

Abstract - Developing distributed Web-based solutions is not

only a difficult task from the technological perspective.
Communication problems concerning hypermedia and Web
aspects between the developers and the business are an additional
major roadblock to a project’s success. In order to clarify these
communication issues, we report from our experiences gained in a
large-scale Enterprise Application Integration project. We
address this problem area by applying Domain-Specific
Languages and a supporting technical framework. Our overall
vision is to enable domain experts to directly contribute to the
development effort by autonomously specifying parts of the
solution. A set of DSLs and notations derived from our
experiences covering central concerns of Web applications is
presented: navigation and structuring of application domains,
data interaction using Web services, and Web-based process
guidance. Web applications can thus be built in an evolutionary
manner by composing building blocks whose behavior is
configured with DSL programs. Our approach emphasizes
conceiving communication with stakeholders and Web
application development in a holistic way.

Index Terms - Conceptual Modeling, Domain-Specific
Languages, Enterprise Application Integration, Reuse, XML and
Web Services

I. INTRODUCTION
In software development projects, the specification of

requirements and aspects of the envisioned solution is a
time-consuming task suffering from communication problems
between the developers and the business [1]. Evaluations on
reasons of project failures like the Standish Group’s CHAOS
Reports [2] show that factors like user involvement and clear
business objectives, relying on efficient communication
between the different stakeholder groups, are crucial for a
project’s success.

Beyond written natural language, further and much more
sophisticated approaches towards a systematic and formal
description of aspects of a solution have emerged. Especially
for the development of Web applications, a variety of research
activities in the fields of requirements engineering and
management, conceptual modeling as well as domain
engineering have evolved [3-6].

Manuscript received April 10, 2006.
Martin Nussbaumer, Patrick Freudenstein, and Martin Gaedke are with the

University of Karlsruhe, Institute of Telematics, IT-Management and Web
Engineering Research Group, Engesser Str. 4, D-76128 Karlsruhe, Germany,
e-mail: {nussbaumer, freudenstein, gaedke}@tm.uni-karlsruhe.de, phone:
+49(721) 608 – 8073, fax: +49(721) 388 097.

Beyond that, Domain-Specific Languages (DSLs) recently

gained increasing attention. Deursen, Klint and Visser define
them in [7] as programming languages or executable
specification languages that offer, through appropriate
notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain. Due to their
limited scope and their level of abstraction tailored to the
problem domain, DSLs are easy to understand and use,
especially for domain experts and non-programmers. By the
use of various graphical notations and accompanying editors,
each of them being as intuitive as possible for a particular
stakeholder group, the usability of a DSL can be further
improved [1]. Like programs developed with general purpose
languages, e.g. Java or C#, DSL programs can also be
transformed into executable code using a dedicated DSL
compiler. As a result, domain experts themselves can
contribute directly to the development effort by validating,
modifying and even creating parts of the solution on the basis
of DSLs. The advantages of using DSLs do not only affect
domain experts and non-programmers; they also comprise
factors like increased productivity, reliability and
maintainability [8] as well as efficient reuse [9].

In section 2, we report from our experiences gained in a
large-scale university-wide Enterprise Application Integration
(EAI) project. We address the problems found in the field of
communication and collaboration with stakeholders and outline
our solution. Section 3 introduces our evolutionary DSL
framework approach and section 4 gives an overview of the
underlying technical platform. Afterwards, in section 5, we
present a selection of core DSLs that have been used efficiently
in several scenarios. Finally, the exemplary evaluation of our
approach is conducted and the conclusions and future work are
given.

II. AN EXPERIENCE REPORT
We have been collaborating in the university-wide EAI

project “Karlsruhe’s Integrated Information Management
(KIM)” [10] for several years now and have experienced
various problem areas.

A. Initial Situation
We found technical problems due to the heterogeneity of the

systems to be integrated. As a result of the decentralized
organizational structure of a university, a huge diversity of
distributed, autonomous IT systems has evolved over the

The Impact of Domain-Specific Languages for
Assembling Web Applications

Martin Nussbaumer, Patrick Freudenstein, and Martin Gaedke

Engineering Letters, 13:3, EL_13_3_19 (Advance online publication: 4 November 2006)
__

decades. From the technical perspective, carrying out system
integration in such a heterogeneous environment is a very
difficult task. Another issue that comes along with the
heterogeneity and decentralization is the lack of reuse
capabilities due to technical limitations in the past. When
developing applications in the KIM project, we often find
existing software artifacts that would perfectly fit in a solution
but cannot be reused efficiently.

On the other hand side, social problems make up the second
major problem area. This includes known issues like fears of
organizational change as well as problems in the fields of
communication between the different project participants and
stakeholder groups. Compared to traditional software
development projects, the latter is being aggravated by the great
diversity of involved stakeholders from completely different
faculties and departments with entirely different skills and
knowledge. Consequently, each group uses its own “language”
when talking about aspects of the solution to be built. This
becomes obvious especially in the phases related to
requirements management and conceptual design when
understanding the various languages of the particular
stakeholders is decisive and misunderstandings must be
avoided as far as possible. Agreeing on and learning a common
language as a potential solution to this, has turned out to be not
feasible because of the stakeholders’ usually very limited
availability. For example, when talking about business
processes with stakeholders from all over the university, some
of them prefer Petri nets as a means of communication as they
play a major role in their research context. Others, for example,
favor the Business Process Modeling Notation (BPMN) for the
same reason. And people with a background in humanities and
social sciences often like a notation in natural language better.

