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Abstract

The identification of informative genes is very important in
study of genomics. This task can be interpreted as search-
ing a subset of genes such that an optimal “ratio of quality
to price” is achieved. The “quality” refers to the discrimi-
nation power of genes and the “price” means the redun-
dancy involved. This problem is NP hard. In contrast
to many other methods, we discretize the gene expres-
sion profiling in this paper and approximate the optimiz-
ing process by combining individual ranking and sequen-
tial forward selection together to greedy searching infor-
mative genes in the context of a mathematical optimiza-
tion formularization. The bootstrapping technique is em-
ployed to optimize a key parameter involved, namely, the
redundancy bound, which reduces the greedy search cost
extensively. The performance is evaluated and compared
with previous results over publicly available microarray
datasets.
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1 Introduction

A significant step towards the current information revolu-
tion can be appreciated from the successfully applied new
techniques and tools in molecular biology and genetics re-
search. Such technologies make it possible to collect bi-
ological information rapidly at an unprecedented level of
detail in large quantities. Among the most powerful tech-
nologies, microarrays [8] provide the tool to extract bio-
logical significance such as the changes in expression pro-
filing of genes under distinct types (e.g., normal vs cancer
type), which shed the light on use of them in many fields
including pharmacogenomics [24], medical diagnostics
[25], drug target identification [20] and underlying gene
regulatory networks [12]. An important task is to identify
informative features (genes) which contribute to the target
study (e.g., cancer diagnosis) significantly. This is neces-
sary from the machine learning perspective: when sam-
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ples are limited and the number of features is very large
beyond a certain point, classification accuracy will reduce.
Instead of using all features, one may look for a subset,
which can most discriminatively and compactly represent
the expression patterns. In other words, genes with max-
imum discrimination power while minimum redundancy
are preferred. By doing so, the further cost of study will
be reduced and the diagnosis can also be concentrated and
improved.

The task of identifying informative genes can also be in-
terpreted as finding a subset of genes which achieve an
optimal “ratio of quality to price”. Here, the “quality” rep-
resents the discrimination power of genes and the “price”
means the redundancy involved. The characteristic of mi-
croarray, interrogating thousands or tens of thousands of
genes simultaneously with limited samples, poses a big
challenge in this NP hard [7] problem [1, 2]: searching
the absolute optimal subset of genes is impossible in prac-
tice. Popular approximation algorithms include individual
ranking (IR) [11, 13, 17, 19], that is, rank the genes and
choose the top, and sequential forward selection (SFS),
i.e., choose the best gene as the seed and add one more
per iteration such that the obtained subset maximizes the
given criterion function [3, 4, 16, 30]. In contrast to many
other papers, we discretize the gene expression profiling
and perform the gene selection by combining IR and SFS
together with fast bootstrapping for the parameter learn-
ing, namely, the redundancy bound, in the context of a
mathematical optimization formularization. Specifically,
the optimization formularization is interpreted as maxi-
mizing the discrimination power of genes (U(f)) itera-
tively with the redundancy bound (V (f)) which will be
detailed later on.

The rest of this paper is organized as follows. In section 2,
we present models and methods. Experiments are per-
formed on real data sets and evaluated in section 3. Sec-
tion 4 provides the conclusion.
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2 Models and Methods

2.1 Mathematical Formularization

Consider a k(≥ 2)-class discriminant analysis with p
genes, i.e., g1, g2, . . . , gp, and n microarray samples in-
volved. Let Xij be the value in terms of the measurement
of gi expression from the jth sample where i = 1, . . . , p
and j = 1, . . . , n. Typically, such microarray data can be
written as a form of matrix, M:

M =




X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

...
...

Xp1 Xp2 · · · Xpn


 ,

where the columns and rows correspond to samples and
genes, respectively.

Given M, to select m genes out of p genes for dis-
criminant analysis can be viewed as the identification of
representative rows (genes) to stand for the entire expres-
sion pattern across all the given samples instead of M
itself. Effectiveness can be evaluated from two ways: (1)
the combination of chosen rows can differentiate samples
distinguishably; and (2) these rows contain redundancy
as low as possible. In other words, selected genes should
be discriminative and compact simultaneously. Let f be
the selected genes, U(f) the discriminative power of f ,
and V (f) redundancy in correspond. Generally, larger
U(f) implies higher discriminative power; while lower
V (f) implies less redundancy. As such, the gene selection
is naturally formularized into an optimization problem,
which is of the form 1:

maximize : U(f), subject to : V (f) ≤ T (U, V ),

where T is a threshold function of U and V called “redun-
dancy bound”.

