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Abstract—The World Wide Web (WWW) is a fast growing 

network of information with billions of documents covering 
nearly every possible topic. Finding the relevant information 
efficiently within such a huge collection, without effective search 
mechanism, would be almost impossible. With the input of a few 
keywords a search engine (SE) can return a list of relevant 
documents by querying its information index for webpages. 
However, it is quite common to witness irrelevant results and 
ranking being presented to the user. One way to improve the 
ordering of the search results is to incorporate user feedback in 
ranking the pages for relevancy. This paper presents a 
mechanism for search engine enhancement by using implicit 
feedback in the form of ClickThrough data from the users. The 
ordering of the query result is re-arranged for the future queries 
based on the choices made by the majority of the users. An 
algorithm, with its implementation, is presented and then 
evaluated to demonstrate its capability as an add-on component 
for enhancement of the current ranking algorithms. 

 
Index Terms—Web search engines, ranking, feedback, 

clickthrough  

I. INTRODUCTION 
 

The World Wide Web (WWW) [1] has seen a tremendous 
increase in size in the last two decades. The amount of 
information and resources available on WWW today has 
grown exponentially and almost any kind of information is 
present if the user looks long enough. Google [2] suggests that 
it has indexed over eight billion web pages, and that may be a 
fraction of all available web pages. The popularity of WWW 
can be attributed mainly to the uniform access method it 
provides to various information services and its hypermedia 
support which links a wide range of multimedia data 
physically distributed all around the world into a single 
gigantic virtual database. It provides a powerful medium for 
almost any user on the Internet to disseminate information 
about any topic. More and more information has become 
available on-line through WWW, from the latest news to 
scientific reports and satellite images. However, this 
information explosion has lead to an inevitable resource 
discovery problem. 

In order to find relevant pages, a user has to browse through 
many WWW sites that may contain the information. Users 
may either browse the pages through entry points such as the 

popular portals, Yahoo, MSN and AOL or use a search engine 
to look for specific information. Beginning the search from 
one of the entry points is not always the best approach, since 
there is no particular organized structure for the WWW, and 
not all pages are reachable from others. In the case of using a 
search engine, a user submits a query, typically a list of 
keywords, and the search engine returns a list of the web 
pages that may be relevant according to the keywords. In 
order to achieve this, the search engine has to search its 
already existing index of all web pages for the relevant ones. 
Search engines are constantly engaged in the task of crawling 
through the WWW for the purpose of indexing. When a user 
submits keywords for search, the search engine selects and 
ranks the documents from its index in the decreasing order of 
relevance and usefulness in relation to the keywords.  

The task of ranking the documents, according to some 
predefined criteria, falls under the responsibilities of the 
ranking algorithms. A ranking algorithm is one of the most 
crucial components of any search engine and usually requires 
much attention during the engine’s development. Different 
search engines use different classes of ranking algorithms with 
varying degree of effectiveness and efficiency. Intuitively, a 
good information retrieval system should present relevant 
documents higher in the ranking, with less relevant documents 
following them. Although the ranking algorithms, following 
the search process, strive hard to achieve this goal, it is 
common to witness many irrelevant among the relevant 
queried information. This sub-optimal result has led to several 
researches in the area of search engine ranking algorithms. 

This work presents a system for automatically rearranging 
the query results of an arbitrary search engine using implicit 
feedback obtained from users in the form of what is known as 
“ClickThrough” data [11]. Such ClickThrough data is easily 
available and can be recorded at a very low cost. The 
presented model combines the feedbacks of the users who 
query for the same term to maximize the quality of the ranking 
while minimizing the noise (produced by irrelevant clicking). 

In the following sections, we discuss the architecture of a 
typical web search engine, the various ranking algorithms 
currently employed, the inadequacies with the current 
approaches, the proposed approach along with some 
implementation details, and the results. This will be followed 
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by the evaluation and verification of the results and possible 
future enhancements. 

II. GENARAL ARCHITECTURE OF A WEB SEARCH ENGINE 
 

Figure 1 illustrates the architecture of a simple WWW 
search engine. In general, a search engine usually consists of 
three major modules: 

a) Information gathering 
b) Data extraction and indexing 
c) Document ranking 

 
Figure 1. Architecture of a simple Web Search Engine 
 

A. Information Gathering 
Information gathering is sometimes more specifically 

known as web crawling in the context of a web search engine. 
The web crawlers (also referred to as spiders, worms or 
wanderers) are programs that are instructed to crawl the web 
autonomously in a methodical manner, to gather information 
from the content and structure of web pages. They browse the 
Web on behalf of the search engine, quite similar to how a 
human user follows links to reach different pages. First, a 
crawler reads from a list of seed URLs and visits the 
documents at these URLs. Each visited page is processed, and 
the URLs contained within a page are extracted and added to a 
queue. The crawler then selects the next URL from the queue 
and continues the process until a satisfactory number of 
documents are downloaded or the local computing resources 
are exhausted. To improve speed, the crawler usually connects 
simultaneously to multiple web servers in order to visit 
documents in parallel, either using multiple threads of 
execution or using asynchronous input/output. The crawler 
passes the information that it gathers to a page repository until 
either all the documents in the collection are exhausted or 
until the retrieval has reached some predefined criteria. 
Documents retrieved by the crawler are stored in a repository 
of web pages. To reduce the needed storage space, the pages 
are often compressed before being stored.  

