

Visual Modeling of XML Constraints Based on a
New Extensible Constraint Markup Language

Jingkun Hu and Lixin Tao, Senior Member, IEEE

Abstract— With the mature of e-business on the Internet, the

eXtensible Markup Language (XML) is rapidly becoming the
industry standard for business-to-business (B2B) data integration.
While Document Type Definitions (DTDs) and XML Schemas can
be used to specify and validate syntactic constraints on XML
documents, currently there are no effective languages or tools for
specifying and validating semantic constraints, in particular
dynamic ones, on XML documents.

We conduct a critical review of the existing XML constraint
languages and classify the types of semantic constraints based on
their forms. We propose a new XML constraint language,
eXtensible Constraint Markup Language (XCML), which is more
expressive than the current constraint languages by better
supporting the specification of dynamic and inter-relationship
constraints. Unified Modeling Language (UML) and Object
Constraint Language (OCL) are adopted to support visual
specification and automatic generation of XCML and XML
Schema instance documents, which are further used by our
reusable XSLT stylesheets to support both semantic and syntactic
XML document validation.

The technologies proposed can be used in e-business data
integration, XML data management, data warehousing, and
decision support systems for various industry domains.

Index Terms—XML constraints, semantic validation, semantic
constraint modeling, XML Schema, OCL, XSLT, XMI

I. INTRODUCTION
Behind the success of e-business on the Internet is the ever

increasing demand for business-to-business (B2B) enterprise
system integration. The data processing systems of different
companies need to communicate with each other to share data,
pass business transactions, and hierarchically integrate
finer-grain services into coarser ones. Data integration is
becoming critical for communicating parties to have a common
language and understand each other’s data.

The eXtensible Markup Language (XML) [3], standardized
by the World Wide Web Consortium (W3C) in February 1998,
is self-describing, human and machine readable, extensible,
flexible, and platform neutral. XML has become the standard

format for exchanging information across the networks. To
achieve the goal of data integration, the communicating parties
need to agree on an XML dialect for their particular business
domain and needs. This dialect is usually defined in a
Document Type Definition (DTD) or XML Schema [8]
document, which defines the syntax and data types to which all
of its instance XML documents must conform. The data
producer system will generate XML data according to their
DTD or Schema definition. The data consumer system can use
an XML validating parser to verify the syntax of the incoming
data before passing them to its data processing system.

Manuscript received February 4, 2006. This work was supported in part by

the Pace University CDNY grant 2006-2007.
Dr. Jingkun Hu is Senior Software Engineer with Philips Medical Systems,

Milpitas, CA 95035 USA (email: jingkun.hu@philips.com).
Dr. Lixin Tao is with Pace University, Pleasantville, NY 10570 USA

(e-mail: ltao@pace.edu).

While syntax validation is important in preventing erroneous
data from disrupting the data consumer system, it cannot verify
the equally important non-structural semantic constraints on
XML data. In reality, the value or presence of an element or
attribute may depend on the value or presence of another
element(s) and/or attribute(s); and the value scope of an
element or attribute may vary for different document instances
and be decided by system environment. A grammatically
validated XML document does not guarantee to be meaningful.
Even though XML Schema is much more powerful than DTD,
it cannot be used to specify non-structural constraints. We need
an extensible, expressive, platform-neutral, and
domain-independent way of specifying semantic constraints on
XML documents.

Another challenge for data integration is the specification of
complex constraints on business data models. While in theory
we can use a text editor to specify such constraints in a
particular constraint specification language, the complexities of
real-world business data structures could make such constraint
specifications cryptic and error-prone. Ideally we could specify
such constraints at a more abstract data model level so the
human users and domain experts can visually help represent
and verify the constraints, and the constraint documents could
be derived from such models mechanically.

