

Extracting Model Clones
from Conceptual Schemas

E. Faliagka, M. Rigou, S. Sirmakessis, and G. Tzimas

Abstract—The paper presents an overview of techniques and

tools that enable the effective evaluation and refactoring of a Web
application’s conceptual schema. Moreover, based on the
introduction of the notion of model clones, as partial conceptual
schemas that are repeated within a broader application model and
the notion of model smells, as certain blocks in the Web
applications model that imply the possibility of refactoring, this
paper illustrates a methodology and a tool for detecting and
evaluating the existence of potential model clones, in order to
identify problems in an application’s conceptual schema by means
of efficiency, consistency, usability and overall quality. The
proposed methodology can be deployed either in the process of
designing an application or in the process of re-engineering it.
Evaluation is performed according to a number of inspection
steps, starting from a first level evaluation of the compositions
used in the hypertext design and proceeding to a second level
evaluation concerning data manipulation and presentation to the
user.

Index Terms—Conceptual Schema, Model Clones, Model
Smells, Refactoring, Web Modeling.

I. INTRODUCTION

 One of the intrinsic features of real-life software environments
is their need to evolve. As the software is enhanced, modified,
and adapted to new requirements, the code becomes more
complex and drifts away from its original design, thereby
lowering the quality of the software. Because of this, the major
part of the software development cost is devoted to software
maintenance ([1], [2]). Improved software development
methodologies and tools cannot resolve this problem because
their advanced capabilities are mainly used for implementing
new requirements within the same time slot, making software
once again more complicated [3]. To cope with this increased
complexity one needs techniques for reducing software
complexity by incrementally improving the internal software

Manuscript received April 17, 2006.
E. K. Faliagka is with the Computer Engineering and Informatics

Department, University of Patras, Rio 26504, Greece (e-mail:
faliagka@ceid.upatras.gr).

M. I. Rigou is with the Computer Engineering and Informatics Department,
University of Patras, Rio 26504, Greece (e-mail: rigou@ceid.upatras.gr).

S. P. Sirmakessis, is with Applied Informatics in Administration and
Economy Department, Technological Educational Institution of Messolonghi,
Nea Ktiria 30200, Greece (e-mail: syrma@teimes.gr).

G. E. Tzimas is with the Research Academic Computer Technology
Institute, N. Kazantzaki str., Patras University, Rio Patras 26500, Greece
(phone: 0030-2610-960420; fax: 0030-2610-960322; e-mail: tzimas@cti.gr).

quality.
Modern web applications support a variety of sophisticated

functionalities incorporating advanced business logic,
one-to-one personalization features and multimodal content
delivery (i.e. using a diversity of display devices). At the same
time, their increasing complexity has led to serious problems of
usability, reliability, performance, security and other qualities
of service in an application's lifecycle.

The software community, in an attempt to cope with this
problem and with the purpose of providing a basis for the
application of improved technology, independently of specific
software practices, has proposed a number of modeling
methods and techniques that offer a higher level of abstraction
to the process of designing and developing Web applications.
Indicative examples include RMM [4], Araneus [5] and HDM
[6], which influenced several subsequent proposals for Web
modeling such as HDM-lite [7] and OOHDM [8]. Extensions
to the UML notation [9] to make it suitable for modeling Web
applications have been proposed by Conallen [10], [11].
Finally, Web Modeling Language - WebML [12] provides a
methodology and a notation language for specifying complex
Web sites and applications at the conceptual level and along
several dimensions.

Most of the above methodologies are based on the key
principle of separating data management, site structure and
page presentation and provide formal techniques and means for
an effective and consistent development process, and a firm
basis for Web application re-engineering and maintenance.

Deploying a methodology for the design and development of
a Web application enhances effectiveness, but does not
guarantee optimization in the design process, mainly due to the
restricted number of available extreme designers/programmers
[13]. Moreover, most applications are developed by large
teams, leading to communication problems in the
design/development process, often yielding products with large
numbers of defects. In most of the cases, due to the lack of time,
designers reuse their previous work and experience without
trying to fully adapt it to the requirements of the project at hand,
resulting to “bad” cases of reuse. This situation stresses the
need for restructuring/refactoring applications, even in their
conceptual level, and the fact that effective modeling must be
treated as a first class citizen and be considered from the very
early and during all stages of the design process.

One of the basic goals of this paper is to argue the need to
consider all aspects concerning effective design from the
beginning in the Web application development cycle. Since

Engineering Letters, 13:3, EL_13_3_23 (Advance online publication: 4 November 2006)
__

mailto:faliagka@ceid.upatras.gr
mailto:rigou@ceid.upatras.gr
mailto:syrma@teimes.gr
mailto:tzimas@cti.gr

internal quality is a key issue for an application’s success, it is
important that it is dealt with through a design view, rather than
an implementation view only.