This basic algorithm for crawling the web can be modified 
or enhanced with many variations that give search engines 

different levels of coverage or topic bias. For example, 
crawlers for a particular engine might be biased to visit as 
many sites as possible, leaving out the pages that are buried 
deeply within each site. Other crawlers might be specialized 
on sites in one specific domain, such as governmental pages. 
The crawl control module is responsible for directing the 
crawling operation. 

Once the search engine has been through at least one 
complete crawling cycle, the crawl control module may be 
informed by several indexes that were created during the 
earlier crawl(s). The control module may, for example, use a 
previous crawl’s link graph to decide which links the crawlers 
should explore currently and which links they should ignore. 
Crawl control may also use feedback from usage patterns to 
guide the crawling process. Some websites may have to be 
crawled very regularly as their contents might change often, 
for example the newspapers or stock market related websites. 
In contrast, some other website may change very rarely, for 
e.g. personal web pages without much web activities. The 
crawl control module keeps track of such information and 
depending on the type of the page, the frequency of web 
crawler visiting it is defined. 

B. Data extraction and Indexing 
This is the second major module of a search engine. An 

indexer processes the pages in the repository and builds an 
underlying index of the search engine. The indexer tokenizes 
each page into words and records the occurrence of each word 
in the page. The next step is to extract the keywords from the 
pages and to create an index of keywords and the 
corresponding pages in which they were found. The indexer is 
also used to calculate scores such as the term and document 
frequencies of each word, which can be used for ranking the 
results or for further processing.  

Keywords are practically innumerable in count and 
therefore having a comprehensive list of them would have a 
detrimental effect on the search engine. The engine should be 
able to gauge the importance of a word as a keyword, based 
on some observations. For instance, by observing the HTML 
code of a document we may find some words are formatted 
using <H1> and </H1> or bold faced, which signifies their 
importance in relation to the page content. Some of the 
keywords are predefined in the meta-tags of the documents 
while some others can be found in the page title. Based on this 
kind of heuristic observations, the keywords and their 
importance are identified. 

Once the keywords are identified, they are indexed. The 
search engines usually maintain an index table and an inverted 
index table. The index table consists of the keyword and 
reference to the page in which it is present. The inverted index 
table contains the same field but in reverse order, reference to 
a page and all the keywords presented in it. 

The Indexing module observes the crawled pages for the 



      
      
      
    
presence of both old and new keywords, if any, and indexes 
them.  This index is used by the ranking algorithm to project 
the pages in a non-decreasing order of their 
usefulness/relevance. The results from the indexer are then 
converted into an “inverted index”.  While the original 
indexing results maps a document to a list of words contained 
within it, an inverted index maps a word, to a list of 
documents containing the word. This allows fast retrieval of 
documents when a search query is passed to the search engine. 
The resulting searchable indexes are usually stored in a 
database. 

C. Document Ranking 
A search engine accepts queries from users and performs 

search on the available indexes. After retrieving search results 
from the indexes, the engine is also responsible for ranking 
the search results according to content analysis and link 
analysis scores. Search engines may also catch the results of 
popular search queries, which would benefit the performance 
for popular queries. After all the processing, the engine 
generates and renders the search results and submits them to 
the user interface to be displayed to the user. 

Ranking algorithm is one of the most important components 
of any search engine that plays an important role in the 
successful response to a query. It ranks the documents in 
which the keywords given by the user are presented in a 
decreasing order of usefulness/relevance. The satisfaction of 
the user lies on the quality of rankings returned by this 
ranking algorithm. Ideally, the user should find the links she 
expects for a specific query on the top of the result set. 

Different search engines use different ranking algorithms 
and most of them are proprietary and a well-kept secret. In the 
next section, we discuss some of the popular ranking 
algorithms and what they lack as the state of the art. 

III. RANKING ALGORITHM – THE STATE OF THE ART 
In this section, some of the more popular ranking 

algorithms, such as Boolean Spread Activation, Most-cited, 
TFxIDF, Vector Spread Activation, PageRank and HITS, are 
first discussed and then evaluated. The terminologies used to 
define the ranking functions in this paper are as follow: 
M  : number of the query words 
Qj  : the jth query word, for (1 < j < M) 
N  : number of the pages in the index database 
Pi  : the ith page or its ID number for 1 < i < N 
Ri,q  : the relevance score of Pi with respect to query q 
Li,k  : the occurrence of an incoming hyperlink from Pk to 

Pi, where Li,k =1 if       such a hyperlink exists, or 0 
otherwise. 

Ci,j  : occurrence of Qj, in Pi, where Ci,j = 1 if Pi, contains 
Qj, or 0 otherwise 

Si,q  : TFxIDF score of Pi
α   : constant link weight (0 < α  <1) 
TFi,j : the term frequency of Qj in Pi

TFi,max : the maximum term frequency of a keyword in Pi

IDFj : log(N/ ,

1
i j

N

i
C

=
∑ ) 

U  : a Web page 
Fu  : the set of the pages that U points/links to 
BBu  : the set of the pages that point/link to U 
Nu  : |Fu| 

A. Boolean Spread Activation 
This algorithm is based on the Boolean retrieval model, 

where retrieval is solely based on the occurrence or absence of 
keywords in the documents [7]. The ranking function is given 
as 

Ri,q = ,
1

M

i j
j

C
=
∑  (1) 

The Boolean Spreading Activation algorithm extends this 
strategy by propagating the occurrence of a query word in a 
document to its neighboring documents. This is possible in the 
WWW because a document usually has hyperlinks to and 
from one or more other documents, forming a network of 
documents. 