Regarding the technical problem domain, many promising
approaches and research activities already exist [11-13], just to
mention a few. Thus, our main challenge remained to find a
way enabling a common understanding between IT staff and
stakeholders throughout the development process without
neglecting the technical perspective.

B. Towards Communication
In our project, stakeholders belonged to diverse departments

from all over the university, had completely different skills and
academic backgrounds, were predominantly non-programmers,
and, in the most cases, were rarely available. Furthermore, most
of them had no experiences in employing particular languages
for the specification of parts of a solution, often they had not
even heard yet of the modeling languages the developer team
would like to use.

Over the last years, a lot of languages and modeling
approaches for the specification of the various dimensions of a
distributed Web-based solution have been established. Most of
them attempt to cover their problem domain as exhaustive as
possible and therefore include concepts and notations for
almost every aspect of the problem domain. This often leads to
very expressive and powerful modeling languages, being a
good means of conceptual and logical design within the

developer team. However, regarding the communication and
collaboration with stakeholders in our project, they were not
appropriate. Our stakeholders are often non-programmers and
in the most cases are hardly available for interview sessions.
Hence, it would cost too much time and effort for them to learn
the various languages and notations for the diverse problem
domains.

With respect to the characteristics and challenges in EAI
projects described before, an adequate language should be easy
to learn, understand and use, both for developers and
stakeholders. Thus, it should be as simple as possible and as
extensive as necessary. Based on our experiences, simplicity is
often the key factor to usability and effectiveness. We often
succeeded with languages that covered only about 80% of a
problem domain’s complexity but in return enabled all
stakeholders to understand and use them. Furthermore,
including the high-level abstractions and concepts of a problem
domain proved to make a language more productive. Thus,
learning, applying and understanding such languages became
even easier for domain experts. An additional improvement to
the usability and intuitiveness of a language could often be
achieved by providing several (graphical) notations for one
language, each of them tailored to a particular stakeholder
group. Consequently, our overall vision was to enable domain
experts to directly contribute to the development effort by
autonomously specifying parts of the solution.

C. DSL – Shaping Communication
We discovered a multitude of small, simple and highly

focused languages for solving small and clearly identifiable
aspects of a distributed Web-based solution being a more viable
and efficient alternative. Taking all the characteristics of DSLs
into account and comparing them to the challenges in the field
of communications between the developers and the business we
faced in the KIM project, they turned out to be an ideal building
block for our solution. In response to the diversity of
stakeholder groups in our project, by using DSLs, we are able
to collaboratively specify solutions for particular problem
domains employing abstractions and graphical notations as
suitable as possible for the various groups.

To unfold the full power of DSL-based development,
so-called Language-Oriented Programming (LOP) [14, 15], a
technical framework is required. Developing distributed
Web-based solutions by adopting multiple DSLs to specify
their various aspects demands a technical platform for
transforming DSL programs into executable code. As a
foundation of our technical solution, we introduced the central
concept of Solution Building Blocks (SBBs). SBBs are
software components whose behavior can be configured
through DSL programs. Web applications can thus be built in
an evolutionary manner by composing and managing SBBs.
We use the WebComposition Service Linking System (WSLS)
[16] as platform for the SBBs, facilitating their systematic
composition and configuration.

III. A DSL-BASED WEB ENGINEERING APPROACH
In our approach, we place emphasis on simplicity. This

results in a multitude of DSLs for the various aspects of Web
applications, each of them being suitable for a small, clear
problem domain and providing abstractions and notations
tailored to various stakeholder groups with different skills and
preferences. In the following subsections, we first describe the
different layers and their associated components making up a
DSL. Following that, we present the cornerstones of our
approach to the systematic evolution of the emerging variety of
DSLs.

A. DSL – Reading the Fine Print
Fig. 1 shows the elements of our approach towards

DSL-based Web Engineering which is based on the principles
of evolution and reuse. We differentiate between two phases in
the course of a continuous evolution: Development for Reuse
comprises the design and development of a DSL and
Development with Reuse covers the usage of a DSL for the
specification and development of a part of a distributed
Web-based solution.

DSL
Librarian

Reuse
Repository

Development for Reuse

Development with Reuse

WSLSDAR

XML

DSM

<XSD />
DIM SBB

Fig. 1: Overview of our evolutionary and reuse-oriented approach
towards DSL-based Web Engineering

In our approach, a DSL consists of three components. The
Domain-Specific Model (DSM), usually an XML Schema
Document, represents the formal schema for all solutions that
can be described with the DSL. Thus, the DSM has to be
designed in accordance with the problem domain the DSL is
intended for. Based on the DSM, a Domain Interaction Model
(DIM) comprises a dedicated (graphical) notation being as
intuitive as possible for a particular stakeholder group. The
DIM is tightly coupled to the DSM; however, it needs not to
cover all of its aspects. By using a DIM, stakeholders can
employ the DSL, i.e. understand, validate and even create DSL
programs, without being confronted with complicated source
code. Instead, the DIM should provide concepts and notations
derived from the problem domain and thereby should be easy to
understand and use. In order to meet different requirements and

characteristics of various stakeholder groups, a dedicated DIM
for each group could be included in a DSL. A further
enhancement to the usability and effectiveness of a DSL can be
achieved by accompanying editing tools based on the notations
specified in the DIMs.

Besides the design of a DSM and one or more DIMs, the
development of a Solution Building Block (SBB), being capable
of executing the DSL programs, completes the “Development
for Reuse” phase. An SBB can be seen as a software
component whose behavior can be configured through a DSL
program, usually in terms of an XML document. We use the
WebComposition Service Linking System (WSLS) [16] as
technical framework for the SBBs. WSLS aims at facilitating
the systematic evolution of Web applications by reusing
software artifacts and emphasizing the “configuration instead
of programming” paradigm. In our approach, the WSLS
framework allows for the systematic composition and
configuration of SBBs with DSL programs.

