175.133
0

0.05

0.1

0.15

0.2

0.25
In

te
ns

ity

m/z

Figure 3: Distribution of measured mass-charge ratios (solid line bar) and normal distribution (dotted curve).

We found most measured mass-charge ratios are self-
centered normal distribution. Therefore the applica-
tion of normal distribution as the fundamental frame
in the following scoring function is legitimate.

2.5 Two-way searching algorithm

Peptide candidate initial filtering by two-way
searching

Our new two-way searching algorithm for MS/MS
peptide sequencing begins with both start and end
position localizations. In our approach, the positions
of start and end nodes for b-ion and y-ion are deter-
mined in advance in the MS/MS spectrum, i.e. at
1 and m(P ) + 1 m/z for b-ion series, and at 19 and
m(P ) + 19 m/z for y-ion series as shown in Fig. 2.
During our two-way parallel searching, these four ini-
tial nodes will extend simultaneously by scanning the
whole spectrum, where start nodes for b- and y-ion se-
ries proceed simultaneously in the forward direction,
and end nodes in the backward direction at the same
time. This procedure keeps going until some require-
ments are met. We denote the direction from low m/z
to high m/z as the forward direction and from high
m/z to low m/z as the reverse direction.

Four amino acid sets generated in the process of graph
extension are denoted as Fb (forward for b-ion), Rb

(reverse for b-ion), Fy (forward for y-ion), and Ry
(reverse for y-ion) as shown in Fig. 4. At every ex-
tension of the graph, the candidate amino acids of Fb
are compared with those of Ry. The common amino
acids are kept and new nodes are added in positions
corresponding to the m/z values. And the amino acids
which are not in common are eliminated to reduce the
computational burden. Likewise, the amino acids of
Rb are compared with those of Fy simultaneously.

In stead of exhaustively checking all possible paths,
we reduce the number of nodes in the spectrum graph
effectively through such a method. Consequently it
reduces the number of candidate sequences and com-
putational cost to determine a sequence with the best
score. After the successive progress, when the nodes
of Fb meet those of Rb within an error range, i.e.
|bi − bj | < ε , bi ∈ Fb, and bj ∈ Rb, we merge two
nodes into one and trace back in the two-way direction
while storing the amino acids.

Finally, the two partial amino acids are concatenated
into one complete sequence which will be used as one
candidate sequence. It is also possible that these
processes confront with a distance, which corresponds
to one amino acid between Fb and Rb nodes, i.e.
|bi − bj − m(a)| < ε, bi ∈ Fb, bj ∈ Rb, and a ∈ Σ.
If nodes of both sides cross over, the nodes disappear
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Figure 4: Two-way searching algorithm. Sb and Eb represent the start and end nodes of b-ion series, respectively.
Sy and Ey represent the start and end nodes of y-ion series, respectively. Amino acid sets Fb and Ry always
have the same amino acids. Same to sets Rb and Fy. Amino acids with gray color are deleted in the comparison
procedure and amino acids with thick boundaries are removed in the further pruning procedure.

from the graph. The number of steps to obtain amino
acid sequences of the same length as the target pep-
tide is dn/2e. The same rule is applied to Fy and Ry.
Fig. 4 shows a diagram representing our algorithm.

Since the b- and y-ions may lose a water or ammonia
molecule, it’s necessary to employ all the related ion
types for the series. Ions b, b - H2O, and b - NH3 for
b-ion series are considered in the forward and reverse
directions, which are the most frequent N-terminal
ions, and y, y - H2O, and y - NH3 for y-ion series. In
addition, we consider the a-ion which is also a domi-
nant ion. After the initial filtering, we have a reduced
amino acid candidate pool. Next we will introduce
further pruning of candidate amino acids by a scoring
function to determine the best sequence.

Scoring function for final candidate screening

By utilizing the piece-wise local region intensity val-
ues of MS/MS, we define an evidence based scoring
function for screening out the best optimal peptide
candidate. Based on the normality test verification in-
troduced in Section 2.4, we can let Ibi be the Gaussian

sum of all peak intensities close to bi within a tolerant
error ε:

Ibi =
bi−ε∑

bi+ε

Ij

IM
exp(−(Sj − bi)2/2σ2), (8)

where IM is the highest intensity in the whole spec-
trum, Ij is the individual peak intensity of the local
region, and Sj is the corresponding m/z value. In the
procedure of normalization, intensities of all peaks are
divided by the highest intensity. Standard deviation
σ represents to which extent the peak positions in the
experimental spectrum deviate from the theoretical
ones. Without loss of generality, based on the normal-
ity test, we can assume the peak having the highest
intensity in the whole spectrum is most likely to be
a real fragment and neighbor peaks close to the peak
will form the normal distribution. Standard deviation
σ can be heuristically determined by,

σmin = argmin︸ ︷︷ ︸
σ

bi−ε∑

bi+ε

(exp(−(Sj − SM )2/2σ2)− Ij

IM
),

(9)



where SM is the m/z value corresponding to the high-
est intensity IM .