B. Most-Cited 
As with Spread Activation, this algorithm takes advantage 

of the information about the hyperlinks between WWW 
pages. Each page is assigned a relevance score which is the 
sum of the number of query words contained in other pages 
citing, or having a hyperlink to the page [7]. More formally, 
the relevance score of the page Pi with respect to query q is 
defined as 

Ri,q =          ,,
1, 1

(
N M

k ji k
k k i j

Li C
= ≠ =
∑ ∑ )  (2) 

The objective of this algorithm is to assign, among 
potentially relevant documents, larger scores to the referenced 
documents than to the referencing documents. 

C. TFxIDF 
TFxIDF is another popular ranking methodology used by 

WebCrawler and Lycos. This makes use of the term frequency 
(TF) in a document and how often a term is used in a 
collection of documents (IDF). The TFxIDF algorithm is 
based on the well known vector space model [5], which 
typically uses the cosine of the angle between the document 
and query vectors in a multi-dimensional space as the 
similarity measure. As described in [15], vector-length 
normalization can be applied when computing the relevance 
score, Ri,q, of page Pi, with respect to query q: 

 

Ri,q = ,

, max
(0.5 0.5 )i j

j
itermj q

TF IDF
TF∈

+∑        (3) 

Generally speaking, the relevance score of a document is 



      
      
      
    
the sum of the weights of the query term that appear in the 
document, normalized by the Euclidean vector length of the 
document. The weight of a term is a function of the word’s 
occurrence frequency (also called term frequency). This 
weighting function gives higher weights to terms which occur 
frequently in a small set of documents. 

D. Vector Spread Activation 
This algorithm combines the vector space model and spread 

activation model. In this algorithm, each document is first 
assigned a relevance score using TFxIDF algorithm, and then 
the score of a document is propagated to the documents it 
references [7]: 

Ri,q = Si,q + .S,
1, 1

N

i j
j j

Liα
= ≠
∑ j,q        (4) 

 

E. PageRank Algorithm 
PageRank computes a ranking for every web page based on 

a graph of the web and is used by one of the most popular 
search engines, Google [4]. It relies on the uniquely 
democratic nature of the web by using its vast link structure as 
an indicator of an individual page’s value. Google interprets a 
link from page A to page B as a vote, by page A, for page B 
[6]. But Google looks at more than the sheer volume of votes, 
or links a page receives; it also analyzes the page that casts the 
vote. Vote cast by pages that are themselves “important” 
weight more heavily and help to make other pages 
“important”. The PageRank of a page is defined recursively 
and depends on the number and PageRank metric of all pages 
that link to it (incoming links). A page that is linked by many 
pages with high rank receives a high rank itself. If there are no 
links to a web page there is no support for this specific page. 

R(u) = 
( )

vu

R vc
Nv B∈

∑           (5)  

 

F. HITS 
Another algorithm for ranking pages is HITS (Hyper 

textual Induced Topic Selection) [8]. HITS uses two values 
for each page, the authority value and the hub value. 
Authority and hub values are defined in terms of one another 
in a mutual recursion. Authority value is computed as the sum 
of the scaled hub values that point to that page, and hub value 
is the sum of the scales authority values of the pages it points 
to. Relevance of the linked pages is also considered in some 
implementations of this algorithm.  

G. Drawbacks of the Current Approaches 
The above ranking algorithms give importance to a page 

based on some metrics such as interest, popularity, location, 
etc (as also discussed in [9]). They rank the documents in real-
time, i.e. when the search engine receives a request for 

documents, the ranking algorithm goes through the set of the 
pages in which the keywords are presented and orders them, 
using its ranking strategy. In almost every ranking algorithm, 
the facts considered are the linkage, keywords, format of the 
words, position of the words, depth of the page in the domain, 
and similar parameters. However, consider a case wherein, for 
a phrase ‘q’, a ranking algorithm returns a list of pages from 
which the user finds his/her top selections not among the top 
few results. This situation occurs because the users’ choice, 
for a given set of keywords, has not been given importance. 
One way to overcome this would be to use the feedback from 
the users to re-rank the pages. 

As was mentioned before, none of the ranking algorithms 
discussed here consider the feedbacks of the users to project 
the rankings. One evident reason for this lapse could be that 
users can not be relied on to leave enough proper feedback 
explicitly, no matter how easy the process is. One way to 
solve this problem is to collect implicit feedbacks based on the 
behaviors of the users. In this scenario, ClickThrough data is 
the key to learn about the users’ choices. 

In the next section, the ClickThrough data and its use for 
enhancing the results of a search engine is discussed. 

IV. CLICKTHROUGH DATA AND THE PROPOSED ALGORITHM 
ClickThrough data in search engines can be thought of as 

triplets (q, r, c), consisting of the query q, the ranking r 
presented to the user, and the set c of links the user clicked on. 
Figure 2 illustrates this with an example: the user submits the 
query "computer science" (q) to a search engine and receives 
the ranking shown in the figure (r). The links that are bold 
faced are the links that the user has clicked on (c), upon 
receiving the results (this example is studied later in this 
section). In the sections to come, we show that the best 
description of the user’s choice could be obtained from this 
observation. 