2.2 U(f) and V (f) Instantiation

To model U(f), the key is to find some measurement such
that the discrimination power of f is truly expressed. In
this paper, we investigate this issue from the statistical
point of view. It is assumed that the data M are normalized
so that the genes have mean 0 and variance 1 across sam-
ples. Given a fixed gene, let Yij be the expression level
from the jth sample of the ith class. Note that these Yij

come from the corresponding row of M. For example, for

1Other forms may exist. However, we use this form in this paper for
simplicity.

g1, Yij are a rearrangement of the first row of M. The fol-
lowing general model is considered for Yij in this paper:

Yij = µi + εij , for i = 1, 2, . . . , k; j = 1, 2, . . . , ni

where n1 + n2 + . . . + nk = n, µi is the mean expression
level of the gene in class i, and εij are the error terms,
independent normal random variables with

E(εij) = 0, V (εij) = σ2
i < ∞,

for i = 1, 2, . . . , k; j = 1, 2, . . . , ni.

An important task, associated with above model, is to de-
tect whether or not there exists some difference among the
means µ1, µ2, . . . , µk. It is often achieved by certain statis-
tics, the well known ANOVA F test for instance, which
is well suited for measuring the discriminative power of
genes as thought in this paper. Specifically, given a test
statistics F , we define the discrimination power of a gene,
d(gi), as the value of F evaluated over the samples. This
definition is based on the fact that with larger F the null
hypothesis H0 : µ1 = µ2 = . . . = µk will be rejected
more likely. Therefore, larger F implies higher discrimi-
nation power of the corresponding gene across classes of
samples. We also note that discrimination power of genes
could be determined equally well via p-values from F .
However, due to small sizes ni, it is hard to justify the
approximation of the known distribution to F and hence
p-values may not reflect the real functionality ofF . There-
fore, the value of F is preferred.

Usually, if the variances are equal, namely, σ2
1 = σ2

2 =
. . . = σ2

k, then it is simply the commonly used one-way
ANOVA model and hence the ANOVA F test is the opti-
mal option [18, 22]. For microarray data, the existence of
heterogeneity in variances is more realistic, since differ-
ent σi may describe different variation of the gene expres-
sion across classes. It makes the above task challenging
however, related to the well-known Behrens-Fisher prob-
lem [27]. When sample sizes of all classes are equal, i.e.
n1 = n2 = · · · = nk, the presence of heterogeneous
variances of the errors only slightly affects the F test. If
sample sizes are not equal, the effect is serious [21]. The
actual type I error is inflated when smaller sizes ni are
associated with larger variances σ2

i . In contrast, the signif-
icance levels are smaller than anticipated when larger sizes
ni are associated with larger variances σ2

i .

In this paper, the parametric Brown-Forsythe test statistic
is chosen due to its preferable performance in [6], which
is given by [5]:

B =
∑

ni(Ȳi· − Ȳ··)2∑
(1− ni/n)s2

i

.



Under H0, B is distributed approximately as Fk−1,ν ,
where

ν =
[
∑

(1− ni/n)s2
i ]

2

∑
(1− ni/n)2s4

i /(ni − 1)
.

To model V (f), we simply use Pearson correlation be-
tween genes. Given M, the correlation of gi and gi′ is
given by

ρ(gi, gi′) =

∑
j(Xij − X̄i)(Xi′j − X̄i′)√∑

j(Xij − X̄i)2
∑

j(Xi′j − X̄i′)2
,

where X̄i =
∑

j Xij/n is the average level of gi, based on
the n samples in correspond.

Of particular, we simply use the following optimization
formula:

maximize : U(f) =
1
|f |

∑

gi∈f

d(gi)

subject to:

V (f) = max{ρ(gi, gj), ∀gi, gj ∈ f and i 6= j} ≤ T.

T is adjusted dynamically via bootstrapping. This process
is called “redundancy bound bootstrapping” in this paper.
Algorithm 1 only shows the gene selection given the num-
ber of genes needed (m) and a specified T value. The fast
optimization of T via bootstrapping is detailed later on (in
Subsection 2.5).

Algorithm 1 works as follows. Given a test statistic F ,
rank all genes with d(.) descending and choose the top as
the seed which has the highest discrimination. Consider
the rest whose correlation to the chosen gene is below T .
Similarly, the top is chosen as the second. And then per-
form the next iteration. Note that we rank genes only once
before the seed selection. As such, the kth informative
gene is the one receiving the highest discrimination power
from the set of all genes with correlation to each of the
chosen k − 1 genes below T . Above process will be re-
peated until the given number m of genes are obtained or
all the genes have been scanned.

