
Classification Using Mass Spectrometry Proteomic Data with

Kernel-Based Algorithms

Zhenqiu Liu and Shili Lin ∗

Abstract

Motivation: Early detection of cancer is crucial for
successful treatment, and protein profiling using mass
spectrometry (MS) data has been investigated as a
potential tool. However, due to the high correlation
and huge dimensionality of MS data, it is crucial to
modify existing algorithms and to develop new ones,
where necessary, for analyzing such data.

Results: We develop a group of logistic regression -
kernel coupling algorithms for classification of normal
versus cancer samples. Furthermore, we propose a
systematic three-step protocol for analyzing MS data,
from removal of baseline noise and normalization, to
feature extraction and reduction, and finally to clas-
sification. The systematic analysis paradigm and the
proposed algorithms were applied to an ovarian and
a prostate cancer dataset. The results show that our
proposed approaches can be an effective tool for ana-
lyzing MS proteomics data.
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Classification; Logistic Regression; Kernel methods

1 Introduction

Proteomics is very important in understanding bio-
logical systems and uncovering disease mechanisms.
Because of their high level of variability and complex-
ity, it is an extremely challenging endeavor to con-
duct massive analysis of thousands of proteins. In the
last decade, mass spectrometry (MS) has increasingly
become the method of choice for analyzing complex
protein samples. A mass spectrometer measures two
properties of ion mixtures in the gas phase under a
vacuum environment: the mass-to-charge ratio (m/z)
of ionized proteins in the mixture, and the numbers
of ions present at different m/z values (Roboz, 2002).
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The output is a mass spectrum or chart with a series
of spike peaks, each representing the ions of a specific
m/z value in the sample. The volumes of peaks and
the m/z values of the peaks are a fingerprint of the
sample (Samuelsson et al., 2004). Mass spectrometry
has not only been used extensively to identify proteins
via peptide mass fingerprints, but also found promis-
ing applications in cancer classification (Adam et al.,
2002; Petricoin et al., 2002; Lilien et al., 2003; Qu et

al., 2003, Wu et al., 2003; Zhu et al., 2003).

While MS is increasingly used for protein profiling,
significant challenges have arisen with regard to an-
alyzing the data generated. Specifically, for cancer
classification based on MS data, the analysis can be
divided into three steps: data preprocessing, feature
selection, and classification. The critical preprocess-
ing step includes baseline correction, peak identifica-
tion and alignment, data normalization, and visual-
ization. The feature selection (dimension reduction)
step extracts features, and further reduces the number
of features by means of statistical testing or heuris-
tic methods. The final step is the classification of
disease status based on selected features. Each step
in this three-step protocol is critical and can have a
non-negligible effect on final performance, although
recent publications on cancer classification with MS
data have largely focused on feature selection and
comparison of various classification methods (Adam
et al., 2002, Lilian et al., 2003). For example, the
t-test, principal component analysis (PCA), and par-
tial least square methods (PLS) (Liu et al.2004,2005)
have been proposed for the selection of relevant fea-
tures. For the final step, classification methods such
as linear discrimination analysis, k-nearest neighbor
classification, decision trees (Adam, et al., 2002), and
support vector machines have been used to distin-
guish between cancer and normal samples (Adam et

al., 2002, Lilien, et al., 2003, Qu et al., 2003).

In this paper we investigate a number of methods for
each of the three steps in this analysis paradigm; we
focus on how analysis in each of the three steps may
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affect the performance as a whole. In particular, novel
kernel-based analysis procedures for classification of
MS data are proposed. These methods use kernel
matrix as an input instead of the original data, which
can compress the MS data greatly when the sample
size is much smaller than the input dimension. Sev-
eral methods for data preprocessing, such as baseline
removal and data normalization, are discussed. Fea-
ture extraction algorithms with first order derivatives
and wavelet coefficients are also studied in detail. We
assess the performance of different combinations of
steps and methods using several publicly available MS
datasets.

This paper is organized as follows. In the next three
sections, we discuss, in turn, methods for data pre-
processing, feature extraction and selection, and clas-
sification. These are followed by applications of the
methods to real data. Additional discussions and con-
cluding remarks are provided at the end.