During the “Development with Reuse” phase, the Domain
Abstract Representation (DAR) is developed. The DAR
represents the specification of a concrete solution within the
DSL’s problem domain. In other words, the DAR is a DSL
program. Consequently, it is based on the DSM and modified
by using one or more DIMs. As the DSM is usually specified as
an XML Schema, the DAR is serialized and stored in an XML
document based on the DSM. However, in contrast to today’s
integrated development environments (IDE), the editing
process using DIM notations is not performed on this serialized
form. Modifications are rather carried out directly on the
abstract model itself. Thus, DSL programs can be edited in a
more powerful way than it would be possible if interacting with
the DAR’s serialized form. After having developed a DAR, its
XML representation is passed to the DSL’s associated SBB, i.e.
a component of the WSLS framework. The SBB in turn adapts
its behavior according to the DAR and thereby executes it. Web
application development can thus be performed in an
evolutionary manner by composing SBBs and configuring
them with DARs.

B. Systematic Evolution
Domain-Specific Languages are subject to continuous

evolution. Their lifecycle starts with the identification of the
need for a DSL for a particular problem domain, often based on
experiences gained from the collaboration with stakeholders.
This is followed by the specification of a new DSL, consisting
of a Domain-Specific Model, one or more Domain Interaction
Models and first steps towards a dedicated tool support for the
DIM(s). Thereafter, the new DSL is employed in collaboration
with different kinds of stakeholders. Thereby, new experiences
are gained permanently, resulting in requests for change. This
in turn results in the adaptation of the DSL’s models and so on.
Hence, the set of available DSLs for building Web applications
underlies a continuous evolution through variation and
selection: new DSLs are added, existing DSLs are improved,
and DSLs that have turned out to be dispensable are removed.

Working in such an evolutionary environment requires the

ability to accept deficiencies in a positive way and address them
as indicators for change. Principles from the field of total
quality management like the Continuous Improvement Process
(CIP) [17] would be unthinkable without a positive attitude to
deficiencies and change. In addition, due to focusing on DSLs
being tailored for small problem domains, an efficient
management approach for the resulting multitude of DSLs is
important.

Thus, a DSL framework encompassing all available DSLs
and providing means for their systematic usage and
management with a focus on evolution is needed. In the
following, we outline two cornerstones of our approach to such
a DSL framework: A DSL Repository for the systematic
management of DSLs from the technical point of view and a
team role called DSL Librarian being responsible for their
efficient management and usage from the process perspective.

The DSL Repository is the central place for organizing,
storing, managing and accessing DSLs and their components as
well as associated metadata. Moreover, the repository must
provide features for versioning to be able to cope with the
continuous evolution of the stored components. In order to
assure efficient storage and retrieval of DSLs, a sophisticated
classification scheme supporting context-based searches is
necessary. For example, it should be possible to find DSLs
according to parameters like the problem domain, the
application type, the kind of stakeholders etc.

The DSL Librarian accompanies the entire DSL lifecycle
and promotes their usage. During the specification of new
DSLs, she advocates the project team and is responsible for the
avoidance of duplicate or badly reusable DSLs. Concerning the
use of DSLs, she supports the project team in finding and using
appropriate DSLs for the given problem domain and
stakeholder group. Furthermore, she is responsible for the
efficient maintenance of the repository which includes tasks
like adding and removing components, updating the

classification scheme as well as monitoring successful and
unsuccessful searches and adoptions. With respect to the
described tasks, the role of the DSL Librarian should be
assigned to a team member who is very experienced in the field
of DSL-based Web Engineering.

IV. TECHNICAL PLATFORM
The technical support system used to execute a DSL

according to section 3 is a framework called WebComposition
Service Linking System (WSLS) [16]. The bird’s eye view on
the architecture of this framework is depicted in Fig. 2.
Logically it is divided into two dimensions: the application
level and the configuration level. Basically, WSLS is founded
on top of the ideas introduced by the WebComposition
approach [18]. Hence, WSLS supports the systematic
development and evolution of Web applications by reusing
existing software artifacts to reduce costs and increase their
quality. Consequently, reusability is a guiding principle for the
WSLS framework. A second central aspect is to establish the
“configuration instead of programming” paradigm.

The continuous evolution of Web applications takes place in
ever shorter periods and demands for more complexity at the
same time. It is therefore urgent to provide approaches
eliminating or at least reducing these problems, making the
process of evolution faster and more flexible. As this is often
aggravated by the wish of stakeholders to have short reaction
cycles, like well known from agile methods like XP or
SCRUM, exchanging the behavior by reconfiguring an
application gets even more attractive. Furthermore, the
possibility of rapid reconfiguration allows for “Quick
Previews” of the application, which can help to increase
customer satisfaction while reducing misunderstandings due to
insufficient conceptual modeling.

Application Level: As shown in Fig. 2, the application level
consists of three spaces: Site Space, Domain Space and

Fig. 2: A snapshot of the technical support system

Application Level

Configuration Level

Site Space

Study
Support

Course
Planning

Exam
Management

...

Structure Space

D1

D2 D3 D4

D5 D6

D7 D8

D9

D11D10

D12

D13 D14

D15 D16

Domain Space

D1 D2 D3 D4

D5 D6 D7 D8

D9 D11D10 D12

D13 D14 D15 D16

Configuration

PropertySet1 [D]

PropertySet2 [D]

PropertySet3 [D]

...