Clearly, users do not click on links at random, but make 
somewhat informed choices. While ClickThrough data 
typically consist of some amount of noise and clicks are not 
perfect relevance judgment metrics, they are likely to convey 
overall reliable information regarding the relevancy of pages 
to particular search queries. Since every query corresponds to 
one triplet, the amount of data that is potentially available is 
virtually unlimited. 

A. Incorporating the ClickThrough Data  
ClickThrough data can be recorded with little overhead and 

without compromising the functionality and usefulness of the 
search engine. In particular, compared to explicit user 
feedback, it does not add any overhead for the user. The query 
q and the returned ranking can be easily recorded whenever 
the resulting ranking is displayed to the user. For recording 
the clicks, a simple proxy system is employed. The general 
architecture of the proposed system is illustrated in Figure 3. 



      
      
      
    

 

 
 

Figure 2. Results of a search for “Computer Science” from a popular Search 
Engine 
 

There are strong dependencies between the three parts of 
the triplet (q, r, c). The presented ranking r depends on the 
query q as determined by the retrieval function implemented 
in the search engine. Furthermore, the set c of clicked links 
depends on both the query q and the presented ranking r. A 
user is more likely to click first on a link if it is relevant to q 
[10, 11]. While the overall dependency is desirable and 
interesting for analysis, the dependency of the clicks on the 
presented ranking r may be actually detrimental. In particular, 
a user is less likely to click on a link low in the ranking, 
independent of how relevant it is. In the extreme case, the 
probability that the user clicks on a link with the least rank is 
virtually zero even if it is the document most relevant to the 
query. No user will scroll down the ranking so far enough to 
observe this link. Therefore, in order to get interpretable and 
meaningful results from ClickThrough data, it is necessary to 
consider and model the dependencies of c on q and r 
appropriately. 
 

 
 
Figure 3. The general architecture of the model 
 

Consider the example from Figure 2. The user has clicked 
on link2, link4, link5 and link10 (linkk represent the kth link, or 
kth rank, in an ordered list). While it is not possible to infer 
that the links 2, 4, 5 and 10 are relevant on an absolute scale, 
it is much more plausible to infer that link2 is more relevant 
than link1 and so on. Assuming that the user scanned the 
ranking from top to bottom, she must have observed link1 
before clicking on link2, making a decision not to click on 
link1. Given that the abstract presented with the links are 
sufficiently informative, this gives some indication of the 
users’ preferences. Similarly, it is possible to infer that link4 is 
more relevant to this particular user than link1 and link3. This 
means that clickthrough data does not convey absolute 
relevance judgments, but partial relative relevance for the 
links the user browsed through. A search engine ranking the 
returned links according to their relevance to q should have 
ranked link2 ahead of link1 and link4 ahead of link1 and link3 
and so on.  

 

 
Figure 4. Information extracted from a user’s implicit feedback. In this figure 
linkj <ri linkk states that linkj has a higher rank than linkk. 
 
Denoting the ranking preferred by the user i with ri (user i’s 
ranking), we get partial information of the form represented in 
Figure 4. It is this ranking with which user i might have been 
most satisfied. It has to be kept in consideration that this 
information can be potentially noisy. 

This strategy of extracting the kind of information 
represented in figure 4 is summarized in the algorithm given 
below (in this paper linkk is also represented as lk): 

 
For r: (l1, l2, l3,…, ln), an ordered set of links returned by a 
search engine, and a set rk, containing user k’s clicked-on 
links, extract li < rk lj  for all and all ki rl ∈ kj rl ∉ , where 

li<rk lj states that link li has a higher rank than link lj. 
 

This algorithm gives a partial relative ordering based on a 
user’s choice. However, it does not take into the consideration 
the links that the user has not clicked on for the purpose of the 
total ordering. One modification could be to maintain the 
same relative positions of the un-clicked links as in the 
original ranking while enforcing the ClickThrough feedback. 
This approach helps to get a complete relative ordering for 
each user. So, the modified algorithm would be as follows: 

 
 

link2 <ri link1 link4 <ri link1 link5 <ri link 1 link10 <ri link1
                 link4 <ri link3 link5 <ri link 3 link10 <ri link3
             link10 <ri link6
            link10 <ri link7
            link10 <ri link8
            link10 <ri link9

1. The Collection of Computer Science Bibliographies 
liinwww.ira.uka.de/bibliography/ 

2. School of Computer Science/Carnegie Mellon University 
www.cs.cmu.edu/ 

3. Computer Science Corporation 
www.csc.com/ 

4. Welcome to the MIT Laboratory for Computer Science 
www.lcs.mit.edu/ 

5. Stanford Computer Science Department 
www-cs.stanford.edu/ 

6. Department of Computer Science 
www.cs.umd.edu/ 

7. Computer Science 
library.albany.edu/subject/csci.htm 

8. University of Washington Computer  Science & Engineering 
www.cs.washington.edu/ 

9. Computer Science Division| EECS at UC Berkley 
www.cs.berkeley.edu/ 

10. Department of Computer Science| University of Illinois at 
Urbana ... 
www.cs.uiuc.edu/ 



      
      
      
    

If a user clicks on links li and lj in r, where i<j and there 
exists no other clicked links in between i and j then  
{ 

If i < j-1 then,  
in rk the partial order will be …li, lj, l(i+1),… l(j-1), 
l(j+1), l(j+2)… 
Else maintain the same order as in r  

 } 
 

Else maintain the same order as in r.                                     
     

The above algorithm can also be phrased as follows: 
If a user clicks on links li and lj and there are no other clicked 
links in between them, and if i<(j-1), then for all m∈[i+1, j-
1], lj <rk lm, while all the links belong to [li+1, lj-1] retain their 
original ordering from r. By following this procedure, the 
desired rk is formed, i.e. rk:  li <rk lj <rk l(i+1) <rk … <rk l(j-1) <rk 
l(j+1) <rk l(j+2) <rk … . 