2 Data Pre-processing Methods

A MS dataset with M samples can be represented by
a p × (M + 1) matrix: (mz, X) = [mz,x1, . . . ,xM ]
where p is the number of m/z ratios, mz is a col-
umn vector denoting the measured m/z ratios, and
the vector xj contains the corresponding intensities of
the jth samples, j = 1, · · · , M . Let {y1, . . . , yM} be
the set denoting the cancer status of the samples. For
the n (< M) training samples, their corresponding
y values are known, whereas the labels are unknown
for test samples. Our goal is to predict the label yj

for each of the test samples based on the data for the
training samples and the intensity profiles for the test
samples.

MS data are non-stationary sequential data with very
high dimensionality. The consecutive values of MS
data are usually highly correlated, and thus there is
a lot of redundancy in the dataset. MS data can also
be contaminated by noise. Data preprocessing has
to be done to remove the noise and the correlations
within a sequence. In addition, in order to classify
multiple sequences into different classes, we need to
define a similarity (distance) measure between differ-
ent sequences. It is easy to see that Euclidean dis-
tance is not a good measurement of sequence simi-
larity with the following simple example. Consider
three sequences A = (3, 8, 3, 8, 4), B = (6, 4, 5, 6, 6),
and C = (13, 18, 13, 18, 14) shown in Figure (1). Note
that shifting A up by 10 units coincides with C. How-
ever, under Euclidean distance, A is more similar to
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Figure 1: Shortcoming of the Euclidean Distance

B than to C. In order to overcome the shortcoming
of Euclidean distance in this type of applications, the
minimum distance measure (Lee, 2003) is often used
to gauge sequence similarity. The minimum distance
can give a better estimation of similarity between two
sequences with similar trends running at two different
levels. Given two sequences A = (a1, a2, . . . , ap) and
B = (b1, b2, . . . , bp), the minimum distance is defined
as follows:

D(A, B) =
(

p
∑

i=1

|ai − bi − µ|k
)

1
k ,

where µ =
∑p

i=1(ai − bi)/p. For k=2, the mini-
mum distance is Euclidean distance with normaliza-
tion. We can first shift both sequences into zero means
(normalization) and then calculate the Euclidean dis-
tance. Distances with other k values can also be de-
fined in a similar fashion.

For our purpose of analyzing proteomics data, we
adopt the following normalization strategy by first
mapping all intensities to be within the 0-1 range
and then obtaining mean-corrected values. Specifi-
cally, let x′ = (x1, x2, . . . , xp) be a given input MS
sample/profile/feature. The mapping function w =
(w1, w2, · · · , wp)

′ = (x −min(x))/(max(x) −min(x))
scales all intensities to be within 0 and 1, where
min(x) = min{x1, · · · , xp}, and max(x) is defined
similarly. Then the mean-subtracted values z =
w −

∑

i wi/p is treated as a normalized sample.

Removal of baseline

Another task in the preprocessing step is the removal
of baseline wandering, which often appears in the ac-
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Figure 2: An MS profile before and after removal of
baseline

quisition stage due to various reasons. Other tasks
such as peptide detection and classification, can be
affected by it. Baseline removal can be done either
before or after normalization. It is better, however,
to remove the baseline first, since it is just a low fre-
quency noise and has nothing to do with the useful-
ness of peptides. There are many techniques for base-
line removal in the engineering literature, including
lowpass or highpass filters, wavelets, and polynomial
interpolation (Froning et al., 1988). Here we borrow
the polynomial interpolation technique for this biolog-
ical application. This method first detects the char-
acteristic points of the sequence (minimum value for
each small window), then interpolates either with a
linear, quadratic, or cubic spline function. Finally,
the estimated value of the spline is subtracted from
the original signal for each m/z ratio to obtain the
baseline-corrected intensity. Figure 2 shows one MS
sample before and after the baseline removal. In this
example, the baseline is interpolated with a cubic
spline with a window size of 100.