DSL Repository

DSL

DSL

Linklist

Data
Interaction

Process
Guidance

Behavior Repository

Data Interaction

Process
Guidance

Linklist

CF1

SE1

SBB1

CF2

Concerns

PresentationP P P P P P P

DataP P P P P P

P P P P Navigation

P P P P P P Communication

ProcessP P P P P

P P P P P P User Interaction
{
{

E
nv

iro
nm

en
t

In
te

ra
ct

io
n

Structure Space. The Site Space manages all applications
defined in WSLS. Each application contains one ore more
domains defining the general application structure (Structure
Space). These domains reside in the Domain Space which
provides means for their management and configuration. In
WSLS, applications are developed applying a reuse strategy
often referred to as “development with reuse” or “consumer
reuse” (composing and configuring reusable components),
whereas domains themselves are developed conducting
“development for reuse” or “producer reuse” respectively.

Configuration Level: In WSLS, behavior is subject to
configuration. In the Behavior Repository three types of
components reside: Solution Building Blocks (SBBs), Control
Functions (CFs) and Service Elements (SEs). A Solution
Building Block consists of a Control Function that combines
additional involved components, so-called Service Elements,
shaped to a dedicated concern like data, presentation or
navigation. Thus, a CF acts as the design pattern mediator [19],
whereas service elements realize the decorator and command
patterns. For a further discussion on these components, see
[16]. The behavior of a SBB can be influenced by configuring it
with a DSL program, which corresponds to the Domain
Abstract Representation (DAR). A SBB is consuming a DAR
to execute it and provide a physical impact which is rendered
by WSLS.

The Separation of Concerns paradigm is deeply anchored in
the framework and therefore forms a fundamental pillar.
Concerns in WSLS are coarsely classified in Data, Interaction
and Environment and embodied as typed name-value pairs, so
called Properties. Data affects the information space of an
application and therefore comprises models, techniques and
concepts. These reach from questions like what kind of data is
found where and can be accessed how. An example could be a
Web service to provide data, defined by the parts of a Web
Service Description Language (WSDL) document: the concrete
endpoint specifies the where, the types define what kind of
XML-schemed business objects are provided and the abstract
endpoint states how to access the data. An example of a data
concern and its corresponding configuration in WSLS is given
in section V.B. While Interaction covers aspects around
presentation, navigation or user interaction, Environment
comprises concerns like communication, process design or
security, to mention just a few. Especially in EAI projects the
Environment concerns become important, because the
integration of existing (legacy) applications with the
formalization of business processes in mind is a key factor.

V. DSL CATALOGUE
The need for simplicity bears a multiplicity of DSLs tailored

to the different aspects of a distributed Web-based solution as
well as special communication requirements for a specific
group of stakeholders. In the following, we describe a selection
of three DSLs out of our catalogue concerning three different,
important dimensions of an EAI project: navigation and
structuring of domains, data interaction using Web services and

Web-based process guidance. The presentation of each DSL is
divided up into a statement about the problem domain and the
description of the Domain-Specific Model and a Domain
Interaction Model.

A. Link List
Problem Domain: The concept of linking pieces of an

application is inherently given to Web applications. This also
applies to EAI projects where parts of an integrated system
landscape are composed to new application domains through
appropriate linking structures (e.g. menu or index). Thus, a
DSL for the specification of linking structures is needed.

Domain-Specific Model: Fig. 3 illustrates the recursive
definition of the Link List in a UML class diagram. It is capable
of defining nested levels that can group aggregated links, each
of them pointing to a part of the Web application. There exist
two types of links: external links and domain links. External
links are suitable to link to resources outside the Site Space.
Domain links in turn refer to the internal site structure and point
to resources within the Site Space.

LinklistType

LevelType

+type
+href
+arcrole
+role
+show
+actuate
-title

XLinkType

ExternalType

-sublevel

-linkbase : SiteSpace
DomainType

Fig. 3: UML class diagram that clarifies the relationship between
nested levels and links.

The corresponding XML Schema Definition was designed
according to the UML class diagram. The Link List schema is
based on XLink [20], providing a standardized way for
specifying links to resources in XML documents. A good
overview about XLink and its benefits for navigation in
hypermedia applications is given in [21]. The linkListType (1)
aggregates one ore more levels, which in turn consist of a set of
links and further sublevels. The cardinalities on the XML
elements are omitted to achieve a better readability.

<xs:complexType name="linkListType"> (1)
 <xs:sequence>
 <xs:element name="level" type="tns:LevelType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="levelType"> (2)
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element name="domain" type="domainType"/>
 <xs:element name="external"
 type="ExternalType" />
 </xs:choice>
 <xs:element name="sublevel" type=" LevelType" />
 </xs:sequence>
 <xs:attribute name="label" type="xs:string" />
</xs:complexType>

A link is realized as a domainType (3) or an externalType (4),

which are equipped with XLink attributes to control the
traversal and behavior of the linked domains. By specifying
xlink:show=”embed”, the Solution Building Block consuming

the DSL program will embed the target domain and preserve
the Link List, allowing for the realization of hypermedia design
patterns (e.g. landmark or menu patterns). The statement
xlink:show=”replace” yields in a replacement of the Link
List with the target domain. While such a behavior is feasible
for internal domains, external resources should not be
embedded, but rather be presented in a new context, which is
expressed by fixed=”new” (4).