Following this modified algorithm, the complete relative 
ordering, based on the users’ choice, can be produced. For the 
example discussed in figures 2, the result is as follows: 
link2 <rk link4 <rk link5 <rk link10 <rk link1 <rk link3 <rk 
link6 <rk link7 <rk link8 <rk link9 

B.  The Proposed Multi-User Feedback Approach 
Similar to the algorithm proposed in the previous 

subsection, [10] and [11] have proposed approaches to collect 
implicit feedback using ClickThrough data. The drawback of 
these algorithms is that they do not have a mechanism to 
consider multiple users inputs for rearrangement purpose. 
When the inputs of only one user is considered for ordering 
(for a particular query term), not only the outcome will be 
sensitive to noise (irrelevant clicking), but also the ordering 
will not be mature enough to be used for other users with the 
same query term. If the ClickThrough data is collected from 
multiple users and combined appropriately, it would be 
comprehensible that the quality of the ordering would 
improve.  

The proposed approach makes use of the algorithm 
presented in the previous section. For a query, q, we obtain ris 
for a considerable number of users, say ‘n’. After obtaining 
the required data, the average displacement of the documents 
is calculated according to the feedback obtained in the above 
fashion. Once n such instances are collected, the returned 
documents for query q are reordered with ranking r*. The 
procedure to calculate r* is explained later in this section. To 
proceed with our discussion, some formal descriptions are 
presented.  

For a ranking function F and a document set D, the query 
phrase q results in the ranking r:  (l1, l2, l3, l4, l5, l6, l7, l8… , lk), 
such that 

F(q) = r: l1 <r l2 <r l3 <r l4 <r l5 <r l6 <r l7 <r l8 <r …..<r lk

Rank of a document d, for the query q, can be defined as the 
corresponding position of its link in the ranking function F(q); 

i.e. for the document d, in F(q), if the relating link is lj, then 
the rank of d is j. 
Δ is an integer array of size k, initially set to 0. This is used 

to store the displacements of the links in r* with respect to r. 
Displacement of the document d in ri compared to r is given 
by the change in position of its link l. It can be either negative 
or positive. 

Every time a user queries for q using F and clicks on some 
of the returned links, a new ri is generated. For each one of 
these ris the relative changes in the positions of the links are 
calculated and then inserted into the corresponding position in 
Δ (for ri it would be Δ[i]). After n such instances for q, the re-
ranking procedure is started. The average displacement (ADq), 
for each link in the array, will be calculated as 

 
ADq[i] = Δ[i] / n  (6) 
 

Next, the original rank of each link is added to the 
corresponding displacement, ADq. This is to increase the 
weight of the original ordering (r) to downgrade the possible 
noise for small n. The final step in the re-ranking procedure is 
to re-rank the links for q in the increasing order of their (ADq 
+ r) values.  From here onwards, for query q the newly ranked 
list will be shown to the users. 

By following this algorithm, the outcome of each user 
query is arranged in such a way that the results expected by 
the user moves toward the top of the ranking and the relative 
order for the un-clicked links is retained as per the ranking 
function. In the upcoming sub-section, for illustration 
purposes, the presented procedure is used to rearrange the 
results of a query with feedback from four users. 

C. Illustration of the re-ordering procedure 
In this subsection, a simple example is given (Table 1). 

Suppose for query q, the original ranking from F is given by r, 
where r: (l1, l2, l3, l4, l5, l6), and the ranking which might have 
best suited each of the users is given by ri (1 ≤ i ≤ 4) as 
depicted in Table 1. For each ri, the algorithm calculates the 
displacements for the links, when compared to the original r, 
and then form Δ by adding these displacements together. Then 
for each link, the average displacement (represented by ADq) 
is calculated and added to its original position in r. Finally, the 
links are re-arranged based on the increasing order of (AD + 
r) to get the order r*: (l1, l3, l2, l4, l5, l6). 

V. IMPLEMENTATION AND VERIFICATION 
In this section, first, the implementation of the system is 

described, and then, it is verified and evaluated using 
Kendall’s Tau statistical measurement. 