II. MODEL CLONING & MODEL SMELLS
Restructuring, refactoring and code cloning are well known

notions in the software community. According to the reverse
engineering taxonomy of Chikofsky and Cross [14],
restructuring is defined as: “… the transformation from one
representation form to another at the same relative abstraction
level, while preserving the subject system’s external behavior
(functionality and semantics). A restructuring transformation is
often one of appearance, such as altering code to improve its
structure in the traditional sense of structured design. While
restructuring creates new versions that implement or propose
change to the subject system, it does not normally involve
modifications because of new requirements. However, it may
lead to better observations of the subject system that suggest
changes that would improve aspects of the system.”

In the case of object-oriented software development the
definition of refactoring is basically the same: “… the process
of changing a software system in such a way that it does not
alter the external behavior of the code, yet improves its internal
structure” [15]. The key idea here is to redistribute classes,
variables and methods in order to facilitate future adaptations
and extensions.

Code cloning or the act of copying code fragments and
making minor, non-functional alterations, is a well known
problem for evolving software systems leading to duplicated
code fragments or code clones. Code cloning can be traced by
code smells that is, certain structure in code that suggests the
possibility of refactoring [15].

Roundtrip engineering has reached a level of maturity that
software models and program code can be perceived as two
different representations of the same artifact. With such an
environment in mind, the concept of refactoring can be
generalized to improving the structure of software instead of
just its code representation.

There is a variety of techniques for supporting the process of
detecting code cloning in software systems. Some of them are
based on string and token matching ([16], [17], [18], [19], [20],
[21], [22]), some others on comparing sub-trees and sub-graphs
([23], [24], [25]), while others are based on metrics
characterization ([26], [27], [23], [28], [29]). Moreover, there
are a large number of tools that mine clones in source code and
support a variety of programming languages such as C, C++,
COBOL, Smalltalk, Java, and Python.

Clone mining in Web applications was first proposed by Di
Lucca et al. [30], who study the detection of similar HTML
pages by calculating the distance between page objects and
their degree of similarity. Static page clones can also be
detected with the techniques proposed by Boldyreff and
Kewish [31] and Ricca and Tonella [32], with the purpose of
transforming them to dynamic pages that retrieve their data

form a database. Despite that, the decreasing percentage of
Web sites that merely publish static content and the current
shift towards Web applications with high degree of complexity,
lead to the need to introduce new techniques, capable of coping
with the problem. In the specific domain of Web application
modeling, the notion of cloning has not yet been introduced.
Even though a few model-level restructuring techniques have
been proposed, this certain issue remains open for the scientific
community [3]. Moreover, the existing techniques are based
exclusively on UML as the modeling language and there is no
technique based on one of the rest of Web application modeling
languages and methods.

In the past, a number of research attempts have been
conducted in the field of refactoring applications based on their
design model. Most of them focus on standalone software
artifacts and deploy UML to perform refactoring [2]. But
despite the popularity of model-driven methodologies, there is
an absence of assessment/analysis throughout the design and
development process.

In a previous work [33] we extended the notion of code
cloning to the modeling level of a Web application.
Analogously to code cloning, we introduced the notion of
model cloning as the process of duplicating, and eventually
modifying, a block of the existing application’s model that
implements certain functionality. This ad-hoc form of reuse
occurs frequently during the design process of a Web
application. Moreover, model smells are defined as certain
blocks in the Web application’s model implying the possibility
of refactoring.
Ιn this paper we provide a methodology and a tool

supporting the evaluation of the conceptual schema of an
application, by means of the design features incorporated in the
application model. The objective is to capture cases (i.e. model
clones) which have different design, but produce the same
functionality, thus resulting in inconsistencies and ineffective
design and may have been caused by inappropriate forms of
model reuse.

The evaluation of the conceptual schema is performed in two
steps of inspection: a first level evaluation of the hypertext
compositions used in the hypertext design, and a second level
evaluation of data manipulation and presentation to the user.

The proposed methodology can be deployed either in the
process of designing an application or in the process of
re-engineering it. In this work, WebML has been utilized as the
design platform for the methods and tool proposed, mainly due
to the fact that it supports a concrete framework for the formal
definition of data intensive Web Applications and the fact that
it is supported by WebRatio [34], a robust CASE tool.

The remaining of this paper is structured as follows: Section
III provides a brief overview of WebML and its basic notation,
section IV introduces the proposed methodology for mining
model clones in the conceptual schema of an application,
whereas section V illustrates the design and functionality of the
implemented tool that applies the methodology. Finally, section
VI concludes the paper and discusses future steps.

III. WEBML: A BRIEF OVERVIEW
WebML is a conceptual model for Web application design

[35]. It offers a set of visual primitives for defining conceptual
schemas that represent the organization of the application
contents and the hypertext interface. These primitives are also
provided with an XML-based textual representation, which
allows specifying additional detailed properties that cannot be
conveniently expressed in terms of visual notation. The
organization of data is specified in WebML by exploiting the
E-R model, which consists of entities (defined as containers of
data elements) and relationships (defined as semantic
connections between entities). WebML also allows designers to
describe hypertexts for publishing and managing content,
called site views. A site view is a specific hypertext, which can
be browsed by a particular class of users. Within the scope of
the same application, multiple site views can be defined.