The third challenge is about constraint validation. XML
validating parsers cannot use the constraint documents to
validate non-structural constraints. Hard coding such
constraints into a program is not attractive, since such a
program may not truthfully implement the constraints, is not
flexible for system modifications or extensions, and cannot be
reused. Mature XML technologies should be used to provide a
generic framework for automatic constraint validation

This paper first provides a critical review of the existing
approaches for specifying semantic constraints on XML
documents, and classifies the commonly used semantic

Engineering Letters, 13:3, EL_13_3_4 (Advance online publication: 4 November 2006)
__

constraints into a few categories according to their forms. A
new more expressive XML-based eXtensibe Constraint
Markup Language (XCML) is proposed to specify various
semantic constraints including dynamic and inter-relationship
constraints. Unified Modeling Language (UML) [19] and
Object Constraint Language (OCL) [13] are used to support
visual specification and automatic generation of XCML and
XML Schema instance documents, thus greatly reducing the
complexity in designing complex XML data structures with
extensive semantic constraints. Reusable XSLT stylesheets [5]
are designed to transform the XCML and XML Schema
instance documents for an XML data model into
model-specific stylesheets that can implement both semantic
and syntactic XML document validation with an XSLT
processor.

The technologies proposed in this paper can also be used in
XML data management, data warehousing, and decision
support systems for various industry domains.

II. CLASSIFICATION AND SPECIFICATION OF XML
CONSTRAINTS

While XML syntactic constraints specify the static structure
of a type of XML documents, an XML semantic constraint
imposes static/dynamic limitations to value/presence
(occurrence) of the elements/attributes of a type of XML
documents.

An XML instance document exists in its system environment
and its element/attribute values are usually cross-referenced in
multiple documents. If an XML semantic constraint depends
upon its environment, we say it is dynamic; otherwise we say it
is static. A dynamic constraint may impose different limitations
on an element or attribute for different instance documents
defined by the same Schema.

A constraint can be expressed in the form of an assertion
(true/false statement) or a conditional rule (if-then) with
embedded assertions. While in theory the constraints could be
all expressed as assertions, rule-based constraints allow for
more natural and concise specification of many types of
constraints.

For an assertion-based constraint, we call it simple or
composite depending on whether it involves one
element/attribute or more.

For a rule-based constraint, we call it simple if it is of an
if-then structure; or composite if it contains an else-clause or
nested rule-based constraints.

We can classify both syntactic and semantic constraints on
XML documents that commonly appear in the literature into
one of the following categories:

1. Well-formedness constraints: those imposed by the

definition of XML itself such as the rules for the use of the
< and > characters and the rules for proper nesting of
elements.

2. Document structure constraints: how an XML document is
structured starting from the root of a document all the way

to each individual sub element and/or attribute.
3. Data type/format constraints: those applied to the value of

an attribute or a simple element.
4. Value constraints on elements or attributes: the value

(range) of an element/attribute that cannot be specified by
a DTD or XML Schema document; such constraints could
be either static or dynamic.

5. Presence constraints of attributes and/or elements: the
presence of an attribute or element and the number of
occurrences of an element, which could be either static or
dynamic.

6. Inter-relationship constraints between elements and/or
attributes: the presence or value of an element/attribute
depends on the presence or value of another
element/attribute.

7. Consistency constraints: corresponding
elements/attributes in multiple documents have consistent
values.

The above categories 1 through 3 are for syntactic
constraints, and categories 4 through 7 are for semantic
constraints. Constraints in categories 1 through 3 can be
specified by DTD or Schema documents and validated with an
XML validating parser. Constraints in categories 4 and 5 are
usually more natural to be specified with assertions, and their
static ones can also be specified using XML Schema.
Constraints in categories 6 and 7 are usually more natural to be
specified with conditional rules.

While XML Schema is richer than DTD in expressing the
structures, data types, and data formats, it is not powerful
enough to express semantic constraints. There have been three
options to extend XML Schema in expressing semantic
constraints [25]:

• to supplement XML Schema with another XML constraint

language,
• to write program code to express semantic constraints, and
• to express semantic constraints with an XSLT/XPath

stylesheet.

The advantage of the second option is that with a single

programming language you can express all the semantic
constraints. But, it cannot leverage XSLT technology. Each of
the constraint documents becomes a legacy application. In the
third option, each application creates its own stylesheet to
specify and check constraints that are unique to the application.
However, these stylesheets are not human-oriented and not
reusable. It is also a challenge to create complex stylesheets.
Therefore, the first option is preferable.