Feature Extraction and Reduction

We have discussed data preprocessing for removal of
baseline noise and data normalization. In this section,
we discuss how to extract and reduce features either
in the time, or the frequency domain. Since consec-
utive data points of a sequence are highly correlated,
we propose the use of first order derivatives for feature
extraction, and we will compare its performance with
a popular approach in the literature, wavelet decom-
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Figure 3: A segment of MS profile (after normal-
ization) and the corresponding features of first order
derivatives.

position. For feature reduction, we propose to use a
simple statistical testing procedure.

Feature extraction

Our proposed feature extraction method is based on
the first order derivative of the intensity profile. The
idea of using first order derivatives is to reduce the
redundancy in the MS sequence and correlation, the
assumption being that features exhibiting low corre-
lation should lead to a better performance. The first
order derivatives (estimates) of input vector xj is de-
fined as follows:

zj(i) =
1

2

[

xj(i + 2)− xj(i− 2)

mz(i + 2)−mz(i− 2)

]

+

+
1

2

[

xj(i + 1)− xj(i− 1)

mz(i + 1)−mz(i− 1)

]

, i = 1 . . . p.

As an example to show that the peaks in the first
order derivative series are much clearer than in the
original data, we plotted a segment of a normalized
MS sample and its first order derivative counterpart
in Figure 3.

There are of course other ways to define estimates of
first order derivatives, but they tend to give similar
results and will not be pursued here. We also note
that there are many other potential methods for ex-
tracting relevant features, which have been discussed
extensively in the signal and image processing litera-
ture (Farid et al., 2004, Silapachote et al., 2004). For
example, features can also be defined by using second
order derivatives, or some combinations of derivatives



in the first and second orders. Alternatively, multipli-
cation of backward differences can also be an effective
means of extracting features by considering consec-
utive first order derivative. More advanced methods
also exist, including linear segmentation with dynamic
programming. These more elaborative algorithms can
usually extract out more accurate features, but their
computational costs are much greater, which dimin-
ishes their desirability as efficient tools for analyzing
proteomics data given the huge dimensionality. It is
precisely this computational cost consideration that
propels us to opt for the simple first order derivative
approach, which will be shown to perform reasonably
well.

For comparison purposes we also investigate the per-
formance of using a discrete wavelet transformation
for feature extraction, as this is a popular approach
in proteomics analysis (Qu et al., 2003). Wavelets
are families of functions that can accurately describe
other functions in a parsimonious way with a small
number of nonzero transform coefficients. A simple
and commonly used one is the Haar wavelet (Qu et

al., 2003), which is adopted for our usage here because
of its simplicity.

Feature reduction

The size of the feature matrix for the training sam-
ples extracted with either the first order derivatives
or wavelet decomposition methods are still p× n, the
same as that of the original feature (MS profile) ma-
trix, but with many zeros or near zeros in them. To
further reduce the size of input data for the classi-
fication step, we propose the use of a simple t-test
procedure to select only a small subset of the features
that are deemed to contribute the most to the dis-
crimination between the two classes. Let µ+

j and σ+
j

be, respectively, the mean and standard deviation of
the ith feature over n+ class one (cancer) samples in
the training set. Define µ−

j , σ−

j , and n− similarly for
class two (normal) samples. Then the t-test statistic
for the ith feature is calculated as follows:

tj =
|µ+

j − µ−

j |
√

(σ+

j
)2

n+ +
(σ−

j
)2

n−

.

These t statistics and/or their associated p-values can
then be ordered and an appropriate number of them
be selected for the classification analysis. One ad-
vantage of a statistical testing procedure like the one
based on the above t-test (or any other appropriate
statistical tests) is that it is usually very fast. The dis-
advantage compared with wrapping methods is that

relevant features may be left out or unimportant ones
may sneak in, depending on what tests are being used.
Also, features selected may still include highly corre-
lated and redundant ones.

3 Kernel Based Algorithms

Kernel methods such as support vector machines
(SVM) have been used extensively and successfully
for various classification tasks (Burges 1998, Zhu and
Hastie 2005). It is well known that SVM use ker-
nel matrix instead of the original sequences as input.
More generally, for a problem in which the training
sample size n is much smaller than the input dimen-
sion p, such as that of proteomics data, using a kernel
matrix has an apparent advantage as the dimension
of the kernel matrix is n × n. Logistic regression is
a popular classification tools in statistics, as it can
provide associated probabilities in addition to assign-
ments of class labels, but it is not applicable to pro-
teomics data directly since n ≪ p. It is the desire
to use logistic regression for MS data analysis that
motivated us to develop new algorithms that combine
logistic regression with kernel matrix to circumvent
the high-dimensionality problem.