<xs:complexType name="domainType"> (3)
 <xs:attribute name="linkbase" type="xs:string" />
 <xs:attribute ref="xlink:title"/>
 <xs:attribute fixed="simple" ref="xlink:type" />
 <xs:attribute ref="xlink:href" />
 <xs:attribute ref="xlink:arcrole" />
 <xs:attribute ref="xlink:role" />
 <xs:attribute ref="xlink:show" />
 <xs:attribute fixed=”onRequest”
 ref="xlink:actuate" />
</xs:complexType>

<xs:complexType name="externalType"> (4)
 <xs:attribute ref="xlink:title"/>
 <xs:attribute fixed="simple" ref="xlink:type" />
 <xs:attribute ref="xlink:href" />
 <xs:attribute ref="xlink:arcrole" />
 <xs:attribute ref="xlink:role" />
 <xs:attribute fixed=”new” ref="xlink:show" />
 <xs:attribute fixed=”onRequest”
 ref="xlink:actuate" />
</xs:complexType>

Domain Interaction Model: As a first step towards a

corresponding DIM, we designed a plug-in for Microsoft Visio
based on the symbols shown in Fig. 4.

Level A Domain
href

N

Domain
href

linkbase

E/R/N/O

a) b) c) d)

Fig. 4: (a) A level groups a set of links. (b) A box with a solid line
symbols a domain, which resides inside the domain space. (c) A
box with a dotted line represents an external link, which resides
outside the application. (d) A connector realizes the aggregation of
links and nesting of levels.

This paved the way for the collaborative specification of
linking structures in our solutions with the involved
stakeholders. The graphical notation uses levels to group a set
of links (a). There are two types of links defined: linking to
resources inside the application, called Domain Links (b) and
linking to external resources that are not part of the solution (c).
Furthermore, a link indicates the desired presentation of the
target domain on traversal from the Link List according to the
XLink specification: new, embed, replace and other. Section 6
will give an example of a Link List realized with the graphical
notation introduced here.

B. Data Interaction
Problem Domain: The interaction with the information

space is especially in an EAI project a key factor. For
specifying the integration of and the interaction on various data
sources from different applications of usually heterogeneous
data types in a Web portal, a dedicated DSL is needed.

Domain-Specific Model: The Domain-Specific Model,

which interacts with the information space of our solution, is
based on the extensive use of Web services. Within the KIM
project, we preferred a small set of standardized generic
interfaces instead of a huge amount of specialized interfaces.
This facilitates the realization of a multi-tier Web service-based
SOA. Technically spoken, the Domain-Specific Model relies
on an interface type called CRUDS, which stands short for
Create, Read, Update, Delete and Search. This type of interface
will typically not solve all problems, but helps to abstract and
achieve standardization for most of the data centric tasks we are
faced in KIM: finding, displaying and modifying data.
Furthermore, such a generic interface allows for uniform access
to Web services which also contributes to a high quality of the
solutions being built [22].

Fig. 5 depicts the general structure of our DSM which is built
upon the primitives of the CRUDS interface, focusing on the
update perspective due to a better readability. The DSM
includes a primitivesType (1) aggregating the distinct types
“createType”, “readType”, “updateType”, “deleteType”, and
“searchType” corresponding to CRUDS.

searchType

primitivesType

+readonly
+editable

updateType

+hostPtr : anyUri
+nsPtr : string
+dataPtr : string

xpointerType

readonlyType editableType

createType readType deleteType

* *

+control : any
interactionBindingType

*

Fig. 5: UML class diagram visualizing the Data Interaction DSM
which correlates to the primitives of the CRUDS interface and
focuses on the “updateType”.

<xs:complexType name="primitvesType"> (1)
 <xs:element name=”create” type=”createType” />
 <xs:element name=”read” type=”readType” />
 <xs:element name=”update” type=”updateType” />
 <xs:element name=”delete” type=”deleteType” />
 <xs:element name=”search” type=”searchType” />
</xs:complexType>

Each primitive type allows for the specification of how to
process a set of referenced data elements. These are referenced
using expressions based on the XPointer framework [23] and
executed on the WSDL type specification of the associated
Web service. The construction of the XPointer expression (2) at
runtime is realized by the substitution of defined attributes from
the “xpointerType” (3).

$hostPtr?WSDL#xpointer(/definitions/types/ (2)

schema[targetNamespace=”$nsPtr”)xpointer($dataPtr)

<xs:complexType name="xpointerType"> (3)
 <xs:attribute name="hostPtr" type="xs:anyUri"/>
 <xs:attribute name="nsPtr" type="xs:string"/>
 <xs:attribute name="dataPtr" type="xs:string"/>
</xs:complexType>

Due to space restrictions, the following detailed presentation

of the Data Interaction DSM is confined to the update
primitive. The updateType (4) extends the “xpointerType” and
comprises additional types specifying which of the referenced
data elements are read-only or editable. So far, “read-only” and
“editable” were sufficient, but, as mentioned in section 3.2, our
DSLs are subject to a systematic and continuous evolution.

<xs:complexType name="updateType"> (4)
<xs:sequence>
 <xs:element name="readonly" type="readonlyType"/>
 <xs:element name="editable" type="editableType"/>
</xs:sequence>
</xs:complexType>

Beyond that, the “interactionBindingType” (5) accomplishes

the mapping between elements of the referenced data object’s
schema and user interaction controls of a particular form
model, e.g. XForms [24].