Site views are internally organized into hypertext modules,
called areas. Both site views and areas are composed of pages,
which in turn include containers of elementary pieces of
content, called content units. Typically, the data published by a
content unit are retrieved from the database, whose schema is
expressed by the E-R model. The binding between content
units (and hypertext) and the data schema is represented by the
source entity and the selector defined for each unit. The source
entity specifies the type of objects published by the content
unit, by referencing an entity of the E-R schema. The selector is
a filter condition over the instances of the source entity, which
determines the actual objects published by the unit. WebML
offers predefined units, such as data, index, multidata, scroller,
multichoice index, and hierarchical index (some of them are
presented in Table 1), that express different ways of selecting
entity instances and publishing them in a hypertext interface.

To compute its content, a unit may require the “cooperation”
of other units, and the interaction of the user. Making two units
interact requires connecting them with a link, represented as an
oriented arc between a source and a destination unit. The aim of
a link is twofold: permitting navigation (possibly displaying a
new page, if the destination unit is placed in a different page),
and enabling the passing of parameters from the source to the
destination unit.

Table 1. Some basic WebML elements. The complete set is listed in
[35].

Data unit

Entity
[Selector]

Multidata unit

Entity
[Selector]

Index unit

Entity
[Selector]

HierarchicalIndex

Entity1
[Selector1]

NEST Entity2
[Selector2]

Entry unit

Displays a
set of
attributes for
a single
entity
instance.

Displays a
set of
instances for
a given
entity.

Displays a
list of
properties of
a given set of
entity
instances.

Displays
index entries
organized in
a multi-level
tree.

Displays
forms for
collecting
input data
into fields

Finally, WebML models the execution of arbitrary business

actions, by means of operation units. An operation unit can be

linked to other operation or content units. WebML incorporates
some predefined operations (enabling content management) for
creating, modifying and deleting the instances of entities and
relationships, and allows developers to extend this set.

IV. THE METHODOLOGY
In what follows we present a quick overview of the

methodological approach for mining potential model clones at
the conceptual schema of a Web application. A more detailed
description can be found in [33]. The methodology comprises
three distinct phases.

In the first phase, we transform the Web application’s
conceptual schema into a set of directed graphs, representing
the navigation structure and the distribution of content among
the areas and pages of the application. This forms the basis for
the information extraction mechanism required for the next
phase. Then, we extract potential model clones and information
related to the navigation and semantics of the application by
utilizing graph mining techniques, and finally, in the third
phase we provide a first level categorization of the potential
model clones according to a number of criteria.

A. Conceptual Schema Transformation
In this phase the application’s conceptual schema is

preprocessed in order to provide the means for the extraction of
potential model clones. Assuming an application comprising a
number of site views, we construct a first set of graphs
representing the navigation, the content presentation and the
manipulation mechanisms of the application. More specifically,
we define a site view as a directed graph of the form G(V, E, fV,
fE), comprising a set of nodes V, a set of edges E, a
node-labeling function fV: V→ΣV, and an edge-labeling
function fE: E→ΣE. Function fV assigns letters drawn from an
alphabet ΣV to the site view nodes, whereas fE operates likewise
for links and the edge alphabet ΣE. ΣV has a different letter for
each different WebML element (content units, operations,
pages, areas, etc).

Correspondingly, ΣE consists of all the different kinds of
links (contextual, non contextual, transport & automatic).
Besides the predefined WebML links, we introduce a special
kind of edge (labeled ‘c’) in order to represent the containment
of content units or sub-pages in pages, as well as pages,
sub-areas and operation units in areas. Note that there can be
arbitrary containment sequences. A transformation example is
depicted in Fig. 1 (Transformation A), where we transform a
page containing several content units, interconnected by a
number of contextual links.

Following a similar procedure, for every site view of the
hypertext schema we create a second graph representing the
data distribution within each area, sub-area and page, thus
constructing a second set of graphs. In this case we define a site
view as a directed graph of the form Q(N, L, fN, fL), comprising
a set of nodes N, a set of edges L, a node-labeling function fN:
N→ΣN, and an edge-labeling function fL: L → ΣL.

Figure 1. Transformation of a WebML hypertext composition to its graph
equivalents

Function fN assigns letters drawn from an alphabet ΣN to the

site view nodes, whereas fL has the same role for links and the
edge alphabet ΣL. ΣN has a different letter for each different
source entity used by the WebML elements comprising the
hypertext schema, as well as for the pages, sub-pages, areas and
sub-areas of the site view. ΣL comprises all the different kinds
of WebML links in order to model the context navigation
within the hypertext schema. As in the previous transformation,
we also introduce edges denoting containment. A
transformation example is depicted in Fig. 1 (Transformation
B).