A kernel function is defined as an inner product of
two vectors in feature space. Therefore, one needs
to first transform each input vector x from the origi-
nal input space F0 into a higher dimensional feature
space F1 with a transformation Φ : x → Φ(x) before
performing the inner product operation (Burges 1998,
Rosipal and Trejo 2001). Polynomial kernels defined
as follows constitute a class of kernel functions among
the popular ones:

K(xi,xj) = (x′

ixj + p2)
p1 ,

where the two input vectors xi and xj are the original
(not transformed) data for subjects i and j, although
they may have been preprocessed. The parameters p1

and p2 are both nonnegative integers, specifying the
form and degree of polynomials in the transformation
from original input to feature vectors. In particular,
(p1 = 1, p2 = 0) and (p1 = 2, p2 = 1) lead to a linear
and a second order kernel, respectively, which are the
two kernel functions that will be used in this paper.

We define in the following a kernel matrix

K =





K(x1,x1) · · · K(x1,xn)
· · · · · · · · ·
K(xn,x1) · · · K(xn,xn)



 ,



which are of dimensions n × n. It is easily seen that
K is the Gram matrix under linear polynomial kernel,
that is, K = X ′X . Discussion of the properties of the
Gram matrix, in particular its relationship with the
covariance matrix C = XX ′ and principal component
analysis, can be found in Rosipal and Trejo (2001).

We propose to use three algorithms for proteomics
data analysis that combines logistic regression with
kernel matrix, namely, logistic kernel regression
(LKR), logistic kernel principal component regression
(LKPCR), and logistic kernel partial least square re-
gression (LKPLSR). Input data to the algorithms in-
clude a training dataset X = {xj}

n
j=1 with known

class labels y = {yj}
n
j=1 and a test dataset {xt}

nt

t=1

whose class labels are to be predicted. All three of
these algorithms (with detailed step-by-step opera-
tions deferred to the Appendix and Supplementary
Information) carry out logistic regression in the fea-
ture space. More specifically, LKR makes use of all
transformed features, while LKPCR tries to first find
principle components before performing logistic re-
gression based on them. Although the components
included explain much of the variance, the approach
does not take into account the labeling of the training
samples. In the worst case scenario it is possible to
leave out exactly the components that are needed to
distinguish between the different groups of samples in
the classification step. In the applications explored
in this paper, though, LKPCR was able to preserve
much of the information contained in the initial data.

Nevertheless, to circumvent this drawback, we also
consider LKPLSR, a method discussed in Rosipal and
Trejo (2001). Unlike principal component analysis,
partial least square finds components from the input
data X that are also relevant for the output (labels)
y. More specifically, partial least square searches for
a set of components that perform a simultaneous de-
composition of both X and y with the constraint that
these components explain as much as possible of the
covariance between X and y. The number of compo-
nents k used in the model can be selected based on
Akaike’s information criteria (AIC) as detailed in the
Appendix.

Finally, in addition to the three kernel-based algo-
rithms outlined above, we also include the support
vector machine in our evaluation and comparison of
methods.

