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Abstract: Logic function realization using Reed-Muller
(RM) expression has manifold advantages over realization
using SOP expression. In this paper, we present an ASIC
architecture for generating optimum 3-variable mixed
polarity RM expression. The ASIC based minimization is
much faster than the software based minimization. The
design is modeled using Verilog HDL and synthesized
using Quartus II 4.2 software for Stratix EP1S10F484C5
FPGA device.
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1. Introduction
Classically logic functions are expressed and minimized as
sum of products (SOP) expressions resulting into AND-OR
circuits. Alternative representation that found a widespread
popularity is the Reed-Muller (RM) expressions resulting
into AND-EXOR circuits. RM expressions have many
advantages over classical SOP expressions. For many
functions, AND-EXOR circuits require less AND gates
than AND-OR circuits [9]. AND-EXOR circuits are also
more easily testable than AND-OR circuits [4, 10]. Other
very important uses of RM expressions are in the
classification of Boolean functions and Boolean matching
[13, 14]. AND-EXOR circuits have been used in arithmetic,
error correcting, and telecommunication applications [11,
12].

There are seven classes of RM expressions [10]. Among
them, fixed polarity RM (FPRM) expression and mixed
polarity RM (MPRM) expression are very popular. MPRM
expression is also known as Kronecker (KRO) expression
[10]. Mixed polarity RM (MPRM) expression requires, in
general, lesser products that FPRM expression. On the
other hand, minimization of MPRM expression is more
complex than FPRM expression. Almost all methods for
minimization of FPRM and MPRM expressions are
software based [2-8].  These software-based methods use
sequential processing and require exponential computation
time. So far our knowledge is concerned, only one ASIC
based method is available for minimization of 4-variable
fixed polarity RM (FPRM) expression [1].

In this paper, we present an ASIC architecture for
minimization of 3-variable MPRM expressions and its
FPGA based implementation. This architecture can be
extended for larger variables. ASIC-based method is
inherently parallel in nature and requires constant time.

2. Background
RM expressions are formed by successive applications of
the following expansions.
Positive Davio (pD) expansion:

201 ),,,,( fxfxxxf ini ⊕=LL
Negative Davio (nD) expansion:

211 ),,,,( fxfxxxf ini ′⊕=LL
Shannon (S) expansion:
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where,
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If we apply the pD expansion on a variable, then that
variable appears only in uncomplemented form (polarity 0)
throughout the expression. If we apply the nD expansion on
a variable, then that variable appears only in complemented
form (polarity 1) throughout the expression. If we apply the
S expansion on a variable, then that variable appears in
both complemented and uncomplemented forms (polarity
2) in the expression.

If we apply the pD expansion on all the variables of a
function, then the resulting expression is called positive
polarity Reed-Muller (PPRM) expression. The form of a 3-
variable PPRM expression is
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where, }1,0{)( ∈∀ iai are the PPRM coefficients.

If we apply the nD expansion on all the variables of a
function, then the resulting expression is called negative
polarity Reed-Muller (NPRM) expression. The form of a 3-
variable NPRM expression is
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where, }1,0{)( ∈∀ iai are the NPRM coefficients.

If we apply the S expansion on all the variables of a
function, then the resulting expression is called canonical
exclusive-OR sum of products (CESOP) expression. The
form of a 3-variable CESOP expression is
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where, }1,0{)( ∈∀ iai are the CESOP coefficients. The
CESOP expression is similar to the canonical sum of
products expressions with OR operators replaced by EXOR
operators.

If we apply a combination of pD and nD expansions on the
variables of a function, then the resulting expression is
called the fixed polarity Reed-Muller (FPRM) expression.
If the polarity vector of a 3-variable function is

)010(=p , then the form of the corresponding FPRM
expression is
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where, }1,0{)( ∈∀ iai are the FPRM coefficients. There

are n2  different polarity vectors for n variables and every
polarity vector produces a different FPRM expression with
different cost (number of non-zero coefficients). Therefore,
the minimization of FPRM expression corresponds to
finding a polarity vector nP }1,0{∈  and the
corresponding FPRM expression so that the cost is the
minimum. There are several software based [2-5, 7] and
one ASIC based [1] method for FPRM minimization.