2.3 Classifier

For simplicity, we choose Naive Bayes as the classifier.
The purpose of performing classification is to provide the
evidence for the quality of selected genes. This may not
be necessary in reality. For example, given a requirement
of how many genes you need, we may use the algorithm
to select genes straightforwardly and then return the index
(or names) of the chosen genes.

Algorithm 1 Gene selection algorithm

1: function Σ=GeneSel(M,m, T ) . M is the data
matrix, Σ is the target feature set

2: Σ ← φ
3: M′ ← rank(M) . Feature sorting
4: Σ ← Σ ∪ {first feature of M′} . Choose the

first one as the seed
5: M′ ← M′\{first row of M′} . Remove it
6: while M′ 6= φ and |Σ| < m do . Loop for

qualified features
7: if max{ρ(first feature of M′,Σ)} ≤ T

then . Check correlation criterion
8: Σ ← Σ ∪ {first feature of M′}
9: M′ ← M′\{first row of M′}

10: else
11: M′ ← M′\{first row of M′}
12: end if
13: end while
14: return Σ
15: end function

The input for Naive Bayes in this paper is restricted in
discrete data. The reason to discretize the data is to re-
move the noise in some sense. Another reason is that most
other papers use continuous data, we use the discrete data
for comparison. Experiment results show its effectiveness.
The discretization technique is given next.

Consider a k-class (k ≥ 2) classification issue. Let
X = (X1, X2, · · · , Xp)T be a p-dimensional feature vec-
tor, where T is the transpose operation. We use C to de-
note the class label of X with πi referring to the prior prob-
ability, P (C = i), for i = 1, 2, · · · , k. Suppose that given
C = i, the joint distribution of X is given by Pi(X). If x is
an observed value of X, then it follows from the Bayes for-
mula that the posterior probability of class i given X = x
is

P (i|x) =
πiPi(x)∑k
i=1 πiPi(x)

. (1)

With 0 − 1 loss function, the Bayes rule states that we
classify x to the most probable class according to posterior
probabilities, that is, given X = x, the class label is chosen
to be

C(x) = argmax i {P (i|x)}. (2)

The naive Bayes model makes the additional assumption
that given a class C = i, the features X1, X2, · · · , Xp are
independent with each other. Under this assumption, we
have, for each i,

Pi(x) =
p∏

l=1

Pil(xl), (3)



where Pil(xl) is the class-conditional density of Xl for
l = 1, 2, · · · , p. Using (1), (2) and (3), it is easy to see
that the naive Bayes classifier assigns x into the following
class by taking the natural logarithm:

C(x) = argmax i

{
ln πi +

p∑

l=1

ln Pil(xl)
}

. (4)

2.4 Discretizer

Equal width interval binning is used. Actually, it is the
simplest approach perhaps to achieve the generation of dis-
crete values. Given a continuous value x in an array, the
corresponding discrete value is given by:

xd = d x− xmin

xmax − xmin
e × L,

where L is customized number of bins. This approach is
chosen, besides its simplicity, also because it is a unsu-
pervised discretizer which makes no use of any sample
class information. Moreover, it often achieves good per-
formance for Naive Bayes classifier vs continuous values
as compared by Dougherty et al. (1995) using 16 data
sets [10]. Ten-bins are used in this paper.

2.5 Bootstrapping for “T”

Knowing that we have two parameters in Algorithm 1, one
is “how many genes” you need (m) and the other is the re-
dundancy bound (T ). m is given by the user in this paper,
and T depends on the dataset. Optimizing T through the
raw data is very expensive given that average 10K genes
are involved in our datasets. This scale is very common in
microarray experiments. To estimate the T fast, we em-
ploy the bootstrapping technique to achieve “redundancy
bound bootstrapping”. Its effectiveness is shown in Sec-
tion 3. Algorithm 2 shows the detailed procedure.