4 Results

Ovarian cancer

We evaluate the proposed analysis steps and associ-
ated algorithms first with an ovarian cancer dataset.
The data were downloaded from http://home.ccr.
cancer.gov/. The dataset includes 91 controls and 162
ovarian cancer samples, each measured at 15154 data
points (m/z ratios and associated intensities). We
randomly selected 45 and 81 of the control and can-
cer samples, respectively, into a training set and used
the rest as a test set to assess the performance of the
proposed methods. We replicated this experiment 100
times. For each of the replicates, we performed several
analyses, depending on the combinations of the first
two analysis steps and associated methods used. More
specifically, for each of the four kernel-based methods
discussed in the previous section, we used the original
raw data (None), data preprocessed with only baseline
removal (BR), as well as with both BR and normaliza-
tion (DP). These three sets of analyses were designed
to evaluate the performances of these four classifica-
tion algorithms with at most minimally preprocessed
data, focusing on the effect of normalization using the
proposed scaling and mean correction method. We
then considered the effects of the two data extrac-
tion methods, first order derivatives in addition to
DP (DP+FOD), and discrete wavelet transformation
(also in addition to the same DP; DP+DWT). The
performances of these two analyses were then com-
pared and contrasted with only using the t-tests for
feature selection (reduction) after subjecting to the
same DP (DP+FR). Finally, we considered two more
sets of analyses that used all proposed steps for data
processing before inputing to the classification step,
namely, DP+FOD+FR, and DP+DWT+FR. For all
the analyses whose results are given in table 1, the
kernels used are second order polynomials with pa-
rameters p1 = 2 and p2 = 1. Furthermore, the num-
ber of principal components in LKPCR was chosen to
be 30, while the number of partial least square com-
ponents in LKPLSR was chosen to be 11 determined
by the AIC procedure described in the Appendix. For
both LKR and SVM, the regularization constant was
set to be λ = 1 (see Supplementary Information).

The average prediction accuracy (percentage) and the
standard deviation among the 100 test sets are given
in Table 1.

The most significant feature emerged from the ta-
ble is the importance of normalization in addition to



Table 1: Performances of four algorithms under various preprocessing and/or feature selection/reduction schemes.
The mean and SD are the average and standard deviation over 100 replications.

Algorithm Stat None BR DP DP DP DP DP DP
+FOD +DWT +FR +FOD +DWT

+FR +FR
LKPCR Mean 87.9 86.3 95.8 98.3 97.3 98.3 99.9 99.7

SD 6.7 3.6 1.8 1.3 1.8 1.2 0.2 0.2
LKPLSR Mean 92.4 89.7 98.6 99.1 99.3 98.9 100 100

SD 4.3 4.7 1.6 0.7 0.5 1.5 0.0 0.0
LKR Mean 72.6 88.5 96.7 98.2 98.4 97.6 99.9 100

SD 2.4 2.3 1.9 1.4 1.5 1.3 0.1 0.0
SVM Mean 74.5 87.6 95.3 98.5 98.7 97.9 100 99.9

SD 5.7 4.6 2.1 1.1 1.2 2.2 0.0 0.2

baseline removal in data preprocessing. It is some-
what surprising to see that, for classification algo-
rithms LKPCR and LKPLSR, without any data pre-
processing actually outperformed their counterparts
with only baseline removal. On the other hand, for
LKR and SVM, even just preprocessed with BR had
considerable effects on the performances. Also, the
performance of the algorithm without any data pre-
processing can be much more variable. Both of the
feature extraction methods led to further improve-
ments, and they are deemed to perform similarly.
Applying feature reduction without feature extrac-
tion (the DP+FR column) seemed to do almost as
well compared to feature extraction with feature re-
duction (the DP+FOD and DP+DWT columns), al-
though with slightly smaller accuracy rates for three
of the four classification algorithms. Using all pro-
posed data processing steps yielded the best results,
as expected. Although the two feature extraction
method performed similarly, FOD is perhaps a better
choice from a computational efficiency standpoint.

In terms of comparisons of the four classification algo-
rithms, they all performed comparably well, with the
partial least square algorithm LKPLSR being the best
(or tied for the best) in all of the seven sets of analyses
carried out. It is also worth noting that, for LKPCR
to obtain comparable results with LKPLSR as shown
in Table 1, more components (30) were need. Finally,
it seems that the SVM benefits more from the feature
extraction step than most of the other algorithms.

As mentioned earlier, our algorithms can not only pre-
dict class labels for test samples, but also the proba-
bilities associated with the calls to measure the degree
of confidence. To illustrate this feature and to com-
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Figure 4: Average predictive probabilities for samples
in test sets with linear or second order (P2) polyno-
mial kernels.

pare the second-order polynomial kernel, used in all
the analyses shown in table 1, with a linear polyno-
mial kernel (p1 = 0, p2 = 1), we plot the average (out
of 100 sets of test samples) predictive probabilities of
being labelled cancer for each of the test samples un-
der LKPLSR. Note that the first 81 samples in each
test set were cancerous while the remaining were nor-
mal. As can be seen from the figure, the labels of all
test samples were predicted correctly under both ker-
nels. However, although the confidence for such pre-
dictions was uniformly high for all test samples under
the second-order kernel, the confidence was somewhat
lower for some of the test samples under the linear
kernel.