B. Potential Model Clones Extraction
Having modeled the navigation, content presentation and

manipulation mechanisms of the application, as well as the data
distribution within each site view, the next step is to capture
model smells.

We traverse the first set of graphs constructed in the previous
phase, in order to locate identical configurations of hypertext
elements (subgraphs), either within a graph representing a
single site view or among graphs representing different site
views. The recovery of the various configurations can be
achieved using graph mining algorithms.

Intuitively, after modeling the site views as directed graphs
the task is to detect frequently occurring induced subgraphs.
The problem in its general form is synopsized to finding
whether the isomorphic image of a subgraph exists in a larger
graph. The latter problem has proved to be NP-complete (Garey
and Johnson 1979) [36]. However, quite a few heuristics have
been proposed to face this problem with the most prominent
such approaches being the gSpan [37], the CloseGraph [38]
and the ADI [39]. Any of the above approaches can be utilized
for extracting the hypertext configurations.

Likewise, employing the same graph mining techniques, we
traverse the second set of graphs in order to locate identical
configurations of data elements (source entities) along with
their variants.

Finally, we also locate compositions of identical hypertext
elements referring to exactly the same content but
interconnected with different link topologies. Ignoring the
edges in the first set of graphs (except from those representing
containment) we mine identical hypertext configurations
within a graph or among graphs. Then, we filter the sets of

subgraphs acquired utilizing the information represented in the
second set of graphs (source entities), and keep those
compositions that refer to the exact same data.

C. Potential Model Clones Categorization
In this phase, we categorize all the retrieved subgraph

instances, in order to facilitate the quality evaluation procedure
of the overall application conceptual schema.

More precisely, for every instance of the hypertext
configurations mined in the first case of graphs, we make a first
level categorization according to the source entities and
attributes that the WebML elements of the configurations refer
to. To accomplish that, we utilize the information provided by
the XML definition of each site view, where there is a detailed
description of the source entities and the selectors of each
element included in the site view [12].

For a specific configuration retrieved, we categorize its
instances in the various site views of the application as
configurations constituted by WebML elements referring to:

• exactly the same source entities and attributes,
• exactly the same source entities but different attributes (in

the worst case, the only common attribute is the object
identifier or OID),

• partially identical source entities (i.e. Fig. 2),
• different source entities.

Instance A

Index unit

Entity BEntity A

Data unit Index unit

Entity C

Multidata unit

Entity D

Instance B

Index unit

Entity ZEntity A

Data unit Index unit

Entity Y

Multidata unit

Entity D

Figure 2. Categorizing potential model clones at the Hypertext Level.

We also categorize (exploiting the XML definitions) every
instance of the data element configurations acquired by the
graphs representing the data distribution as configurations
constituted by source entities utilized by:

• different WebML elements,
• similar WebML elements, that is elements of the same

type such as composition or content management (e.g. in
Fig. 3, entity A is utilized by two composition units, a
multidata and an index).

• identical WebML elements.
The last category captures exactly the same hypertext

configurations as the first case of the previous categorization.

Instance B

Index unit

Entity C

Multidata unit

Entity D

Index unit

Entity A Entity B

Data unit

Instance A

Index unit

Entity C

Multidata unit

Entity D

Multidata unit

Entity A Entity B

Data unit

Figure 3. Categorizing potential model clones at the Data Level.

Finally, potential model clones are also the sets of hypertext

configurations retrieved in the third step of the previous phase,
where compositions of identical WebML elements referring to
common data sources, utilizing different link topologies, have
been identified (Fig. 4).

Instance A

Index unit

Entity C

Multidata unit

Entity D

Multidata unit

Entity A Entity B

Data unit

Instance B

Index unit

Entity C

Multidata unit

Entity D

Multidata unit

Entity A Entity B

Data unit

Figure 4. Potential model clones based on link topology.

Having identified the potential model clones at the hypertext

and data representation level, we can provide metrics for
categorizing the application conceptual schema through a
quality evaluation which specifies factors (referring to the
identified clones) denoting possible need for refactoring. The
evaluation is threefold: First, we evaluate the model clones by
means of consistency, based on their variants throughout the
conceptual schema. Second, we quantify the categorization
based on the similarity among potential model clones and third
we make an evaluation based on the topology of links. A
detailed description of such metrics, as well as refactoring
proposals can be found in [33].

Due to space limitations in what follows we illustrate the
tool’s design and functionality covering a part of the first two
phases of the methodology.

V. MODEL CLONE EXTRACTION TOOL

A. Implementation Details
The implemented tool takes as input the XML definition of

one or more site views of a Web application’s design and
transforms it into one or more graphs.

The first transformation executes as follows: each WebML

element (i.e. index unit, data unit, etc.) is represented by a graph
node and the connection between two units by a graph edge.
Next, all occurrences of repeated subgraphs in the initial
graph(s) are identified and highlighted. Finally, the tool outputs
statistics showing the number of subgraph occurrences, along
with the corresponding graph sizes.