<xs:complexType name="interactionBindingType"> (5)
 <xs:complexContent>
 <xs:extension base="xpointerType">
 <xs:sequence>
 <xs:element name="control" type="xs:any" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Domain Interaction Model: Our technical platform WSLS,
introduced in section 4, supports the definition of Property Sets
that can be applied to configure a Solution Building Block. In
an initial step, we developed a Property Set corresponding to
the Data Interaction DSM to realize a Domain Interaction
Model integrated in WSLS. The Property Set includes
Properties for the Web service URL (“hostPtr”), the data
schema of the considered type from the WSDL document
(“nsPtr”), the sets of editable and read-only data elements as
well as the interaction bindings. Fig. 6 depicts a typical scenario
how the DIM can be used. The Property Editor (Fig. 6: 1a/1b)
allows for manipulating Properties and thereby configuring the
behavior of the Data Interaction SBB (Fig. 6: 1a). In Fig. 6: 2,
the Property “editable” belonging to the “updateType” is
edited. The displayed list of data elements is constructed based
on the XML Schema Definition of a previously selected type
(“nsPtr”). At runtime, the SBB can transform each checked
data element into an XPointer expression according to the DSM
as a triple consisting of the service url (“hostPtr”), the data
schema (“nsPtr”) and the data element (“dataPtr”). In this way,
the SBB addresses the editable and read-only data elements and
presents them to the user with the form controls specified via
the “interaction bindings” Property (Fig. 6: 3).

1a

2

1b

3

Fig. 6: A Domain Interaction Model for the Data Interaction DSL
integrated in WSLS.

C. Web-based Process Guidance
Problem Domain: Software, especially in EAI projects, is

increasingly being constructed by composing existing
components on the basis of a loosely coupled framework.
Thereby, a major focus lies on means for describing Web
service choreography or orchestration respectively, whereas
the aspect of user guidance in Web applications often is
neglected. Hence, a DSL for specifying the user guidance
process, i.e. the projection of the user interaction defined in a
business process to the guidance through various components
of a Web application, is needed.

Domain Specific Model: Heterogeneity of Business Process
Modeling (BPM) techniques is a notorious problem for
business process management. Although the discussion about
the standardization lasts for more than ten years [25], the lack
of a commonly accepted interchange format is still the main
burden to business process management (see e.g. [26]). Based
on our experience during the process analysis in the KIM
project we found the common denominator in Finite State
Machines. A Finite State Machine (FSM) describes the
behavior of involved states, transitions and actions [27]. It
represents a closed formal concept that allows us to describe
workflows found in the course of our project. The Process
Guidance DSM is equipped with XLink attributes to express
the behavior, the traversal rules and its semantics. Furthermore,
XLink encapsulates the linking structure from a business
process and thereby leads to a modularized linkbase. Thus,
advanced concepts like personalization or even business
process federation can be achieved by reconfiguring the FSM
by exchanging the linkbase.

In the following, the schema of the DSM is explained in
more detail. A workflowType (1) describes the part of a
business process which specifies a Web-based workflow. It
consists of two or more workstepTypes that represent the states
of the FSM and can be instances of e.g. a Data Interaction SBB
or other available Solution Building Blocks. These
workstepTypes (2) are realized as xlink:type=”locator”
which allows for reusing a domain by addressing it within the

Domain Space, specifying the linkbase and the xlink:href
attributes.

<xs:complexType name="workflowType"> (1)
 <xs:attribute ref="xlink:type" fixed="extended"/>
 <xs:attribute ref="xlink:role" />
 <xs:sequence>
 <xs:element name="SBB" minOccurs=”2
 type="workstepType" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="workstepType"> (2)
 <xs:attribute ref="xlink:type" fixed="locator"/>
 <xs:attribute ref="xlink:title" />
 <xs:attribute ref="xlink:role" />
 <xs:attribute ref="xlink:href"/>
 <xs:attribute name="linkbase" type="xs:string"/>
 <xs:attribute name="final" type="xs:boolean" />
</xs:complexType>

The transitionType (3) finally describes the transition
formulized as an xlink:type=”arc” that connects two states
specified by xlink:from and xlink:to activated by a token. In
addition to behavioral aspects regarding the activation of
transitions, xlink:actuate=”onLoad” can be used to indicate
spontaneous state transitions allowing for executing a
continuous chain of worksteps, also known as ε-transitions in
non-deterministic state machines. In contrast, transitions that
require a user input, are expressed with an
xlink:actuate=”onRequest”.

<xs:complexType name="transitionType"> (3)
 <xs:attribute name="token" type="xs:NMTOKEN" />
 <xs:attribute ref="xlink:type" fixed="arc" />
 <xs:attribute ref="xlink:from" />
 <xs:attribute ref="xlink:to" />
 <xs:attribute ref="xlink:arcrole" />
 <xs:attribute ref="xlink:actuate" />
</xs:complexType>

Domain Interaction Model: In the KIM project, all

business processes were gathered by interviewing various
stakeholders. The essence of these conversations was modeled
with Petri nets, our Domain Interaction Model, using a tool
called INCOME [28] as editor. Each business process is
described in a comprehensive manner, which means that both,
worksteps performed by users, often referred to as Human
Workflows, as well as aspects concerning service automation
like choreography or orchestration, are covered. Although the
resulting Petri net models in INCOME are much more
expressive than necessary to satisfy the DSM, using their XML
representation and transforming them to a DAR according to
our DSM has a couple of advantages: on the one hand side,
reuse of already existing (partial) process information becomes
possible, increasing the project team’s productivity. On the
other hand side, the modeling tool is well known by the domain
experts who describe the processes, so there is no extra effort
for them to learn a new one.