Prostate cancer

The prostate cancer data were also downloaded from
the same web site where we obtained the ovarian data.
The data consist of three classes: normal, benign,
and prostate cancer with 63, 190, and 69 samples,
respectively. As with the ovarian data, we randomly
chose half of the samples in each of the three classes
to form a training set and used the rest as a test
set. The experiments were also carried out 100 times
for evaluation and comparison. All proposed data
processing steps (DP+FOD+FR, with feature extrac-
tion performed using first order derivatives) were per-
formed before classification analysis. A “one-against-
all-others” scheme was applied to predict the class la-
bel of each test sample. Specifically, for each test sam-
ple, the probability of each class label (using the corre-
sponding training set) was calculated. Then the class
label with the largest probability among the three
competing ones was the predictive class of the test
sample. The kernel for this analysis was the same
second-order polynomial used in the analysis of the
ovarian data. For LKPCR, the number of principal
components used was 40 while the number of partial
list square components was 23, again chosen based on
AIC. The regularization constant was set to be λ = 1
as in the analysis of the ovarian data.

Table 2 shows the average prediction accuracy (per-
centage) and the associated standard deviation among
the 100 test sets. Four sets of prediction accuracy were
assessed: among cancer, normal, and benign samples,
as well as among all samples combined. These results
painted a similar picture as the one that emerged from
the ovarian analysis for comparison of the four algo-
rithms considered, although the results are not quite
as good across the board. In other words, the four
algorithms performed comparably, with LKPLSR be-
ing the best overall and best for predicting the healthy
and benign samples. For predicting the cancer sam-
ples, the performance of LKPLSR came in second, but
only less than half of a percentage point behind LKR.

5 Discussion

In this paper, we systematically examined the effect
of each step in a three-step protocol in proteomic pro-
filing for cancer prediction. It has been recognized
that data preprocessing and feature selection are two
important steps before the final step of classification,
but there has not been systematic evaluation of their
effects on the performances of classification methods.
Part of the purpose of our study is to fill this void.

Furthermore, we have proposed the use of several
kernel-based algorithms as alternatives to the popular
support vector machine approach.

Our experiments with two cancer datasets show that
baseline removal and data normalization are indeed
indispensable for data preprocessing, and the pro-
posed methods for these two tasks seem to work ad-
equately. In addition to polynomial interpolation,
there are other methods for baseline removal in the
signal processing literature that may be worth explor-
ing (Froning et al., 1998). Similarly, there are alterna-
tives for data normalization (Colantuoni et al., 2002),
which could potentially outperform our scaling and
mean-correcting procedure. There are also apprecia-
ble improvements with the feature selection step even
after data preprocessing, although these additional
improvements are relatively much smaller compared
to those seen with the preprocessing step. Of the two
feature extraction procedures, the first-order deriva-
tives approach appears to be preferable. Although
the performances of first order derivatives and wavelet
transformation are comparable, the former is compu-
tationally much more efficient. It also has the advan-
tage of extracting features in the time rather then the
frequency domain, enabling visual examination of the
m/z values associated with the peaks explicitly (figure
2).

The three algorithms that combine logistic regression
with kernel matrix are promising. Their performances
in terms of prediction accuracy rates are compara-
ble to those using the popular SVM, with LKPLSR
outperforming all the others (including SVM) in al-
most all of the situations considered. One advan-
tage of these algorithms over SVM is the additional
probabilistic information regarding class assignments,
which can be used to assess prediction strength. In a
way, one can view the three logistic regression - kernel
coupling algorithms as nonlinear versions of logistic
regression that can handle the large-p-small-n prob-
lem, a setting not amenable with the standard logistic
regression approach. A plausible explanation for LK-
PLSR seemingly outperforming LKPCR is that the
principle components selected under LKPCR try to
explain the variance in the features only while the par-
tial least square approach under LKPLSR attempts
to strike a balance between explaining the variance
in the features and finding correlation with the corre-
sponding labels. In other words, the latter makes use
of information provided by the known class labels of
the training samples in addition to the data from the
explanatory variables.