If we apply a combination of pD, nD, and S expansions on
the variables of a function, then the resulting expression is
called the mixed polarity Reed-Muller (MPRM) expression.
This expression is also known as Kronecker (KRO)
expression [10]. If the polarity vector of a 3-variable
function is )012(=P , then the form of the corresponding
MPRM expression is
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where, }1,0{)( ∈∀ iai are the MPRM coefficients. There

are n3  different polarity vectors for n variables and every
polarity vector produces a different MPRM expression with
different cost. Therefore, the minimization of MPRM
expression corresponds to finding a polarity vector

nP }2,1,0{∈  and the corresponding MPRM expression so
that the cost is the minimum. There are several software
based [5-8] methods for MPRM minimization. In this
paper, we present an ASIC based method for MPRM
minimization.

The cost of different forms of RM expressions are related
as below:

MPRMFPRMNPRMPPRM ≥≥,

Computation of expansion coefficients on truth vector of a
3-variable function is shown in Figure 1. If we apply pD
expansion on 1x  (Figure 1a), then 0a  to 3a  remain

unchanged and 4a  to 7a  are the bit-wise EXOR of 0a  to
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Figure 1. Computation of expansion coefficients on
truth vector of a 3-variable function.



3a  and 4a  to 7a . Application of pD expansion on 2x
and 3x  can be explained in a similar manner. If we apply

nD expansion on 1x  (Figure 1b), then 4a  to 7a  are copied

to vector location 0 to 3 and the bit-wise EXOR of 0a  to

3a  and 4a  to 7a  are copied to vector location 4 to 7.

Application of nD expansion on 2x  and 3x  can be
explained in a similar manner. If we apply S expansion on
either 1x , 2x , or 3x  (Figure 1c), the truth vector remain
unchanged.

The MPRM coefficients for all polarity vectors for the 3-
variable function ]11100101[),,( 321 =xxxf
(expressed in truth vector) are shown in Table 1. The bold
entries are the minimum solution and our developed system
will find the first one (polarity 102) as the final solution.

3. The RTL Circuit
The RTL circuit for generating optimum 3-variable MPRM
coefficients from Boolean coefficients (truth vector) is
shown in Figure 2 and the detailed logic circuit of convert
unit is shown in Figure 3.

All possible polarity vectors of a 3-variable function are
generated by the PCtr counter (Figure 2). It is a 3-digit
ternary counter with binary encoded output cp[5:0]. It
counts from ternary 000 to 222 and the outputs are encoded
as 000000 to 101010, respectively. cp[5:4] is the polarity
for 1x , cp[3:2] is the polarity for 2x , and cp[1:0] is the

polarity for 3x . Initially it is cleared to 000000 at the
negative edge of the Start input. Then the value of the
counter is incremented at the positive edge of every fourth
clock enabled by the en input, which is 1 when c[1:0] = 11,
that is, the last step of the processing cycle of generating
MPRM coefficients for a given polarity vector.

Generating MPRM coefficients for a given polarity vector
requires four steps. These steps are determined by the SCtr
counter (Figure 2). The output c[1:0] determines the steps.
It is initially cleared to 00 at the negative edge of the Start
input and then incremented at the positive edge of every
clock pulse.

The current polarity vector is stored in the register CPReg
(Figure 2). The current polarity value cp[5:0] is copied to
tp[5:0] at the positive edge of every fourth clock pulse
enabled by the en input, which is 1 when c[1:0] = 11, that
is, the last step of the processing cycle of generating
MPRM coefficients for a given polarity vector.

