

Web Service Model for On-Line Load Flow
Monitoring of Multi-Area Power Systems

R. Ramesh and V.Ramachandran

Abstract—Web services, and more in general service-oriented

architectures (SOA), are emerging technologies of choice for
implementing distributed architectural models for performing
power system operations such as on-line load flow monitoring of
multi-area power systems in a complete secure, distributed and
platform independent environment. On-line load flow monitoring
requires the calculation of power flow solutions by using real-time
data obtained from the power system clients. The power system
client applications are running in a heterogeneous environment.
The proposed SOA model for on-line load flow monitoring is
highly distributed and has inherent features such as scalability,
reliability and also uses available computing power, hence
economic feasibility is taken care implicitly.

Index Terms— Distributed Systems, On-line Load flow
monitoring, Service-Oriented Architecture Web services.

I.

INTRODUCTION
 The power system operation and control needs huge volume
of data and they have been distributed in a heterogeneous
environment. Hence a new approach is required to enable the
power system data to be processed, analyzed and interpreted by
different power system clients. Existing power system
simulations are primarily desktop applications with a small
number of exceptions implemented on parallel processing
computers. The existing Web enabled models for power system
operations are mainly concerned with exchange of information
and do not provide convenient environment to solve power
system problems [1]. The rapid developments of the Internet,
Web service and distributed computing have opened the door
for feasible and cost effective solutions for multi-area power
system problems. The existing web enabled models for solving
multi-area power system problems are highly distributed and
are operating in a heterogeneous environment, need to have an
access to massive dataset and to do complex computations.

Manuscript received April 10, 2006
 R.Ramesh is with the department of Electrical and Electronics Engineering,

College of Engineering, Gunidy, Anna University, Chennai, India. (e-mail:
rramesh@ annauniv.edu).

 V.Ramachandrann was with Professor of Computer Science and Director of
Ramanujan Computing Centre, Anna University, Chennai India. (e-mail:
rama@ annauniv.edu).

 The Web protocols are completely vendor-, platform-, and
language-independent. Web services support Web-based
access, easy integration and service reusability. With
service-oriented architecture, everything is a service,
encapsulating behavior and providing the behavior through an
interface that can be invoked for use by other services on the
network. Services are self-contained, modular applications that
can be described, published, located and invoked over the
Internet.
 Chen and Lu demonstrated the potential advantages of the
Web as the platform for developing and deploying complex
power system simulations by using the distributed technologies
and model-view controller concepts [2]. Since the existing
Supervisory Control And Data Acquisition Systems (SCADA)
were developed based on different platforms using different
languages, the authors Qui et al proposed an Internet based
SCADA display system and tried to solve the legacy issues
using Java Native Interface (JNI), which is really a tedious
process [3]. An RMI (Remote Method Invocation) based
single-server/multiple-clients architecture has been proposed
by Nithiyananthan et.al in such a way that for every specific
period of time, the remote server obtains the power system data
simultaneously from the neighboring power systems which are
the clients registered with the remote load flow server and the
load flow solutions from the server have been sent back to the
respective clients [4].
 A complete Web based and platform independent power
system simulation package with various analysis distributed in
a clustered environment has been modeled by Irving et.al [5].
Sando et al. demonstrated through experimental results that
on-line security analysis could be executed in lesser period of
time even for large power systems [6]. In future every electrical
generator will be equipped with computational and
communication facilities. Grid computing can provide a
relatively inexpensive new technology allowing the output of
embedded generators to be monitored. The ability of grid
enabled systems to interact autonomously will be vital for small
generators where manned operation is unlikely to be viable [7].
 Jun Zhu stated that the Web services based integration of
power system is much easier than other integration approaches
and more legacy applications will participate in the integrated
system [8]. The authors Quirino presented the definition and a

Engineering Letters, 13:3, EL_13_3_24 (Advance online publication: 4 November 2006)
__

first implementation of a Web service platform for performing
efficient and scalable on-line power system security analysis
[9]. Chun-Lien Su et.al explained the benefits of Internet
interface to the SCADA systems that provides a favorable
solution for data exchange [10]. It brings substantial benefits,
including cost saving, better support, the availability of
infrastructure components for building networks and access to
widely accepted standard network protocols. Even though,
there are many architectural models for solving multi-area
power systems, the proposed model is more powerful and
flexible since it provides standard technology and platform for
heterogeneous environments.