The second transformation is similar with the first with the
difference that each graph node represents a source entity. The
tool highlights all occurrences of subgraphs with the exact
same source entities and outputs the respective statistics.

Finally, in the third transformation each graph node
represents the type of each WebML element (i.e. index unit,
data unit, etc) and the corresponding source entity in order to
locate compositions of identical hypertext elements referring to
the exact same content.

The interface of the tool allows a stepwise execution of the
successive components described below:

• Graph generation. Presents a dialog box asking to locate
the XML definition file to be used as input to gSpan [37]
for finding all subgraphs of the generated graph.
Moreover, the file to be fed to graphGrep [40] (a program
that locates subgraph occurrences in a graph) is also
generated during this phase, along with a Visio
representation of the initial graph (in form of a flowchart
and using WebML elements).

• Subgraph Statistics. A set of statistics concerning the
identified subgraphs is generated.

• Subgraph identification. All identified subgraphs are
highlighted (in turn) in the Visio representation of the
initial graph.

The tool was implemented using the Microsoft Visual Studio
C# .NET environment, Microsoft Office Visio 2003, the
interop library for the communication between Visual Studio
and Visio, as well as gSpan and graphGrep, and its architecture
is depicted in Fig. 5. The above implementation configuration
was imposed by the fact that the source code of WebRatio [34]
was not available. Thus, implementation was based on the
XML definition of the conceptual schema, and the visual
representation deployed Microsoft Visio.

gSpan takes as input a file, which includes all the nodes and
the edges of a graph. It is executed in a Linux environment and
outputs a file including all subgraphs of the initial graph.

graphGrep is compiled in Windows via the Cygwin platform
and it is called by the application using as input two files; the
first file contains one or more graphs representing the
conceptual schema and the second file a subgraph to be located
(query subgraph). The output of this program is a file that
shows in which graph(s) and at which place(s) the subgraph
was found.

Edge direction is a crucial requirement for our analysis, but
neither gSpan, nor graphGrep support directed graphs. In order
to overcome this limitation an auxiliary node is inserted
between each pair of nodes named after the initials of the types
of the two nodes.

Figure 5. Architecture of the Model Clone Extraction Tool.

For instance, to model an edge directed from node d to node i

(Fig. 6a), a new node named di is inserted between the two
nodes (Fig. 6b). These auxiliary nodes are filtered out from
graph representations that get generated by the tool, as well as
from the produced statistics.

Figure 6. Modeling directed graphs in gSpan and graphGrep.

B. An Exemplifying Paradigm
Given the XML definition file of an instance of a site view,

as shown in Fig. 7, the tool generates a graph representation in
Visio file format as depicted in Fig. 8, where P stands for 'page',
I for 'index unit', D for 'data unit', M for 'multidata unit', c for
'contains', n for 'non contextual' and C for ‘contectual’.
Moreover, the tool creates the files to be used as input to gSpan
and graphGrep respectively.

Fig. 9 presents the generated WebML representation of the
initial .xml file. gSpan ouputs a file containing the subgraphs of
the initial graph. This file is fed to the second component of the
tool.

In Table 2 we see the total number of subgraphs identified in

the initial XML definition file of the overall web application,
sorted by their frequency of appearance, along with their size.
Fig. 10 and 11 present the second and the third representation
of the initial .xml file.

In Fig. 11 the label of each node consists of a letter declaring
its type (d for data unit, I for index unit, etc.) and a unique
number identifying the entity.

In Tables 3 and 4 we see the statistics showing the number of
subgraph occurrences along with the graph sizes in the second
and third case respectively. Fig. 12 depicts subgraph I-D as
highlighted (in the second case) in the initial graph. Concluding,
in Fig. 13 subgraph P-Artist is highlighted (in the third case) in
the initial graph in Visio.

In order to assist the designer in locating model clones, the
identified subgraphs get highlighted in the visual representation
of the initial graph in turn (each time the user clicks, a different
subgraph is highlighted). Moreover, each subgraph is presented
with a different color in order to be more easily discernable.

Figure 7. The .xml file used as input.

Figure 8. The generated graph representation of the initial .xml file in Visio
format.

Figure 9. The generated WebML representation of the initial .xml file.

Table 2. Generated statistics about subgraph occurrences and
respective sizes in the conceptual schema of the overall Web
application.

Times

appearing
Subgraph

size
No of

subgraphs
4 2 1
3 2 1
3 3 2
3 4 1
2 2 2
2 3 5
2 4 11
2 5 13
2 6 7
2 7 4
1 2 2
1 3 5
1 4 6
1 5 20
1 6 42
1 7 60
1 8 60
1 9 41
1 10 18
1 11 4

TOTAL No. of subgraphs 305

c

c
c

c

c
c

c

c

C

C

C

n

C

n

n

Artist

Artist

Artist

ArtistTo
Album

Album

Album
ToSupp

orts

Album
ToTrack

Album
ToArtist

P

P

P

P

Figure 10. The second generated graph representation of the initial .xml file in
Visio format.

c

c

c

c

c

c

c

c

C

C

C

n

C

n

n
i0

d0

d0

i1

d2

m3

m4

d5

P

P

P

P

Figure 11. The third generated graph representation of the initial .xml file in
Visio format.