Table 1. MPRM coefficients for all polarity vectors for
the function ]11100101[),,( 321 =xxxf

Pola-
rity

MPRM
coeffi
 r0 … r7

Cost Pola-
rity

MPRM
coeffi
r0 … r7

Cost

000 10011101 5 120 01011010 4
001 10110111 6 121 11110110 6
002 11011001 5 122 01011011 5
010 11011001 5 200 10010100 3
011 01111011 6 201 10111000 4
012 10011101 5 202 11010100 4
020 10111110 6 210 11010100 4
021 10010110 4 211 01101000 3
022 10010110 4 212 10010100 3
100 01001101 4 220 10110101 5
101 11000111 5 221 10011010 4
102 01001001 3 222 11100101 5
110 01001001 3
111 11001011 5
112 01001101 4

The polarity vector producing the so far minimum cost
expression is stored in register PReg (Figure 2). If the cost
of the current MPRM coefficients (cs[3:0]) is less than the
cost of the so far minimum cost (s[3:0]), then lt = 1 and the
current polarity tp[5:0] is copied to p[5:0] at the positive
edge of the clock pulse.

After every fourth clock pulse, the convert unit generates
the MPRM coefficients for the current polarity vector.
These coefficients are stored in the register CRReg (Figure
2). This register is initially preset to 11111111 so that the
cmp unit does not generate a false lt = 1 at the beginning of
the processing cycle due to undefined values of cr[0:7]. The
values of tr[0:7] are copied to cr[0:7] at the positive edge of
the first clock pulse of the next processing cycle enabled by
en input, which is 1 when c[1:0] = 00.

The adder unit (Figure 2) determines the cost (cs[3:0]) of
the current MPRM coefficient.

The register SReg (Figure 2) holds the cost of the so far
minimum cost s[3:0]. It is initially preset to 1000 (23), the
maximum possible cost.

The cmp unit (Figure 2) compares the value of the so far
minimum cost (s[3:0]) and the current cost (cs[3:0]) and
generates lt = 1 if cs[3:0] < s[3:0], which is then used to
load the corresponding latest values to PReg, SReg, and
RReg.

The so far minimum MPRM coefficients are stored in
register RReg (Figure 2).



The detailed logic circuit of the convert unit is shown in
Figure 3. The Boolean coefficients (truth vector) b[0:7] is
input to the register bReg at the positive edge of each clock
pulse. The register TRReg holds the intermediate values of
the expansion. It is initially preset to 11111111 at the
negative edge of the Start input so that the register CRReg
(Figure 2) does not get any undefined value and generates a
false lt = 1. The step count c[1:0] selects one of the four
sets of expansion values through the column of 4×1 MUXs.
The other 2×1 MUXs determine the expansion values as
discussed in Figure 1. The left column of 2×1 MUXs
generates the expansion on 1x , the middle column

generates the expansion on 2x , and the right column

generates the expansion on 3x .

At the positive edge of the first clock of the processing
cycle, when c[1:0] = 00, b[0:7] are copied to tr[0:7].

If cp[5:4] = 00 (polarity 0), then tr[0:3] are copied to the
location 0 to 3 and tr[0:3] ⊕ tr[4:7] are copied to location 4
to 7, which is pD expansion. These values are copied to
register TRReg at the positive edge of the second clock
pulse of the processing cycle when c[1:0] = 01. If cp[5:4] =
01 (polarity 1), tr[4:7] are copied to the location 0 to 3 and
tr[0:3] ⊕ tr[4:7] are copied to location 4 to 7, which is nD
expansion. If cp[5:4] = 10 (polarity 2), tr[0:7] are copied
unchanged, which is S expansion.

cp[3:2] produces expansion on 2x  and that is copied to
register TRReg at the positive edge of the third clock pulse

of the processing cycle when c[1:0] = 10.

cp[1:0] produces expansion on 3x  and that is copied to
register TRReg at the positive edge of the fourth clock
pulse of the processing cycle when c[1:0] = 11.