II. NEED FOR WEB SERVICE MODEL FOR ON-LINE
POWER SYSTEM ANALYSIS

The integration of legacy power system applications is a
challenging task. These legacy applications were developed
when there were no open standards. Vendors developed and
deployed these legacy systems using their proprietary
technologies that are not interoperable with each other. To
address these integration issues many on-line power system
models were developed that would facilitate the integration of
heterogeneous power system applications. The Utility
Integration Bus (UIB) provides a common
information-bus-based integration model for data exchange and
communication between utility information systems. It
simplifies the integration of loosely coupled applications by
replacing the traditional point-to-point proprietary interfaces
with a universal API, which provides access to all participating
applications [11]. While these specifications and initiatives
successfully address some of the strategic integration issues,
implementation of these good integration strategies remains a
challenging task. The traditional Enterprise Application
Integration (EAI) approaches normally involve developing
middleware applications to communicate with the
non-interoperable applications using message broker
technology. Developing and deploying a compatible object
request broker (ORB) with CORBA or DCOM is a fairly
complex issue, a task requiring special expertise. The
achievement of a good integration strategy is significantly
constrained by many implementation restrictions in the
traditional EAI solutions, such as application interoperability
and implementation complexity, etc. Web services have
emerged as the next generation of integration technology.
Based on open standards, the Web services technology allows
any piece of software to communicate with each other in a
standardized XML (eXtensible Markup Language) messaging
system. It eliminates many of the interoperability issues that the
traditional EAI solutions have difficulty resolving. The
underlying transport protocol behind Web services is based on
XML over HTTP (Hyper Text Transfer Protocol). With
minimal programming, the Web services technology enables
the proposed model to easily and rapidly wrap the legacy power
system applications and expose their functionality through a
uniform and widely accessible interface over the Internet. The
Web services are built on service-oriented architecture that

operates effectively over the Web using XML-based protocols.
The conventional client-server architecture model for power
system analysis is complicated, memory management is
difficult, source code is bulky and exception-handling
mechanism is not so easy. In the conventional; power system
operation and control, it is assumed that the information
required for the monitoring and controlling of power systems is
centrally available and all computations are to be done
sequentially at a single location. With respect to sequential
computation, the server has to be loaded every time for each
client’s request and time taken to deliver the solution is also
relatively high. So the service-oriented architectural model is
essential for power system applications in order to solve legacy
issues and maintain interoperability. The service-oriented
architecture model for on-line load flow monitoring of
multi-area power systems is given in Fig.1

Fig.1 Service Oriented Architectural model for on-line load

flow monitoring of multi-area power systems
The load flow service has been designed and implemented in

the server side container. A service provider makes the load
flow service available and publishes the contract that describes
its interface. It then registers the load flow service with a
service broker. Any power system client as service consumer
queries the service broker and finds load flow service. The
service broker then gives the directions to the power system
client regarding where to find the load flow service and its
service contract. The power system data has been represented
in XML and XMLised data is packaged in a SOAP envelope
and sent over HTTP transport. The proposed model is
interoperable since the power system data are represented in
XML. The Power System Web Service Description (PWSDL)
module has been developed to create service facilitators and to
implement proxies to establish connection between power
system client and load flow server.

 Service Directory

Invoke

ster

Find

Servi
ce

Servi
ce
provi

 Register

Po
we
r

ps
client
1

Load flow
server

ps
client
2 Service Provider

III. WEB SERVICE MODEL FOR ON-LINE LOAD FLOW
MONITORING OF MULTI-AREA POWER SYSTEMS
 In the proposed model, the procedure for load flow

computation is implemented as a Web service in Java platform,
while the power system clients which are requesting load flow
monitoring have been implemented in different platforms. The
load flow service is implemented using JAX-RPC (Java API
for XML based remote procedure calls) as a Web service in a
distributed environment. Conversely the power system client
which is deployed in Java platform can communicate with the
load flow service that was developed and deployed using some
other paradigm. The built-in API for JAX-RPC allows the
transmission of power system data in XML format. The
XMLised power system data is enclosed in a SOAP envelope
and can be communicated to the load flow Web service through
PWSDL interface. The power system client needs only the
PWSDL to access the load flow service.