Table 3. Generated statistics about subgraph occurrences and
respective sizes in in the second case.

Times
appearing

Subgraph
size

No of
subgraphs

112 2 9
85 1 11
75 2 7
62 1 8
57 1 7
52 1 6
48 2 5
44 1 9
42 2 6
40 1 12
36 4
33 1 5
16 1 10
15 2 3
15 1 4
6 1 3
5 2 2
4 4 4
3 4 2
3 4 3
3 3 5
1 1 2

TOTAL No. of subgraphs 757

Table 4. Generated statistics about subgraph occurrences and
respective sizes in the third case.

Times
appearing

Subgraph
size

No of
subgraphs

2 4 1
TOTAL No. of subgraphs 1

c

c

c
c

c

c
c

c

C

C

C

n

C

n

n

D
P

D
M M

I
P

I

D
P D

P

Figure 12. The identified subgraph I-D highlighted.

c

c

c

c

c

c

c

c

C

C

C

n

C

n

n

Artist

AlbumTo
ArtistP

ArtistTo
Album

AlbumAlbumTo
Track

P

AlbumTo
Supports

Artist Artist
P

P

Figure 13. The identified subgraph P-Artist highlighted.

VI. CONCLUSION
In this paper we have illustrated a methodology and a tool

that aims at capturing potential problems caused by
inappropriate reuse, within the conceptual schema of a Web
application. We have introduced the notions of model cloning
and model smells, and provided a tool for identifying model
clones within an application’s hypertext model by mapping the
problem to the graph theory domain.

Even though the quality of conceptual schemas highly
depends on the selected modeling language, the proposed
methodology may be used by a series of languages with minor
(and straightforward) adjustments.

The most crucial limitation of the adopted approach is the
exhaustive nature of gSpan that locates and examines all
potential subgraphs. In the cases where the initial graph is
large, the size of the output file of gSpan makes it hard to apply
any further manipulation and exploitation. This is the reason
why future versions of the tool should embed restrictions
concerning the sizes of query subgraphs.

In the future we plan to apply the methodology to a large
number of Web application conceptual schemas, in order to
refine it and fine-tune the tool. We will also consider the
distribution and effect of design patterns within a conceptual
schema, in accordance with the process of model clones
identification.

REFERENCES
[1] D.M. Coleman, D. Ash, B. Lowther, & P.W. Oman, “Using Metrics to

Evaluate Software System Maintainability”, Computer, 27(8), 1994, pp.
44-49.

[2] T. Guimaraes “Managing Application Program Maintenance
Expenditure”. Communications of the ACM, 26(10), 1983, pp. 739-746.

[3] T. Mens, & T. Tourwe, “A survey of software refactoring”, IEEE
Transactions on Software Engineering, 30(2), 2004, pp. 126-139.

[4] T. Isakowitz, E.A. Sthor, & P. Balasubranian, “RMM: a methodology for
structured hypermedia design”, Communications of the ACM, 38(8),
1995, pp. 34-44.

[5] P. Atzeni, G. Mecca, & P. Merialdo P, “Design and Maintenance of
Data-Intensive Web Sites”, Proc. 6th International Conference on
Extending Database Technology, 1998, pp. 436-450.

[6] F. Garzotto, P. Paolini, & D. Schwabe, HDM – “A Model-Based
Approach to Hypertext Application Design”, ACM Transactions on
Information Systems, 11(1), pp. 1993, 1-26.

[7] P. Fraternali, & P. Paolini, “A Conceptual Model and a Tool Environment
for Developing More Scalable, Dynamic, and Customizable Web
Applications”, Proc. 6th International Conference on Extending Database
Technology, 1998, pp. 421-435.

[8] D. Schwabe, & G. Rossi, “An object-oriented approach to web-based
application design”, Theory and Practice of Object Systems (TAPOS),
4(4), 1998, pp. 207-225.

[9] G. Booch, I. Jacobson, & J. Rumbaugh, The Unified Modeling Language
User Guide, The Addison-Wesley Object Technology Series, 1998.

[10] J. Conallen, Building Web Applications with UML, Addison-Wesley,
1999.

[11] J. Conallen, “Modeling Web application architectures with UML”,
Communications of the ACM, 42(10), 1999, pp. 63–70.

[12] S. Ceri, P. Fraternali, & A. Bongio, “Web Modeling Language (WebML):
a Modeling Language for Designing Web Sites”, Proc. WWW9
Conference, Amsterdam, 2000.

[13] B. Boehm, Software Engineering Economics, Prentice Hall PTR, 1981.
[14] E. Chikofsky, & J. Cross, “Reverse engineering and design recovery: A

taxonomy”, IEEE Software, 7(1), 1990, pp. 3-17.
[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, & D. Roberts, Refactoring:

Improving the Design of Existing Code, Addison-Wesley, 1999.