Let x be the mass of b-ion, then the masses of a-
ion, b - H2O, and b - NH3 are x − 28, x − 18, and
x − 17, respectively, i.e. differences 4 = {-28, -18,
-17}. Given the bi we define:

Ibi − NH3 =
∑ Ij

IM
exp(−(Sj − Sbi−NH3)

2/2σ2),

(10)
where Sbi−NH3 = argmax︸ ︷︷ ︸

Sj

{Ij | |bi − Sj − 17| < ε}.

Likewise, we can compute Ibi−H2O, Ibi−a, Iyi
, Iyi−H2O

and Iyi−NH3 . The total intensity of ions related to bi

is

ITbi = Ibi + Ibi−NH3 + Ibi−H2O + Ibi−a. (11)

And ITyi is expressed as follows,

ITyi = Iyi + Iyi−NH3 + Iyi−H2O. (12)

The total intensity of b-ion series in the forward di-
rection is:

IFb =
n/2∑

i=1

ITbi, (13)

where n is the number of steps to obtain the peptide
sequence. The total intensity of b-ion series in the
reverse direction is

IRb =
n−1∑

i=(n/2)+1

ITbi. (14)

Similarly, we can compute IRy and IFy. A legitimate
intensity scoring function is obtained by summing the
four direction total intensities and the top scoring se-
quence among all candidate sequences becomes the
best candidate:

Scoring = IFb + IRb + IFy + IRy. (15)

This scoring function is reasonable because many of
the noise peaks have a low intensity value. By incor-
porating abundance difference of b- and y-ions, i.e.,
y-ions are usually more ample than b-ions, we may ap-
ply different weights to the total summing intensity of
b-ion series and the total summing intensity of y-ion
series. Then, the scoring function can be modified as

Scoring = λ(IFb + IRb) + (1− λ)(IFy + IRy). (16)

Obviously λ is set as less than or equal to 0.5.

Before the scoring function is applied, for further
pruning of candidate pool, we define a screening crite-
rion from the calculation of total intensities ITbi and
ITy(n−i) of ions in the i-th step of graph extension
where |bj − bj−1| ≈ |yn−j+1 − yn−j | ≈ m(a) with
b−1 = Sb, yn = Ey and 1 ≤ j ≤ i. This screening
criterion is used at every step of node extension of
the spectrum graph. Suppose there exist q candidate
amino acids in the i-th step after eliminating amino
acids which are not in common between Fb and Ry.
Let Ii be a set whose elements indicate the sum of ITbi

and ITy(n−i) where bi and yn−i are a complementary
ion pair.

Ii = {ITbi
1 + ITy(n−i)

1, . . . , ITbi
q + ITy(n−i)

q}. (17)

The elements in set Ii are sorted in ascending order,
and the first β% amino acids are removed from Fb
and Ry. The same rule is applied to every step of Fy
and Rb.

3 Experimental Results

The two-way peptide sequencing algorithm was im-
plemented by using C++ codes. We employed nine
peptide data sets whose ground truths were given,
among which four data sets with precursor charge
+1 and five data sets of +2. These data sets were
obtained from QSTAR instrument which is a hy-
brid quadrupole/time-of-flight (Q-TOF) tandem mass
spectrometer. The machine is operated in DDA mode
that is a commercial bovine Cytochrome-C. In this
study, we used ε = 0.3 and λ = 0.5.

Table 3 shows results of our algorithm with β = 35%
(β = 20% for spectrum 678.3 m/z) as a screening cri-
terion (δ = 0.95 for precursor of charge +2). To show
the result which is most optimal to benchmark, in-
stead of listing the most optimal identified peptide,
i.e., the one with highest scoring value or with rank-
ing 1, we show the sequence which is within ranking 3
range. We compared results of the proposed method
with those of Lutefisk [13]. Lutefisk converts an exper-
imental spectrum into a sequence graph where partial
sequences are examined. To reduce candidates, after
finding complete sequences, sequences that appear to
have been derived from alternating b-type and y-type
ions and that are derived mostly from the low-mass
fragments are discarded. Finally, Lutefisk yields at
most 50 candidates. Users can set the parameter.
When we set the parameter as the maximum value,
50, 45, 50 and 50 candidates were made in 634.4 678.3
779.4 and 927.4 m/z, respectively.



Table 3: Experimental results of peptide sequencing with β = 35% (β = 20% for 678.3 m/z ) in our method. For
comparison, Lutefisk was performed. We cannot distinguish between the isobaric amino acid pair of leucine (L) and
isoleucine (I), and pair of glutamine (Q) and lysine (K) as with most de novo methods, since m(I)=m(L)=113.16
Da, m(Q)=128.13 Da, m(K)=128.17 Da. The value shown in brackets of Lutefisk method represents an approx-
imate mass of the remaining amino acid residues.