The power system client can access the deployed load flow
service using a Service Endpoint Interface (SEI). The PWSDL
has a reference to the load flow service End-point interface.
The service endpoint interface (SEI) is a remote interface that
declares the remote methods through which the power system
client interacts with the load flow service using JAX-RPC
environment. A proxy for the remote load flow service object is
created on the client side and the clients can invoke the load
flow service method directly using this proxy object. The data
needed for this service has already been encapsulated in SOAP
envelope and can be parsed and communicated to the load flow
service. The power system client communication with load
flow service is shown in Fig.2

Fig.2 Communication between a load flow service
and power system client

 The server side encompasses a runtime and a load flow
service endpoint. The client side runtime contains components
to convert power system data into XML form and to generate
SOAP messages and a parser to convert the XML response into
load flow solution. The remote procedure calls use an XML

based protocol, such as SOAP as the application protocol and
uses HTTP as the transport protocol. The JAX-RPC client and
service runtime are responsible for sending and processing the
remote method call and response respectively. The JAX-RPC
client creates a SOAP message to invoke the remote method
and the JAX-RPC service run time transforms the SOAP
message to a Java method call and dispatches the method call to
the service endpoint. The load flow Web service design and its
implementation are discussed below.

A. Load flow service Endpoint Interface
 The load flow service end point interface is defined as

follows:

B. Load flow service Implementation
The load flow service is implemented in a remote object

which is an instance of the LoadFlowImpl class that
implements the service end point interface (LoadFlowInt). The
LoadFlowImpl class defines the method loadFlowCalculation,
which is the required service. The power system client interacts
with an object of class LoadFlowImpl by invoking the method
loadFlowCalculation() through LoadFlowInt interface.

The method loadFlowCalculation() enables the power

system client to get the load flow solution as a result. Fig 3
shows the sample code for load flow service implementation.

HTTP

XMLised
power system
data

SOAP Handler
actions

 Client-side runtime

Parse XML
into solution

Power system
Client 1

·
·

Power system
Client N

Power system
Client 2

method
loadFlowCalculation (
)

SOAP Handler
actions

Server-side runtime in container

Load flow
solution

Port
Load Flow
service

public interface loadFlowInt extends Remote
 {
 public String loadFlowCalculation (String
 linedata, String busdata) throws
 RemoteException;
 }

 Fig. 3 The sample code for load flow service implementation

C. JAX-RPC-mapping
 One of the most important achievements of the JAX-RPC

specification is its definition of a standard for mapping a
WSDL document (which represents a service description) to its
Java representation (service endpoints, stubs, ties, and Java
types) and vice versa. The PWSDL has been created which
provides an XML description of the load flow service that
clients can invoke. The mapping file contains information that
correlates the mapping between the Java interfaces and the
PWSDL definition. The JAX-RPC mapping file match closely
with the structure of a PWSDL file and provides mappings for
PWSDL bindings, PWSDL port types and PWSDL messages.
Fig.4 shows PWSDL code for on-line load flow service.

Fig. 4 PWSDL code for on-line load flow service

D. Deploying the Load flow service
The load flow service has been packaged and deployed.

During the process of deployment, a Web archive file (WAR)
has been created in which the required service file has been

added. The load flow service endpoint interface,
LoadFlowService.wsdl file and the mapping file have also been
added. The load flow service has been deployed in J2EE server.
After deploying, The PWSDL file of the deployed load flow
service can be viewed by requesting the URL
http://10.1.1.1:8080/loadflow-jaxrpc/loadflow?PWSDL and
given in Fig 4

public class loadFlowImpl implements loadFlowInt
{
 public String loadFlowCalculation (String
linedata,String
 busdata) throws RemoteException
 {
 // load flow calculation
 } IV.

V.