It works as follows: given a raw data matrix M, we ran-
domly select a number of rows (mbst) and all sample
columns from M to form a new data matrix M′. M′ is
usually much smaller than M given a small value mbst

(e.g., 100). We greedy search the optimal redundancy
bound over M′ by examining the cross-validation table in
an exhausting manner. The cross-validation table consists
of a number of entries which give the leave-one-out cross-
validation (LOOCV) errors for any instantiation of m and
T (e.g., m = 20 and T = .5 shown in Figure 1). In our
experiments, m is chosen from 1 to 50 and T chosen from
.05 to 1 with step length .05. We locate the region within
which the average error is minimal. This region is repre-
sented by a rectangular box consisting of consecutive T

Algorithm 2 Bootstrapping algorithm for learning redun-
dancy bound T

1: function T =TBstrap(M,mbst, cntbst,mmax) .
M is the data matrix, mbst is the number of genes
chosen for bootstrapping, cntbst is the times for
bootstrapping and mmax the maximum number of
genes chosen for the target feature (gene) set

2: Varr ← 0 . The lth entry is the voting value for
the lth T value

3: for i = 1 to cntbst do
4: choose mbst rows from M randomly and form

a new data matrix M′

5: TaCV ← φ . A table storing the LOOCV
error for each instantiation of m and T

6: for j = 1 to mmax do
7: for k = .05 to 1 with step .05 do
8: Σ=GeneSel(M, j, k)
9: err ← LOOCV error

10: TaCV [i, j] ← err
11: end for
12: end for
13: Locate the region (5 consecutive T values vs

10 consecutive m values) achieving mini-
mum average LOOCV error

14: for each entry in Varr do
15: if the lth T value belongs to the region

then
16: Varr[l] ← Varr[l] + 1
17: end if
18: end for
19: end for
20: return argmax(Varr[l])*.05 . .05 is the step

length for T increment which can be specified
by users

21: end function



values and m values. The number of T values or m val-
ues can be specified by users. Here, we use 5 × 10, i.e.,
5 consecutive T values and 10 consecutive m values. If
there are more than one region achieving the minimal av-
erage LOOCV errors, we choose that with smallest start-
ing values of T and m intervals. We perform above pro-
cess cntbst (10 by default) times and take voting to get the
optimal T value for the raw data. The entire procedure
is very fast given that the size of data matrix M′ during
bootstrapping is very small.

3 Experimental Results

We perform the experiments on several publicly avail-
able datasets. To show the quality of selected genes, the
leave-one-out cross-validation (LOOCV) is used. Smaller
LOOCV error means better quality. The maximum num-
ber of genes (m) is allowed to be 50 in our experiments.
The number of genes (mbst) for bootstrapping is 100 and
the times of bootstrapping (cntbst) is 10. Datasets include
Ovarian [28], MLL Leukemia [26], Lung Cancer [14], and
Colon [2]. The information about the number of genes and
samples are shown in Table 1.

We evaluate our algorithms from two perspectives:

1. Does the gene selection algorithm still achieves supe-
rior performance with redundancy bound bootstrap-
ping by comparing with the previous best result?

2. Does the gene selection algorithm improves the
search speed significantly by incorporating redun-
dancy bound bootstrapping as compared with the pre-
vious greedy algorithm [15] which does not use the
bootstrapping technique?

3.1 Ovarian

This dataset contains 36 samples including 5 normal tis-
sues, 27 epithelial ovarian tumor samples, and 4 malignant
epithelial ovarian cell lines. 7129 genes are employed.
By the bootstrapping, we obtain the optimal redundancy
bound .35. 0 LOOCV error is obtained. For showing the
effectiveness of the bootstrapping technique for T value
estimation, we summarize all LOOCV errors over the raw
data using the greedy algorithm [15] in Figure 1 which is
not necessary in reality. The numbers of the first line (from
.05 to 1) correspond to different redundancy bound T , and
the number (m) of the first column (e.g., 45) correspond
to the number of genes required. The bottom line, i.e., m̂
corresponds to the real maximum number of genes that can
be chosen under the redundancy bound T . The rest entries

are LOOCV errors. Smaller values indicate higher quality
of genes selected. The rectangular boxes are raised by the
bootstrapping in Algorithm 2). It is easy to find that the
region overlapped extensively by these boxes across the T
value are from .3 to .4. This interval bounds the optimal T
value (.35). In terms of search speed, if we do not employ
the bootstrapping technique (Algorithm 2), we have to ex-
amine all possible T values (.05 to 1 with step length .05)
to find the optimal T value over the huge raw data like the
previous greedy search algorithm [15]. The time needed is
about 55 min. In contrast, only 3 min is needed with using
bootstrapping technique in this paper.

3.2 MLL Leukemia

This dataset contains both training data and test data. In
this paper, we combine them together for LOOCV. Train-
ing data summarizes 57 leukemia samples (20 ALL, 17
MLL and 20 AML). Testing data summarizes 4 ALL, 3
MLL and 8 AML samples. Hence there are 3 classes in
total. The number of genes is 12582.