As was mentioned before, instead of developing a Web 
Search Engine from scratch to record the activities of the 
users, we have come up with an architecture that utilizes an 
already existing SE resource. A web-based interface was  



      
      
      
    

TABLE 1. AN EXAMPLE OF APPLYING THE PRESENTED ALGORITHM. 
Displacement for the links

r: l1 l2 l3 l4 l5 l6 Init: 0 0 0 0 0 0

1) r1: l1 l3 l5 l2 l4 l6 1) 0 2 -1 1 -2 0
2) r2: l3 l4 l1 l2 l5 l6 2) 2 2 -2 -2 0 0
3) r3: l1 l3 l2 l4 l5 l6 3) 0 1 -1 0 0 0
4) r4: l1 l2 l4 l3 l5 l6 4) 0 0 1 -1 0 0

2 5 -3 -2 -2 0

ADq ÷5 0.4 1 -0.6 -0.4 -0.4 0

r 1 2 3 4 5 6
r + AD 1.4 3 2.4 3.6 4.6 6

r* l1 l3 l2 l4 l5 l6

Δ

 
                                
developed to take the query results from an existing SE and to 
project them to the user while recording ClickThrough data  
and executing the presented algorithm. This requires that the 
SE provides Application Programming Interface (API) in 
order for our implementation to utilize its services.  Google  in  
particular provides a very rich and comprehensive API for 
external usage and is the SE choice of this project. 

Basically, the interface performs the duty of receiving a 
user query and retrieving the results from the SE (in this case 
Google) and returning them to the user like any other SE’s 
interface would. Without interrupting the users’ activities, this 
interface silently records these links and when the user closes 
the interface window, the results are sent to the server hosting 
the interface. The server manages an intermediate database, in 
which it stores the ClickThrough data and uses them to 
rearrange the results for the future query, using the presented 
algorithm. The general architecture of the system was shown 
earlier in Figure 3. 

A. Implementation 
The major component of the implementation is a proxy 

(interface) server that serves as an interface between users and 
Google. In order to decide whether a query should be directly 
answered by the search engine or intercepted by the proposed 
algorithm, a simple mechanism is used. If the term was 
queried for less than ‘n’ times (where n is a threshold value set 
by the administrator), the proxy server uses the SE’s API and 
directly fetches the results from it. Then upon receiving the 
results from the SE, the server stores them in the intermediate 
database for the future use. If the number of the times the term 
was queried exceeds ‘n’, then the server looks up for the 
results which have been already processed and available 
locally in the intermediate database. 

Each time the results are sent back to the user, the GUI 
keeps track of the user’s activities and responses. It is during 
this interaction of the user with the displayed results that the 

ClickThrough data is recorded and when the user completes 
the session, the recorded data is sent back to the proxy server, 
which executes the presented algorithm. 

The technologies used for the implementation are JSP, 
JavaBeans, JavaScript, MySql 4.0 database, MySql-java-
connector and Google API. Apache Tomcat server 5.5 and 
NetBeans IDE 4.0 were used to develop the software. For the 
front-end and the middleware, JSP and JavaBeans were used. 
To store the information, MySql database server was utilized 
in the backend.  

B. Processing of the ClickThrough Data 
 After the successful implementation of the presented 

model and the proxy server, for evaluation and verification 
purposes, data was collected from several interacting users. 
Concurrently, information was gathered regarding the 
keywords and the links returned by Google in response to the 
queries. The ClickThrough data was then processed to 
calculate the displacement in the position of the links for each 
user and was recorded in the intermediate database. In this 
sub-section some examples, based on the real data from the 
database of our proxy server, is presented to further describe 
the proposed approach. 

First, let us look into a simple example in order to better 
understand the system. Table 2 illustrates the process and the 
result of a ranking rearrangement, calculated from the 
feedback of ten users.  

In Table 2, the original ranking from Google is given by r 
and the ranking which might have best suited each of the users 
is given by ri (1 ≤ i ≤ 10). For each ri, the algorithm calculates 
the displacements for the links when compared to the original 
r and recorded them under the Displacement section. Then the 
average displacement for each link is calculated and added to 
its original position in r. Finally, the links are re-arranged 
based on the increasing order of the average displacement plus 
original rank to get the re-arranged order r* which in this case 
is the same as r. 

Similar to the example in Table 2, for another example 
illustrated in Table3, the new order of the links are calculated 
for 20 users by the presented method. 

C. Verification  
To evaluate the proposed model by verifying the results of 

re-arrangement, a statistical measurement called Kendall’s 
Tau (τ ) [12, 13] is utilized. Kendall’s Tau is one of the most 
frequent used methods in statistics for rank correlation and is 
defined as follows: 
If D is the collection of documents, for two finite strict 
orderings ra  D × D and r⊂ b  D ×D, Kendall’s ⊂ τ  can be 
defined as:  
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where m is the number of documents in D, P is the number of 
concordant pairs and Q is the number of dis-concordant pairs 
(inversions).  In a pair of orderings, di and dj are concordant if 
both ra and rb agree in how they order di and dj (where di 
represents a document ordered as the ith element of the list). It 
is dis-concordant, if they disagree. Using the original r and the 
modified r*, it can be shown that the modified r* provides 
betterτ . 

Let us name the initial search result, given by Google for 
some specific query term, as ‘r’. As was described before, 
after n times collecting the ClickThrough data, for the 
specified query term, the algorithm is executed and the result 
in the intermediate database is rearranged such that the links 
which have been clicked more often stand the chance of 
climbing up the ranking order. This reordered list is named r*.  