POWER SYSTEM WEB CLIENT
} The power system client application invokes the

method loadFlowCalculation()on the load flow server. The
power system client makes the call through a stub that acts as a
client proxy to the remote load flow service. The client stubs
has been created from the configuration file as shown below

The stub object has been created using the
LoadflowService_Impl object as well as other needed runtime
files such as serializers and value types have been created. The
endpoint address that the stub uses to access the load flow
service is set and then the stub casted into LoadFlowInt service
endpoint interface. Finally, the loadFlowCalculation () method
is invoked. Fig. 5 gives the code for the client application.

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl
location="http://localhost:8080/loadflow-jaxrpc/loadflow?
WSDL"
 packageName="sstub"/>
</configuration>

<?xml version =”1.0” encoding=”UTF-8”?>
 <message
name=”LoadFlowInt_loadFlowCalculation”>
 <part name =”linedata” type=”xsd:string”/>
 <part name =”busdata” type=”xsd:string”/>
 </message>
 <message name=”LoadFlowInt_
 loadFlowCalculationResponse”>
 <part name =”solution” type=”xsd:string”/>

 Fig. 5 The code for the client application

private String endpointAddress;
public static void main(String argv[]) {
 try
 { </message>

 <binding name=”LoadFlowIntBinding”
 type=”tns:LoadFlowInt”>
 <soap:binding transport=
”htto://schemas.xmlsoap.org/soap/http” style=”rpc”/>
 <operation name=” loadFlowCalculation”>
 <soap:operation soapAction=””/>
<service name=”LoadflowService”>
 <port name=”LoadFlowIntPort”
binding=”tns:LoadFlowIntBinding”>

 Stub stub =
createProxy();stub._setProperty(javax.xml.rpc.Stub.ENDP
OINT_ADDRESS_PROPERTY,
"http://localhost:8080/loadflow-jaxrpc/loadflow");
 lf = (LoadFlowInt) stub;
 lf.loadflowcalculation(linedata , busdata);
 } catch (Exception ex) { ex.printStackTrace();}
 private static Stub createProxy()
 {
 return (Stub) (new
LoadflowService_Impl().getLoadFlowIntPort());

<soap:addresslocation=http://10.1.1.1:5864/loadflow-jax
rpc/loadflow
xmlns:wsdl=http://schemas.xmlsoap.org/wsdl//>
</xml>

 }
 }

THE HIERARCHICAL STEPS TO CARRY OUT THE ON-LINE
LOAD FLOW MONITORING:

• Start the J2EE server.

• Start the power system client. (Any number of clients
may be considered.)

• Power system client can access the load flow service
by requesting the URL
http://10.1.1.1:8080/loadflow-jaxrpc/loadflow.

• Load flow server uses the power system client’s
reference to receive the load flow data from that client
and computes the load flow solution.

• Client obtains the result and provides a view of the
results through a user Interface.

• For every specific interval of time, the load flow
server automatically receives load flow data from the
client, thereby provides an automatic on-line load
flow monitoring.

VI. TEST CASES AND RESULTS

The load flow analysis was carried out using the proposed
model on a 3-bus system, 5-bus system, 6 -bus system and
9-bus system. The sample 3-bus system data in XML format are
given in Table-1 and the load flow solution for 3-bus system
have been shown in Fig 6.

 Table.1 Sample 3-bus bus power system data in XML
format

<? xml version =”1.0” encoding=”UTF-8”?>
<bus>
 <busno>
 1
 <bustype>slack</bustype>
 <voltagespecified>1.06</ voltagespecified >
 <pgeneration>0.0</ pgeneration >
 <qgeneration>0.0</ qgeneration >
 <pload>0.0</pload>
 <qload>0.0</qload>
 </busno>

 <busno>
 2
 <bustype>pv</bustype>
 <voltagespecified>1.002</ voltagespecified >
 <pgeneration>-0.1</ pgeneration >
 <qgeneration>0.0</ qgeneration >
 <pload>0.0</pload>