[16] JH. Johnson “Identifying Redundancy in Source Code using
Fingerprints.” In the Proceedings of the CAS Conference, Toronto,
Canada, 1993, pp. 171–183.

[17] U. Manber “Finding Similar Files in a Large File System”, Proc. of the
USENIX Winter 1994 Technical Conference, San Francisco, USA, 1994,
pp. 1-10.

[18] JH Johnson “Substring Matching for Clone Detection and Change
Tracking”, Proc. of the International Conference on Software
Maintenance, Victoria, Canada, 1994, pp. 120-126.

[19] BS. Baker, “On Finding Duplication and Near-Duplication in Large
Software Systems”. In the Proceedings of the Second Working
Conference on Reverse Engineering, Toronto, Canada, 1995, pp. 86-95.

[20] Rieger M, Ducasse S Visual Detection of Duplicated Code. In the
Proceedings of the Workshop on Experiences in Object-Oriented
Re-Engineering, Brussels, Belgium, 1998, pp. 75-76.

[21] S. Ducasse,M. Rieger, S. Demeyer, “A language independent approach
for detecting duplicated code.” In the Proceedings of the International
Conference on Software Maintenance, IEEE Computer Society Press,
Oxford, UK, 1999, pp. 109–118.

[22] T. Kamiya, S. Kusumoto, & K. Inoue “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code.” IEEE Transactions On Software Engineering 28(7), 2002, pp.
654–670.

[23] K. Kontogiannis, “Evaluation Experiments on the Detection of
Programming Patterns Using Software Metrics.” In the Proceedings of the
4th Working Conference on Reverse Engineering, Amsterdam, The
Netherlands, 1997, pp 44-54.

[24] ID. Baxter, A. Yahin, L. Moura, M. Santa Anna, L. Bier “Clone Detection
Using Abstract Syntax Trees.” In the Proceedings of the International
Conference on Software Maintenance, Washington DC, USA, 1998, pp.
368-377.

[25] J. Krinke “Identifying Similar Code with Program Dependence Graphs.”
In the Proceedings of the 8th Working Conference on Reverse
Engineering, Stuttgart, Germany, 2001, pp. 301-309.

[26] J. Mayrand, C. Leblanc, EM. Merlo “Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics.” In the
Proceedings of the International Conference on Software Maintenance,
Monterey, USA, 1996, pp 244-254.

[27] B. Lague, D. Proulx, J. Mayrand, EM. Merlo, J. Hudepohl “Assessing the
Benefits of Incorporating Function Clone Detection in a Development
Process”, Proc. of the International Conference on Software Maintenance,
Bari, Italy, 1997, pp. 314-321.

[28] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, K. Kontogiannis
“Measuring Clone Based Reengineering Opportunities”, Proc. of the 6th
IEEE International Symposium on Software Metrics, Boca Raton, USA,
1999, pp. 292-303.

[29] G. Antoniou, G. Casazza, M. Di Penta, E. Merlo “Modeling Clones
Evolution Through Time Series”, Proc. of the International Conference on
Software Maintenance, Florence, Italy, 2001, pp. 273-280.

[30] GA. Di Lucca, M. Di Penta, AR. Fasolino, P. Granato “Clone Analysis in
the Web Era: an Approach to Identify Cloned Web Pages”, Proc. of the
7th IEEE Workshop on Empirical Studies of Software Maintenance,
Florence, Italy, 2001, pp. 107-113.

[31] C. Boldyreff, R. Kewish “Reverse Engineering to Achieve Maintainable
WWW Sites”, Proc. of the 8th Working Conference on Reverse
Engineering (WCRE’01), Stuttgart, Germany, 2001, pp. 249-257.

[32] F. Ricca, P. Tonella “Using Clustering to Support the Migration from
Static to Dynamic Web Pages.” In the Proceedings of the 11th
International Workshop on Program Comprehension, Portland, USA,
2003, pp. 207-216.

[33] M. Rigou, S. Sirmakessis, & G. Tzimas, “Model Cloning: A Push to
Reuse or a Disaster?” in Adaptive and Personalized Semantic Web: Proc.
16th ACM Hypetext, Springer, Studies in Computational Intelligence
(SCI) Vol. 14, pp. 37-55, 2006.

[34] WebRatio (2006). Available at: http://www.webratio.com.
[35] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, & M. Matera,

Designing Data-Intensive Web Applications, New York: Morgan
Kauffmann, 2002.

[36] MR Garey, & DS Johnson DS, (1979), Computers and Intractability: A
guide to NP-Completeness, New York: Freeman, 1979.