 
TABLE 2. FIRST EXAMPLE: COLLECTED CLICKTHROUGH DATA FROM TEN 

USERS AND THE CALCULATED DISPLACEMENT AND RANKING RE-
ARRANGEMENT 

r l1 l2 l3 l4 l5 l6 l7 l8 l9 l10
1 2 3 4 5 6 7 8 9 1

r1 1 3 4 2 5 8 6 7 9 1
r2 2 3 4 1 5 6 8 7 9 1
r3 1 3 5 2 4 6 7 8 9 1
r4 1 4 2 3 5 6 7 8 9 1
r5 1 2 3 4 5 6 7 8 9 1
r6 2 1 3 5 4 6 7 8 9 1
r7 1 2 4 3 5 6 7 9 10 8
r8 1 2 6 3 4 5 7 8 9 1
r9 1 3 2 4 5 6 7 8 9
r10 1 5 2 3 4 6 7 8 9 1

Displacement
0 2 -1 -1 0 1 1 -2 0 0
3 -1 -1 -1 0 0 1 -1 0 0
0 2 -1 1 -2 0 0 0 0 0
0 1 1 -2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 -1 0 1 -1 0 0 0 0
0 0 1 -1 0 0 0 2 -1 -1
0 0 1 1 1 -3 0 0 0
0 1 -1 0 0 0 0 0 0
0 1 1 1 -3 0 0 0 0

Average Displacement
0.4 0.5 0 -0.1 -0.5 -0.2 0.2 -0.1 -0.1 -0.1

Avg Disp + original rank
1.4 2.5 3 3.9 4.5 5.8 7.2 7.9 8.9 9.9

Reordered links r*

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

0
0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

 
 

τ can be calculated for the sets of displacements, using r and 
r* separately. If our model is affective, then τ (r*, ri), Tau  

TABLE 3. SECOND EXAMPLE: COLLECTED CLICKTHROUGH DATA FROM 
TWENTY USERS AND THE CALCULATED DISPLACEMENT AND RANKING RE-

ARRANGEMENT 
r l1 l2 l3 l4 l5 l6 l7 l8 l9 l10
r1 l2 l3 l1 l5 l6 l4 l7 l8 l9 l10
r2 l2 l1 l3 l5 l4 l6 l7 l10 l8 l9
r3 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10
r4 l2 l7 l3 l1 l4 l5 l6 l8 l9 l10
r5 l1 l3 l2 l4 l5 l6 l8 l7 l9 l10
r6 l2 l5 l6 l8 l1 l3 l4 l7 l9 l10
r7 l1 l3 l4 l5 l2 l6 l7 l8 l9 l10
r8 l2 l3 l4 l5 l1 l6 l7 l8 l9 l10
r9 l2 l3 l1 l4 l5 l6 l7 l8 l9 l10
r10 l2 l3 l1 l5 l6 l7 l8 l9 l4 l10
r11 l2 l1 l3 l4 l5 l8 l9 l10 l6 l7
r12 l1 l3 l2 l4 l5 l6 l8 l7 l9 l10
r13 l2 l3 l1 l4 l5 l6 l7 l8 l9 l10
r14 l1 l2 l3 l4 l5 l6 l7 l8 l10 l9
r15 l2 l5 l1 l3 l4 l6 l7 l8 l9 l10
r16 l2 l3 l1 l5 l4 l6 l7 l8 l9 l10
r17 l2 l1 l3 l5 l4 l6 l7 l8 l9 l10
r18 l4 l2 l5 l1 l3 l8 l9 l7 l6 l10
r19 l1 l2 l5 l3 l4 l6 l7 l8 l9 l10
r20 l2 l3 l7 l1 l5 l6 l4 l8 l9 l10

Displacement
2 -1 -1 2 -1 -1 0 0 0
1 -1 0 1 -1 0 0 1 1 -
0 0 0 0 0 0 0 0 0 0
3 -1 0 1 1 1 -5 0 0 0
0 1 -1 0 0 0 1 -1 0 0
4 -1 3 3 -3 -3 1 -4 0
0 3 -1 -1 -1 0 0 0 0 0
4 -1 -1 -1 -1 0 0 0 0
2 -1 -1 0 0 0 0 0 0 0
2 -1 -1 5 -1 -1 -1 -1 -1
1 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 1 -1 0 0
2 -1 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 1
2 -1 1 1 -3 0 0 0 0 0
2 -1 -1 1 -1 0 0 0 0
1 -1 1 0 -1 0 0 0 0 0
3 0 2 -3 -2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
3 -1 -1 3 0 0 -4 0 0 0

Avg Disp Δ
1.60 -0.40 -0.15 0.60 -0.70 -0.20 -0.35 -0.30 -0.05 -0.05

Δ + original rank
2.60 1.60 2.85 4.60 4.30 5.80 6.65 7.70 8.95 9.95

Reordered links r*
l2 l1 l3 l5 l4 l6 l7 l8 l9 l10

0
2

0

0

0

0

 
 
value calculated with r* and ri, should be larger than the Tau 
calculated with r, τ (r, ri). Saying that, it is not always 
possible that τ (r*,ri)>τ (r, ri) is valid for every i (1 ≤ i ≤ n) 
for obvious reasons such as noise and less reliable 
ClickThrough data collected from some users. Therefore, if 
τ (r*,ri)>τ (r, ri) materializes for the majority of ri values 
then the objective of the presented approach is verified.  

Consequently, Kendall’s Tau was applied to the data in 
Tables 2 and 3, collected by our proxy server, in order to 



      
      
      
    

0

verify the advantage of the arraignments provided by the 
presented model. For Table 2, Tau values were calculated for 
the original ranking (r) and the reordered ranking (r*) against 
r1, r2,…, and r10 and the outcome was compared in Table 4. 