VI. DSL APPLIED – STUDY ASSISTANCE
In the following, we present our approach in practice in a

typical scenario of the KIM project including linking

structures, user workflows and data interaction. The KIM
project deals with the university-wide optimization of business
processes and the integration of supporting information
systems. The realization is based on a multi-tier Web service
approach and applies the service orientation paradigm, weaving
together the existing systems employing state-of-the-art Web
service technologies. The current, two-year project phase deals
with the business processes involved in course planning,
examination management and study support systems. Below,
we are going to take a closer look at the study support system.

The study support system aims at assisting students with the
planning, organization, monitoring and accomplishment of
their studies. Therefore, it provides services like a personal
information center, a personal student file, tools for evaluating
the individual study progress and planning of next steps,
features for course registration or a service for finding adequate
learning partners. Following, we outline exemplarily the
development of the course registration feature using the three
DSLs presented in the preceding section. First, we show how to
set up the study support system’s menu using the Link List
DSL. Afterwards, the user interaction process is realized
employing the Web-based Process Guidance DSL. Finally, the
single user interaction work steps are implemented by means of
the Data Interaction DSL.

A. The Application Structure
In order to enable the various stakeholders to directly

contribute to the solution, we customized Microsoft Visio with
dedicated support for Link List diagrams according to the DSL
introduced in section 5.

Fig. 7: Specifying the Link List DAR with pen and paper or in
Microsoft Visio using a dedicated stencil.

Microsoft Visio is a graphical editor and allows for the
placement of the predefined model elements and their
annotation with additional attributes, according to the
previously presented Domain-Specific Model (cf. Fig. 7).
Based on the XML-export provided by Visio, we added an
XSL(T)-based transformation engine to generate the

corresponding Domain Abstract Representation XML from the
diagram. This in turn can be used to configure the associated
Solution Building Block which renders the menu at runtime (cf.
Fig. 9, left hand).

B. Applying a Business Process
Having defined the general structure of our application, the

sub-domains of the functional area “Organizational Services”
must be filled with adequate behavior. Following, we take a
closer look at the course registration feature “My Courses”. The
associated user interaction workflow is depicted in Fig. 8 in
form of a Petri net. The illustrated scenario represents the
support for students when they customize their schedules by
subscribing to courses. The Petri net business process acquired
via the XML export of INCOME is transformed to the DSL’s
corresponding DAR, as introduced in section V.C, using
XSL(T). Finally, a dedicated Solution Building Block takes the
DAR to realize the workflow. Therefore, a SBB is assigned to
each state of the workflow, and user controls enabling users to
activate the transitions between them are provided. The two
states, “Subscribe to course” and “Review Schedule” are
depicted in Fig. 9.

Fig. 8: Editing the Web-based User Guidance DAR in INCOME
with Petri nets.

C. Integrating Web Services
The single worksteps of the process guidance shown above

are Solution Building Blocks whose behavior can be
configured by means of the Data Interaction DSL. In our case,
“Subscribe to course” and “Review schedule”, represent a
standardized communication with Web services according to
section V.B. Fig. 9 shows the situation of the study support
system, when a student has subscribed to a course and reviews
the resulting schedule. The Web services facilitating this
behavior are CRUDS-based and therefore allow the
management of a student’s schedule by creating (C), updating
(U) or deleting (D) registrations. Hence, the corresponding
SBB is configured to offer appropriate user interaction controls
and to communicate with these Web services by providing the
DSM’s primitives within the WSLS Property Editor.

Fig. 9: The Course Registration in the Study Support Portal.

VII. SUMMARY & FUTURE WORK
In this paper, we presented our approach to DSL-based Web

Engineering which emphasizes conceiving communication
with stakeholders and Web application development in a
holistic way. In our large-scale EAI project “Karlsruhe’s
Integrated Information Management (KIM)”, we were faced
with communication problems between the developers and the
stakeholders from all over the university. We identified the
great diversity and low availability of stakeholders as a major
drawback making it infeasible to employ complex modeling
languages for the specification of distributed Web-based
solutions. We argued that, in such environments, simplicity is a
key factor for an efficient usability of languages. The vision of
our solution is to enable stakeholders to directly contribute to
the development effort by understanding, validating and
specifying parts of the application.

We proposed an approach consisting of a framework of
Domain-Specific Languages (DSL) and an underlying
technical platform. DSLs are small, simple and highly focused
languages for solving clearly identifiable aspects of a
distributed Web-based solution. They are easy to understand
and learn and incorporate individual notations for various
stakeholder groups. Furthermore, we outlined the cornerstones
of our approach to the systematic management and evolution of
the emerging multitude of DSLs – a DSL Repository and a DSL
Librarian. Following, we presented the underlying technical
framework being mainly responsible for the transformation of
DSL programs into executable parts of a Web application. In
this regard, we introduced Solution Building Blocks (SBBs) as
software components whose behavior can be configured by
DSL programs. The WebComposition Service Linking System
(WSLS) served as technical platform facilitating the systematic
composition and configuration of SBBs. Thus, Web
applications can be built in an evolutionary manner by
composing SBBs and configuring them with DSL programs
which in turn are specified using dedicated editors.

Subsequently, we presented a selection of three core DSLs
concerning three important dimensions in an EAI project:
navigation and structuring of domains, data interaction using
Web services, and Web-based process guidance. For each DSL

we described its target problem domain and introduced the
associated Domain-Specific Model and an adequate Domain
Interaction Model. Finally, we showed a practical realization of
our approach in the KIM project. We explained how the course
registration feature in a study support portal was built
employing the previously introduced DSLs on the basis of our
technical framework.