[37] X. Yan, & J. Han, “gSpan: Graph-based substructure pattern mining”,
Proc. International Conference on Data Mining (ICDM'02), Maebashi,
2002, pp. 721-724.

http://www.webratio.com/

[38] X. Yan, & J Han, “CloseGraph: mining closed frequent graph patterns”,
Proc. of ACM KDD03, 2003, pp 286-295

[39] C. Wang, W. Wang, J. Pei, Y. Zhu, & B. Shi, “Scalable Mining of Large
Disk-based Graph Databases”, Proc. of ACM KDD04, 2004, pp 316-325

[40] R. Giugno, D. Shasha, “GraphGrep: A Fast and Universal Method for
Querying Graphs”, Proc. International Conference in Pattern recognition
(ICPR), Quebec, Canada, August 2002. Available at:
http://www.cs.nyu.edu/shasha/papers/graphgrep/index.html.

Evanthia K. Faliagka (Karditsa, 1983) is an undergraduate student in
Computer Engineering and Informatics (Computer Engineering and
Informatics Department, University of Patras, Greece).
Her current research interests include Web Engineering and Web Modeling.

Maria I. Rigou (Athens, 1975) holds a diploma in Computer Engineering and
Informatics (Computer Engineering and Informatics Department, University of
Patras, Greece, Dec. 1997), an MSc in Computer Science and Technology
(Computer Engineering and Informatics Department, University of Patras,
Greece, Dec. 2000, thesis: “Interactive Systems Evaluation”) and a PhD in
Computer Science (Computer Engineering and Informatics Department,
University of Patras, Greece, July 2005, dissertation: “Effective Personalization
Algorithms based on Web Usage Mining”).
Her professional background includes technical coordination of R&D projects
with national and EU funding and S/W development for the private sector. She
is currently an adjunct assistant Professor at the Computer Engineering and
Informatics Department at the University of Patras teaching the course
“e-Business” and a scientific collaborator of the Research Academic Computer
Technology Institute (Patras, Greece). Her current research interests lay in the
areas of Adaptive Hypermedia, Web Personalization and Web Semantics. She
has publications in more than 8 journals and more than 30 conference
proceedings and is co-author of 5 book chapters and 2 books.

Spiros P. Sirmakessis (Ioannina, 1969) holds a diploma in Computer
Engineering and Informatics (Computer Engineering and Informatics
Department, University of Patras, Greece, 1992), and a PhD in Computer
Science (Computer Engineering and Informatics Department, University of
Patras, Greece, 1997, dissertation: “Computational Geometry and
Multidimensional Data structures”).
He is currently an Assistant Professor at the Department of Applied Informatics
in Administration and Economy in the Technological Educational Institution of
Messolonghi. Since 2004, he is the Head of the Data Bases and Information
Systems Sector and Director of the e-Business and Human Computer
Interaction Lab in the same department. During his professional career he has
undertaken numerous duties. He cooperates with RACTI since 1992 as the
Coordinator of the Internet and Multimedia Research Unit. He has coordinated
and partcipated in several R&D projects since 1992. These projects have been
funded by national and European funds. Since 1997, he works in the area of
software engineering, web mining, web engineering and distance learning. He
is author of 2 books and 6 chapters in books and editor of 3 books. His papers
have been published in journals (international and national) and international
and national conferences. Updated information is available at
http://www.hci-course.gr/bio.htm. Since 2001, he is a Consulting Professor in
the Hellenic Open University.
Prof. Sirmakessis is member of ACM, IEEE, and IASTED. He has chaired
several workshops and special sessions (refer to http://www.hci.gr/events.asp).

Giannis E. Tzimas (Trikala, 1972) holds a diploma in Computer Engineering
and Informatics (Computer Engineering and Informatics Department,
University of Patras, Greece, Dec. 1995), and a PhD in Computer Science
(Computer Engineering and Informatics Department, University of Patras,
Greece, July 2005, dissertation: “Performance Optimization & Effective
Design Solutions for Web Applications”).
He is currently an adjunct assistant Professor at the Computer Engineering and
Informatics Department at the University of Patras teaching the course “Human
Computer Interaction” and the technical coordinator of the Internet and
Multimedia Technologies Research Unit in Research Academic Computer
Technology Institute (http://www.cti.gr) (Patras, Greece). He has significant
professional experience in Web applications’ design and development and he
was the project manager of several R&D projects, such as the SOPHIA intranet
of the Athens 2004 Organizing Committee. His current research interests

include Web Engineering, Web Modeling, Intranets/Extranets and HCI. He has
publications in more than 40 international journals and conference proceedings
at these areas.

http://www.cs.nyu.edu/shasha/papers/graphgrep/index.html
http://www.hci-course.gr/bio.htm
http://www.hci.gr/events.asp

	I. INTRODUCTION
	II. Model Cloning & Model Smells
	III. WebML: A Brief Overview
	IV. The Methodology
	A. Conceptual Schema Transformation
	B. Potential Model Clones Extraction
	C. Potential Model Clones Categorization
	V. Model Clone Extraction Tool
	A. Implementation Details
	B. An Exemplifying Paradigm

	VI. Conclusion