In the same way, the LOOCV result over the raw data by
the greedy algorithm [15] is summarized in Figure 2. The
optimal T value by bootstrapping is .5. 100% accuracy,
i.e., 0 errors in cross-validation, is also achieved. Similar
as before, the rectangular boxes shown in the figure are
raised by the bootstrapping Algorithm 2. The time with
or without bootstrapping technique, namely, the previous
greedy search algorithm [15], are 7.8 min vs 149.8 min.

3.3 Lung Cancer

For this data, the classification is performed between two
classes, i.e., malignant pleural mesothelioma (MPM) and
adenocarcinoma (ADCA) of the lung. 32 training samples
and 149 testing samples are combined together. As such,
there are 31 MPM and 150 ADCA described by 12533
genes. The best result (100% accuracy) is achieved un-
der T = .25 found via the bootstrapping. The time with
or without bootstrapping technique are 16.3 min vs 327.6
min.

3.4 Colon

There are 62 samples in this dataset collected from colon-
cancer patients. Among them, 40 tumor biopsies are from
tumors, labelled with ‘negative’ and 22 normal biopsies,
labelled with ‘positive’, from healthy parts of the colons
of the same patients. Nearly 7000 genes are involved. 2
LOOCV errors (T = .45) is achieved. It is better than the
best result achieved previously (4 LOOCV errors). The
time with or without bootstrapping technique are 2.6 min
vs 49.7 min.



Figure 1: Ovarian: Experiment result in terms of accuracy with LOOCV over the raw data. The numbers of the first line (from .05 to 1)
correspond to different redundancy bound T , and the number of the first column (e.g., 45) correspond to different the number of genes
need to be chosen. m̂ refers to the maximum number of genes that could be chosen under the corresponding T value. The rectangular
boxes are raised via bootstrapping in Algorithm 2.



Figure 2: MLL Leukemia: Experiment result in terms of accuracy with LOOCV over the raw data. The numbers of the first line (from
.05 to 1) correspond to different redundancy bound T , and the number of the first column (e.g., 45) correspond to different the number of
genes need to be chosen. m̂ refers to the maximum number of genes that could be chosen under the corresponding T value. The optimal
T value (.5) is found via bootstrapping in Algorithm 2 which raised the rectangular boxes.



Table 1: Gene expression datasets

Dataset Ovarian MLL Leukemia Lung Cancer Colon
No of genes 7129 12582 12533 7000
No of samples 68 72 181 62

Table 2: Comparison of the performance (LOOCV errors)

Dataset Ovarian MLL Leukemia Lung Cancer Colon
Previous Best Result 0 0 2 4
Our Best Result 0 0 0 2

Ovarian MLL Leukemia Lung Cancer Colon 
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Figure 3: Comparison of search speed with and without boot-
strapping algorithm (Algorithm 2).

Comparing with the previous greedy algorithm [15], best
performances are still achieved by incorporating redun-
dancy bound bootstrapping. As shown in Table 2, the
LOOCV performances are same as before for Ovarian and
MLL Leukemia datasets, and better than before for Lung
cancer and Colon datasets.

In terms of search speed, Figure 3 compares the greedy
search time with and without bootstrapping technique. As
mentioned before, if we do not use the bootstrapping tech-
nique, namely, the previous greedy algorithm [15], we
have to examine the instantiation of m (1 to 50) and T
(.05 to 1 with step length .05) exhaustedly to identify the
optimal redundancy bound. In contrast, by using Algo-
rithm 2, we can locate the optimal redundancy bound fast,
with which we only need to examine one column of the
cross-validation table shown in Figure 1. It is clear that the
algorithm using bootstrapping technique is much faster.

4 Conclusion

Gene selection is essentially an NP-complete problem. It
is important to identify informative genes either in study or
diagnosis. In this paper, we formularize this optimization
issue by maximizing the discrimination power of genes
in terms of Brown-Forsythe statistic, with the redundancy
bound modeled by Pearson correlation. The bootstrap-
ping technique is employed for optimizing the redundancy
bound in a fast way. Experiments show its effectiveness
not only in best accuracy achieved as before on Ovar-
ian and MLL Leukemia datasets, or better than before on
Lung Cancer and Colon datasets but also in significantly
improved search speed as compared with previous greedy
algorithm [15] with no bootstrapping technique. In our fu-
ture work, we will explore the possibility of bootstrapping
technique to optimize the number of genes (m) which is
given by manual (users) in this paper.
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