Table 2: Performances of four algorithms for overall and individual group classifications. The mean and SD are
also based on 100 replicates.

Algorithm Stat Overall Normal Benign Cancer
LKPCR Mean 89.8 93.5 85.3 88.3

SD 2.56 2.76 2.48 3.27
LKPLSR Mean 91.9 97.6 85.9 90.7

SD 1.92 3.1 2.12 2.86
LKR Mean 90.4 95.8 84.1 91.1

SD 2.38 3.54 2.51 2.51
SVM Mean 90.2 95.8 84.6 90.6

SD 2.76 2.16 2.95 3.76

Of the two datasets to which the analysis procedures
and algorithms were applied, the prediction accuracy
rates are higher for the ovarian cancer, although the
results from both datasets are very good. There are a
number of possible explanations, including data qual-
ity and sample size in each class. From a statis-
tics standpoint, the multiclass prostate cancer dataset
poses more challenges than the two-class ovarian data.
It would be interesting to see whether a different ap-
proach than the “one-again-all-others” scheme may
give better results. Also, the prostate cancer class
is in fact composed of two subtypes, thus analyzing
them as a single cancerous class as done here might
not be the best way as there may be non-negligible
amount of heterogeneity between the subtypes. These
are some of the issues that will be studied in a future
investigation.

Our exploration thus far indicates that mass spec-
trometry measures, together with data preprocessing,
feature selection (dimension reduction), and classifi-
cation algorithms could be an effective tool for the
reliable prediction of cancer samples. However, our
enthusiasm is dampened somewhat by recent debates
in the literature regarding the reproducibility of mass
spectrometry data with the current technology (see
Baggerly et al. 2004, 2005, and references therein).
To understand the issue further, we also analyzed
the same two ovarian datasets (including the one an-
alyzed in detail above which gave excellent results)
considered in Baggerly et al. (2005). We used one
of the datasets to train the classifiers that were in
turn used to predict the labels of the samples in the
other dataset. Our results indicate that, regardless of
which data were used as a training set, the prediction
accuracy suffered due to the low correlation between
the two datasets of the samples of the same class. In

fact, the highest correlation (albeit still quite low) was
achieved between the cancer samples in one dataset
and the normal samples in the other, beating out the
correlations between samples of the same class. The
same pattern was observed by using instead the min-
imum distance measure discussed in an early section.
This example re-enforces the notion that statistical
analysis cannot be fruitful unless quality and consis-
tent data across different experiments are available.
Despite these reservations regarding data quality at
the moment, we believe that the proposed algorithms
have their values as they are easy to implement and
can have high prediction accuracy for data with high
quality.

Appendix

Outlines of the steps for each of the three algorithms
(LKR, LKPCR, and LKPLSR) are given below. De-
tailed algorithms and programs implementing them
can be found in the Supplementary Information. Step
1&2 in the following is common to all three algo-
rithms:

Step 1: Given a training dataset Z = {zi}
n
i=1 with

known class labels y = {yi}
n
i=1 and a test data

{zt}
nt

t=1, compute the kernel matrix K = [Kij ]n×n

for the
training data, where Kij = K(zi, zj). Compute the
kernel matrix Kte = [Kti]nt×n for the test data simi-
larly. Kti projects the test data zt onto training data
zi in the higher dimensional feature space in terms of
the inner product.

Step 2: Centralize K and Kte using

Kc = (Φ−Φ̄)′(Φ−Φ̄) =
(

In−
1

n
1n1′

n

)

K
(

In−
1

n
1n1′

n

)

,



and

Kc
te = (Φte − Φ̄te)

′(Φ− Φ̄)

=
(

Kte −
1

n
1nt

1′

nK
)(

I−
1

n
1n1′

n

)

.

where 1n is the vector of n 1’s, In is an identity ma-
trix of n × n, Φ and Φte are the transformed feature
matrices of the training and test data, respectively,
and Φ̄ and Φ̄te are the respective averages across the
columns of Φ and Φte. In general, we do not need to
define the transformation function explicitly to com-
pute the inner product K and Kte

(Cristianini et al. 2000). This is an advantage of ker-
nel methods.