 <qload>0.1</qload>
 </busno>
 .
 .
 </xml>

 Fig 6. Load flow solution - Power system client’s view

VII. CONCLUSION
The web service model is created using java and deployed in

J2EE deployment tool. The efficient service oriented

architectural model has been developed to carry out on-line
load flow monitoring of multi area power systems. The system
provides excellent scalability, high security and has a capacity
to meet the huge computation requirement, which is suitable to
carry out on-line load flow monitoring for large interconnected
multi-area power systems. The practical implementation of this
approach suggested in this paper has been assessed based on
different sample power systems. The proposed model can be
suitably implemented for a large power system network spread
over a large geographical area

 VII. REFERENCES

1. Qui.B. and Gooi.H.B. May 2000. “Web based
SCADA display system for access via Internet” IEEE
Trans. On Power Systems, 15, 681-686.

2. Chen.S. and Liu.F.Y. Jan 2002 ” Web Based
Simulations of Power Systems” IEEE Trans. on
Computer Applications in Power, 15, issue 1 ,35-40

3. Bin Qiu et.al. Jan 2002. “ Internet based SCADA
display system” IEEE Trans. On Computer
applications in power, 15, issue.1, pp14-19

4. Nithiyanatan.K and Ramachandran.V , winter-spring
2004.“RMI Based Multi-Area Power System Load
Flow Monitoring” IJECE, 3, no.1, pp.28-30,

5. Malcolm Irving, Gareth Taylor and Peter Hobson,
2004,“ Plug in to Grid Computing “ IEEE Trans. on
Power and Energy Magazine, 2, issue 2, pp 40-44.

6. M. Di Santo, N. Ranaldo, D.Villacci and E. Zimeo ,
2004, “ Performing Security Analysis of Large Scale
Power Systems with a Broker-based Computational
Grid “ IEEE Proceedings of ITCC2004, 2,77-82

7. Malcolm Irving and Gareth Taylor , 2003 “Prospects
for Grid-Computing in Future Power Network’s”
Discussion Paper circulated by Brunel Institute of
Power Systems 15/09/03

8. Jun Zhu “A Web-Services-Based Framework for
Integration of Power System Applications” IEEE
power & energy magazine november/december 2003
pp. 40-49.

9. Quirino Morante1, Nadia Ranaldo, Eugenio Zimeo
“Web Services Workflow for Power System Security
Assessment”

10. Chun-Lien Su, Chan-Nan Lu and Tsun-Yu Hsiao
“Simulation Study of Internet Based Inter Control
Center Data Exchange for Complete Network
Modeling” IEEE TRANSACTIONS ON POWER
SYSTEMS, VOL. 17, NO. 4, NOVEMBER 2002
pp.1177- 1183

11. Mike P. Papazoglou “Service -Oriented Computing:
Concepts, Characteristics and Directions”
Proceedings of the Fourth International Conference on
Web Information Systems Engineering (WISE’03)
2003

Ramesh received his M.E. degree in Power system engineering
form the Faculty of Engineering and Technology, Annamalai
University, Chidambaram, India in 2001. He is currently
working as a lecturer in department of Electrical and

Electronics Engineering, College of Engineering, Gunidy,
Anna University, Chennai, India. His research interests include
power system analysis and modeling, grid computing and
Internet technologies.

Ramachandran received his M.E. degree and Ph.D. in
Electrical Engineering form College of Engineering, Gunidy,
Anna University, Chennai, India. He is currently working as a
Professor of Computer Science and Engineering and Director
of Ramanujan Computing Centre, Anna University, Chennai.
His research interests include power system reliability
engineering, network security , soft computing and Web
technology.

	I. INTRODUCTION
	II. NEED FOR WEB SERVICE MODEL FOR ON-LINE POWER SYSTEM ANALYSIS
	III. WEB SERVICE MODEL FOR ON-LINE LOAD FLOW MONITORING OF MULTI-AREA POWER SYSTEMS
	A. Load flow service Endpoint Interface
	B. Load flow service Implementation
	C. JAX-RPC-mapping
	D. Deploying the Load flow service
	IV. Power System Web Client
	V. The hierarchical steps to carry out the on-line load flow MONITORING:
	VI. TEST CASES AND RESULTS