For the future, we are planning to extend our approach in
several directions. First of all, we will continuously evaluate
our existing DSLs in practice, leading to an evolutionary
improvement and development of new DSLs. Beyond that, we
will pursue the idea of performing validation and optimization
at domain level. Especially for DSLs concerning the
dimensions navigation, presentation and user interaction this
seems to be promising. For example, rule sets assuring the
accessibility of a Web application’s presentation aspects could
be included in the DSM or DIM and enforced by accompanying
editors. A further advancement would be an ontology-based
DSL repository facilitating their systematic storage,
management and retrieval. Finally, an integrated development
environment for our approach would be desirable. Therefore,
we are going to evaluate the DSL Tools delivered with
Microsoft Visual Studio 2005.

REFERENCES
[1] Fowler, M., Language Workbenches: The Killer-App for Domain

Specific Languages? - 2005):
http://www.martinfowler.com/articles/languageWorkbench.html.

[2] The Standish Group International, Extreme Chaos - Research
Report (2001): http://www.standishgroup.com.

[3] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling Language
(WebML): A Modeling Language for Designing Web Sites. in 9th
International World Wide Web Conference (WWW). 2000.
Amsterdam, Nethderlands.

[4] Mcclure, C.L., Software reuse techniques : adding reuse to the
system development process. 1997, Upper Saddle River, N.J.:
Prentice Hall. xxiv, 350.

[5] Schwabe, D., Rossi, G., and Barbosa, S. Systematic Hypermedia
Design with OOHDM. in ACM International Conference on
Hypertext' 96. 1996. Washington, USA.

[6] Wiegers, K.E., Software Requirements. Second ed. 2003: Microsoft
Press. 430 pages.

[7] Deursen, A.V., Klint, P., and Visser, J., Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices,
2000. 35(6): p. 26-36.

[8] Kieburtz, R.B., et al. A software engineering experiment in software
component generation. in Proceedings of the 18th International
Conference on Software Engineering. 1996: IEEE Computer
Society Press.

[9] Batory, D., Lofaso, B., and Smaragdakis, Y. JTS: Tools for
Implementing Domain-Specific Languages. in Proceedings of the
Fifth International Conference on Software Reuse. 1998: IEEE.

[10] KIM Project Homepage - 2005), University of Karlsruhe:
http://www.kim.uni-karlsruhe.de/ (02.11.2005).

[11] Chappell, D.A., Enterprise Service Bus. First ed. 2004: O'Reilly
Media, Inc. 247.

[12] Zimmermann, O., Krogdahl, P., and Gee, C., Elements of
Service-Oriented Analysis and Design - Web Site (2004):
http://www-128.ibm.com/developerworks/webservices/library/ws-s
oad1/ (30.07.2005).

[13] Meinecke, J., Gaedke, M., and Nussbaumer, M. A Web Engineering
Approach to Model the Architecture of Inter-Organizational
Applications. in Conference on Component-Oriented Enterprise
Applications (COEA 2005). 2005. Erfurt, Germany: Gesellschaft
für Informatik.

[14] Dmitriev, S., Language Oriented Programming: The Next
Programming Paradigm - 2005), JetBrains:
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/.

[15] Ward, M., Language Oriented Programming, in Software - Concepts
and Tools. 1994. p. 147-161.

[16] Gaedke, M., Nussbaumer, M., and Meinecke, J., WSLS: An Agile
System Facilitating the Production of Service-Oriented Web
Applications, in Engineering Advanced Web Applications, S.C. M.
Maristella, Editor. 2005, Rinton Press. p. 26-37.

[17] Dale, B.G., Managing Quality. 2003: Blackwell Publishing.
[18] Gaedke, M. and Turowski, K., Specification of Components Based

on the WebComposition Component Model, in Data Warehousing
and Web Engineering, S. Becker, Editor. 2002, IRM Press: Hershey,
PA, USA. p. 275-284.

[19] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
patterns: elements of reusable object-oriented software.
Addison-Wesley professional computing series. 1995, Reading,
Mass.: Addison-Wesley. xv, 395.

[20] Derose, S., Maler, E., and Orchard, D., XML Linking Language
(XLink) Version 1.0. 2000, World Wide Web Consortium.

[21] Christensen, B.G., Hansen, F.A., and Bouvin, N.O. Xspect:
Bridging Open Hypermedia and XLink. in 12th Intl. World Wide
Web Conference. 2003. Budapest, Hungary.

[22] Ibm, Elements of Service-Oriented Analysis and Design - 2005),
IBM Homepage:
http://www-128.ibm.com/developerworks/webservices/library/ws-s
oad1/.

[23] Grosso, P., Maler, E., Marsh, J., and Walsh, N., XPointer
Framework - W3C Recommendation (2003), W3C Consortium:
http://www.w3.org/TR/xptr-framework/.

[24] Dubinko, M., Leigh L. Klotz, J., Merrick, R., and Raman, T.V.,
XForms 1.0 - W3C Recommendation (2003), W3C:
http://www.w3.org/TR/2003/REC-xforms-20031014/.

[25] Hollingsworth, D., Workflow Management Coalition: The
Workflow Reference Model. 1995, Winchester.

[26] Group, D., BMP 2003- Market Milestone Report - 2003), Delphi
Group:
http://www.bpminstitute.org/whitepapers/whitepaper/article/delphi
-group-2003-bpm-market-milestone-report.html.

[27] Wikipedia, Finite State Machine - Definition (2005):
http://en.wikipedia.org/wiki/Finite_state_machine.

[28] Lausen, G., Nemeth, T., Oberweis, A., Schönthaler, F., and W., S.
The INCOME approach for conceptual modelling and prototyping
of information systems. in CASE - The 1st Nordic Conference on
Advanced Systems Engineering. 1987. Stockholm, Sweden.