The specific algorithm for each of LKR, LKPCR, and
LKPLSR are given below.

Logistic Kernel Regression Algorithm

Step 1: (see above)

Step 2: (see above)

Step 3: Set p = (p1, . . . , pn)′ with logistic
function g(s) = (1 + exp(−s))−1 and pi =
g(

∑n

j=1 βjK(zi, zj)) = f(zi, β), where β =
(β1, . . . , βn)′ are the logistic regression coefficients to
be estimated iteratively. Let V denote the diagonal
matrix diag[p1(1 − p1), . . . , pn(1 − pn)]. Set the reg-
ularization parameter λ and the stopping criterion ǫ.
Initialize β

new = 0 and
Do

• βold = βnew

• pi = f(zi, β
old) for i = 1, 2, . . . , n

• Dβold = ((y − p)′Kc)′ − λβold

• Hβold = −((Kc)′V Kc + λI)

• βnew = βold −H−1

βoldDβold

While |βnew − βold| > ε At the end of the loop, we

obtain the coefficient vector estimate β̂ = βnew. In
all the applications in this paper, we set the regu-
larization parameter λ = 1 as λ = 1 given the best
test error for λ ∈ [0, 10]. For the stopping rule, we
set ǫ = 10−6 to compromised between accuracy and
efficiency.

Step 4: Predict results for test data using Kc
te and

β. pte = g(
∑n

j=1 βjK
c
te(zte, zj)).

Logistic Kernel Principal Component Regres-

sion Algorithm

Step 1: (see above)

Step 2: (see above)

Step 3: Form a n × k matrix U = [u1 u2 · · · uk],
where u1, u2,. . . , uk are eigenvectors of Kc that cor-
respond to the largest eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λk > 0. Also form a diagonal matrix D with 1/sqrtλi

in position (i, i).

Step 4: Find the projections V = KcUD and Vte =
Kc

teUD for the training and test data, respectively, to
form the k principal components.

Step 5: Build a usual logistic regression model using
V and {yi}

n
i=1 and use it to predict the class labels of

the test samples using Vte.

Logistic Kernel Partial Least Square Regres-

sion Algorithm

Step 1: (see above)

Step 2: (see above)

Step 3: Call KPLS algorithm to find k component
directions (Rosopal and trejo 2001).

1. Set Kd = Kc

2. for i = 1, . . . , k, let ui, ti, and ci be some latent
vectors, we initialize unew

i randomly
Do

• uold
i = unew

i

• ti = Kduold
i , ti ← ti/||ti||.

• ci = y′ti

• unew
i = yci, unew

i ← unew
i /||unew

i ||

While |unew − uold| > 10−6.

3. deflate Kc, y by Kd ←
∏i

l=1(I −

tlt
′

l)K
c
∏i

l=1(I − tlt
′

l) and y← y −
∏i

l=1 tlt
′

ly.

4. finally we have component matrix U =
[u1, . . . ,uk].



Step 4: Find the projections V = KcU and Vte =
Kc

teU for the training and test data respectively.

Step 5: Build a logistic regression model using V

and {yi}
n
i=1 and test the model performance using

Vte and {yt}
nt

t=1. Let the estimated coefficients be
β = (β0, . . . βk), vt be the k dimensional vector of
sample t, and the logistic
function be g, we have p(y = 1|β,vt) = g(β0 +
∑k

j=1 βjvtj)

The dimension of projection (the number of compo-
nents) k used in the model can be selected based on
Akaike’s information criteria (AIC):

AIC = −2 log(L̂) + 2(k + 1),

where L̂ is the maximum likelihood. Let the estimated
logistic regression
coefficients be β = (β0, . . . βk), and v be the k PLS
components of the training sample. Then the maxi-
mum likelihood L̂ can be calculate as

L̂ =

n
∏

j=1

(

p(y = 1|β,v)
)yj

(

1− p(y = 1|β,v)
)1−yj

.

We choose k with minimum AIC value as our estimate
of the number of PLS
components.
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