Sequence Rank Sequence Rank
634.4 1 IFVQK LFVQK 1 LFVQK 1
678.3 1 YIPGTK YLPGTK 1 YLPGTK 1
779.4 1 MIFAGIK MLFAGLK 2 [244.12]FAGLK 1

927.4 1 YLYEIAR YLYELAR 1 [276.11]YE[184.08]R 1

584.8 2 TGPNLHGLFGR TGPNLHGLFGR 3 [409.25]R 1

689.9 2 HGTVVLTALGGILK HGTVVLTALGGLLK 3 [194.08][WY]K 2

728.8 2 TGQAPGFSYTDANK TGQAPGFSPQQPNK 1 AQGT[HS]K 3

792.9 2 KTGQAPGFSYTDAN KTGAGAPAMAPQGDAN 1 [209.58]NHANK 3

943.0 2 YLEFISDAIIHVLHSK YLEFLALTTLHVLHSK 3 [222.56]HVLH[215.12] 1

Lutefisk
  Spectrum z Correct sequence

Two-way searching algorithm

Table 4: The number of candidates and rankings as the screening ratio changes. The numerator indicates the
ranking of the correct sequence our algorithm made, and the denominator represents the total number of candidate
sequences. 0% means no screen is adopted.

Spectrum 0% 10% 20% 30% 40% 50% 60% 

634.4 1/91 1/27 1/21 1/19 1/14 1/12 0/6 

678.3 1/1 1/1 1/1 0/0 0/0 0/0 0/0 

779.4 2/173 2/152 2/93 2/64 2/10 2/6 2/6 

927.4 1/5197 1/819 1/360 1/239 1/195 1/126 1/24 

For precursor of charge +2, we found that there exists
an equation P 2 × 2 − δ − 19 ≈ m(P ) where 0.9 ≤
δ ≤ 1.0. We used δ = 0.95 to determine the position
of end node in the graph extension. This value is
greater than our tolerant error 0.3. Therefore if we use
P 2× 2− 19 ≈ m(P ) as the position of end node as in
other methods which proceed in the forward direction
only, our algorithm will not provide good answers.
Thus the positions of end node of b- and y-ion series
are respectively P 2× 2− 0.95− 18 and P 2× 2− 0.95.
For example for spectrum 584.8 m/z, the end nodes of
b- and y-ion series come to appear in the 584.8× 2−
0.95−18 = 1150.65 m/z and 584.8×2−0.95 = 1168.65
m/z. The position of start node in P 2 is the same as
that of P 1. Out of the nine peptides, our algorithm
came up six sequences identical with ground truth,
and the remaining three turned out to be almost the
same as benchmark.

Table 4 shows the number of candidates change as
the screening criterion β varying from 0% to 60% for

the charged +1 sequences. Although β changes, the
rankings remain unchanged. For spectrum 678.3 m/z,
since the number of candidates after initial two-way
searching was reduced to only one as seen in Fig. 5,
no screen was applied. With 10% further pruning at
every step of graph extension, we can reduce the num-
ber of candidates significantly up to 70% and 84% for
spectra 634.4 and 927.4 m/z, respectively. Therefore,
by adopting a proper screening criterion to our algo-
rithm, we can reduce the processing time effectively.

4 Conclusion

In this paper, we presented a novel de novo approach
called two-way searching algorithm for determining
the sequence of peptide. The main contribution of
this paper lies in the greatly reduced number of pep-
tide candidates. Based on the property that the same
identification of peptide sequence will be resulted from
b-ion or y-ion series, we obtained a list of peptide can-
didates by simultaneously searching from four differ-
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Figure 5: Example of peptide sequence YIPGTK in the graph extension: (a)The sequence of b-ion series; (b) The
sequence of y-ion series. Amino acids with triangle symbols are deleted in the procedure of comparison and amino
acids with star symbols are removed from the candidate amino acid pool in the procedure of further pruning.
Amino acids represented in black circles are reserved. Thick line presents the path of one candidate sequence.

ent start and end positions and filtering out peptide
sequences which violate this property. The initially
filtered candidate pool is further pruned by incorpo-
rating a screening criterion based on the local region
intensities of the spectrum. The final optimal best
candidate is singled out based on the highest confi-
dence defined as the global intensity from two-way
search results. Contributions of this paper also come
from the determination of the end nodes for b and
y-ion series in the case of the charged +2 precursor.
For the future work, we will improve our algorithm
by introducing gap edges corresponding to the di- and
tri-peptides in a spectrum graph. Also we will modify
the scoring algorithm by using a probabilistic model
to make the pruning more robust.
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