The pipeline of the processing cycles is shown in Figure 4.
When the Start input goes from 1 to 0, the register TRReg
is preset to 11111111, CRReg to 11111111, SReg to 1000;
and counter PCtr is cleared to 000000 and SCtr to 00. At
clock 0, b[0:7] are loaded to register bReg and the circuit
becomes ready for the processing. b[0:7] are copied to
bReg register at every clock. This will make no harm in the
processing, but the register design will be easier. At clock
1, c[1:0] = 00 and the bReg register is copied to the TRReg
register through the column of 4×1 MUXs. At clock 2,
c[1:0] = 01 and the expansion on 1x , as determined by the
left column of 2×1 MUXs, is loaded to the register TRReg
through the column of 4×1 MUXs. At clock 3, c[1:0] = 10
and the expansion on 2x , as determined by the middle
column of 2×1 MUXs, is loaded to the register TRReg
through the column of 4×1 MUXs. At clock 4, c[1:0] = 11
and the expansion on 3x , as determined by the right
column of 2×1 MUXs, is loaded to the register TRReg
through the column of 4×1 MUXs. At the same time
cp[3:0] are also copied to the register CPReg. This ends the
generation of MPRM coefficients for cp[5:0] = 000000.
This clock also increments the counter cp[5:0] to 000001.
From clock 5, a new process of generating MPRM
coefficients for cp[5:0] = 000001 starts. At clock 5, the
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Figure 2. The RTL circuit for generating optimum 3-variable MPRM coefficients.
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Figure 3. Detailed logic circuit of the convert unit of Figure 2.



 MPRM coefficient for cp[5:0] = 000000 (tr[0:7]) is stored
in the register CRReg. At this point the adder unit
calculates the cost of the coefficients (cs[3:0]) and
compares that with the so far minimum cost (s[3:0]). If
cs[3:0] < s[3:0], then lt = 1 and cr[0:7] are copied to the
register RReg at clock 6. At the same time, the current
polarity vector tp[5:0] is also copied to the register PReg.
In this way the processing pipeline goes on and finally the
minimum MPRM coefficients and the corresponding
polarity vector are available at r[0:7] and p[5:0] outputs,
respectively.

4. FPGA Implementation
The RTL circuit for generating optimum MPRM
coefficients as described in Figure 2 and 3 is modeled using
Verilog HDL and synthesized using Altera’s Quartus II
4.2 software for Stratix EP1S10F484C5 FPGA device.
The fitter required 90 logic elements and 24 pins. The
timing analyzer reports worst-case tsu: 2.752 ns, worst-case
tco: 7.558 ns, worst-case th: -1.940 ns, and clock setup:
162.10 MHz (period = 6.169 ns). The circuit is simulated
with 162.10 MHz clock. Part of the functional simulation is
shown in Figure 5 and part of the timing simulation is
shown in Figure 6.

5. Conclision
Realization of logic circuits using Reed-Muller (RM)
expressions (AND-EXOR expression) is advantageous over
realization using SOP expression (AND-OR expression) in
many aspects including requirement of lesser number of
gates [9], easy testability of the circuit [4,10], ease of
computation, etc. RM circuits also have applications in
arithmetic, error correcting, and telecommunication circuits
[11,12].

Boolean function classification and matching are very
important in standard-cell based VLSI design. Boolean

function classification and matching can be done using RM
expression as tools [13,14]

Traditional software based methods of minimization of RM
expressions require exponential computation time. This
computation time can be drastically minimized if ASICs
can be used to compute the minimized RM expression.
Only one such attempt was made to minimize 4-variable
fixed polarity RM (FPRM) expression in [1]. In this paper
we presented an ASIC architecture for minimization of 3-
variable mixed polarity RM (MPRM) expression. The
initial attempt is to device architecture for the ASICS to
minimize the MPRM expression and we worked with 3-
variable case as a test case. The architecture can be
extended for functions of more than 3 variables.

MPRM expressions are more general than FPRM
expressions and require lesser products than FPRM
expressions. On the other hand, minimization of MPRM
expressions is more difficult than minimization of FPRM
expressions. In this respect having an ASIC for
minimization of MPRM expression is very important,
because ASIC based minimization is inherently parallel and
require constant time.

The RTL logic architecture for generating minimum
MPRM expression is very easy to conceptualize and
implement. The 3-variable circuit is modeled using Verilog
HDL and synthesized using Quartus II 4.2 software for
Stratix EP1S10F484C5 FPGA device, which requires only
90 logic elements.

The architecture of the circuit is highly modular and can be
very easily extended for functions having more variables.
Our future work focuses on developing parameterized
Verilog model of the circuit so that it can be implemented
for any number of variables.
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Figure 4. Part of the processing pipeline.



Figure 5. Part of the functional simulation.

Figure 6. Part of the timing simulation.
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