 
Table 4. Values of Tau for Table 2 

Value of i 1 2 3 4 5 6 7 8 9 1

Tau(r,ri) 0.87 0.82 0.82 0.93 0.93 0.82 0.87 0.91 0.96 1
Tau(r*,ri) 0.82 0.87 0.87 1 1 0.87 0.91 0.96 0.91 0.96  

 
As it is illustrated, τ (r*,ri) is larger than τ (r,ri) for seven 

cases out of ten, which indicates better ordering by the 
proposed system in 70% of the cases. Figure 5 illustrates the 
difference between the Tau values for each ri reflected in table 
4. In Table 5, the calculated values of Tau, for the entries in 
Table 3 are demonstrated. Yet again for this data, 
τ (r*,ri)>τ (r, ri) is valid for 75% of  the cases. Figure 6 
illustrates these results graphically. 

Fifteen such data sets (as in Tables 2 and 3) were collected 
for fifteen different sets of keywords and over 20 users 
interacted with the proxy server for each set of keyword. In an 
average of %73 of the cases the proposed system provided 
better ordering compared to the original ordering of Google 
which is a considerable superiority. This outcome is not 
surprising. This is obviously for the reason that in the 
calculation of r*, the users’ choices were collected and 
considered in the rearrangement process.  
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Figure 5. Comparison of Tau’s from Table 4 
  

In order to evaluate the proposed system even further, the 
values of Tau were treated statistically. Table 6 presents the 
values for the number of times τ (r*,ri) is greater than its 
counterpart and vice-versa, mean and the standard deviation 
of the Tau vectors for data in Tables 4 and 5. 

From Table 6, it is observable that in both cases, the mean 
value for τ (r, r*) is larger than the mean value of τ (r, ri), 
with a small standard deviation for both sets of Tau values. 

The small standard deviations show that the values of Tau for 
both r and r* are very close to their mean and therefore the 
computation of the means for satisfactory evaluation is 
reasonable.  

These outcomes were closely followed by the other data 
sets (total of fifteen), showing that the presented system, by 
taking the users feedbacks into consideration, provides more 
reasonable ordering compared to what Google is providing. 

Furthermore, since this system does its computation 
dynamically, as the preferences of the users change for a 
particular query term, it modifies the ordering to better reflect 
the users’ choice. In other words, the presented mechanism 
always reflects the current preferences of the users. The main 
achievement of this model over the contemporary models, 
such as [10] and [11], is that it is taking into consideration the 
choice of the majority of the users and allows the links they 
prefer to come forward in the ranking. 

Major search engines like Google have recently started 
making use of the users’ feedback to study their behavior. For 
this, Google uses the Google Toolbar [14]. This toolbar has a 
stealth functionality of sending the information of the pages 
visited by the user to the Google server, if the user enables the 
advanced features. 

VI. CONCLUSION AND FUTURE WORK 
In this work, a new approach for enhancing the ordering of 

the query results, applicable to any search engine as an add-on 
module, is presented. The developed system is general enough 
to be applied to any search engine to improve the quality of its 
results. The initial experimental results are very encouraging; 
nevertheless, the system could be tested after a longer period 
of usage to be evaluated thoroughly. Since this system forms 
the query results based on the users’ implicit feedback 
(ClickThrough data), it is bounded to get better results as the 
volume of its usage increases. The model is designed to give 
more weight to the choices made by a group of people with 
the largest number of users, for a given set of keywords. The 
fact that the lead players in the market such as Google have 
also started to employ some approaches for using the 
ClickThrough data, to analyze the choices made by the users, 
reinforces the argument of this work. The main advantage of 
this work over other similar models is our approach for 
combining the collected ClickThrough data, from multiple 
users, to rearrange the query result that provides a better 
ordering. The presented model becomes more stable and noise 
resistant as the number of the users, interacting with the 
interface, is increased. 

Saying that, in the presented system, only feedbacks in the 
form of links that are visited by the users are considered. 
There is another form of feedback that could be collected that 
is the time spent by a user on a linked document from the 
result set. Adding this feature would make the ordering more 
accurate, since the time actively spent by an individual on a 



      
      
      
    
document usually reflects the interest of the user in the document.  

TABLE  5. VALUES OF TAU FOR TABLE 3 
Value of i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
Tau(r,ri) 0.9 0.82 0.63 0.9 0.86 0.82 0.82 0.64 0.78 0.86 0.78 0.78 0.94 0.82 0.89 0.78 0.62 0.89 0.78 0.84
Tau(r*,ri) 0.91 0.88 0.7 0.82 0.88 0.87 0.75 0.89 0.87 0.78 0.89 0.86 0.91 0.94 0.94 0.80 0.65 0.88 0.80 0.91

0
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Figure 6. Comparison of Tau’s from Table 5 

 
TABLE 6.  STATISTICAL COMPARISON OF THE VALUES OF TAU 

 
 

 
 
 
 

Another enhancement to the present model could be the 
personalization of the results to each user or to a category to 
which a user belongs. In order to personalize the query results, 
only the feedbacks from the previous queries of a particular 
group of users should be utilized. At the same time to 
personalize according to a category, the feedback from the 
users that belong to the same category could be used to 
rearrange the results. The categories can be decided according 
to the initial personal information and interests provided by 
the user. These can be again sub-categorized into finer groups. 
In this manner, the results can reflect the choice of people 
with common interests. 
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