The major XML constraint languages in the literature are

Schematron [7], XML Constraint Specification Language
(XCSL) [12], XincaML [10], and xlinkit [15]. Schematron, a
pattern-based XML constraint language, can express a
substantial number of semantic constraints, specifically
assertion-based constraints. It is the most popular XML
constraint language among the existing ones. But it is difficult

to express rule-based constraints and dynamic constraints.
XCSL has not been used widely and has the disadvantages
similar to Schematron. XincaML, recently proposed by IBM,
focuses on the inter-relationship constraints. It cannot express
dynamic constraints and requires a proprietary application to
perform validation because it does not leverage XSLT, a core
XML technology. Xlinkit is intended for the consistency check
of elements among distributed XML documents and beyond the
scope of this paper.

In the next section we introduce a new XML constraint
language, XCML (eXtensible Constraint Markup Language).
XCML provides a set of syntax elements to express both static
and dynamic semantic constraints in their either simple or
composite forms. Table 1 compares the expressiveness of XML
Schema, Schematron, XincaML, XCSL, and XCML.

Table 1: Expressiveness Comparison of Constraint

Languages
Language Assertion-based

constraint
Rule-based constraint

simple composite simple composite

stat dyn stat dyn stat dyn stat dyn

XML
Schema Yes No No No No No No No

Schematron Yes No Yes No Yes No No No

XincaML Yes No Yes No Yes No Yes No

XCSL Yes Yes Yes Yes Yes No No No

XCML Yes Yes Yes Yes Yes Yes Yes Yes

III. EXTENSIBLE CONSTRAINT MARKUP LANGUAGE XCML
The existing constraint languages cannot express certain

constraints including dynamic value/occurrence constraints
and composite rule-based constraints. We propose a new XML
constraint language – XCML. It is an XML based markup
language. It leverages the core XML technologies including
XML Schema and XPath. The XCML syntax is defined in an
XML Schema document. XCML instance documents can be
either embedded within XML Schemas as annotations or as
separate constraint documents.

The XCML instance documents are simple, concise, easy to
create, and easy to use to validate XML documents. It supports
not only assertion-based constraints and simple rule-based
constraints, like if-then, but also composite rule-based
constraints like nested if-then-else. XCML supports parameters
for expressing dynamic constraints. It supports XPath 1.0 [6] or
above so that various expressions can be processed by XSLT
processors. XCML also supports the visual specification of
constraints on XML data models, as shown in Section 4.

A. XCML Syntax
The XCML syntax is defined in an XML Schema document.

An XCML document contains a single top-level element

Constraints, which contains a sequence of one or more
Constraint elements. A Constraint element must specify its
scope through its context attribute. It starts with an optional
sequence of Parameter elements, each specifying the name,
type, and optional default value of a parameter for passing in an
external environment value. The main body of a Constraint
element is either a Rule element or an Assertion element. A
Rule element is basically a sequence of If element, Then
element, and an optional Else element. An If element allows for
the specification of an assertion as the value of its test attribute.
A Then element or an Else element allows for the specification
of either an assertion as the value of its test attribute, or a nested
if-then-(else) structure.

B. XCML Instance Document Samples
In this section we provide simple examples to demonstrate

that XCML can be used to specify constraints that some of the
other constraint languages cannot, as summarized in Table 1.
• Example for assertion-based constraints which are simple

and dynamic. This example declares that in the context of
element “employee”, the value of “taxRate” must be equal to
the value of parameter “rate”, which is dynamically set by the
system environment.

• Example for assertion-based constraints which are

composite and dynamic. This example declares that in the
context of element “employee”, the value of “tax” must be
equal to the value of element “netIncome” multiplied with the
value of parameter “rate”, which is dynamically set by the
system environment.

<Constraint context="employee">
 <Parameter>

 <name>rate</name>
 <type>decimal</type>
 <defaultValue>0.07</defaultValue>
</Parameter>

 <Assertion test=”taxRate=$rate”/>
</Constraint>

<Constraint context="employee">
 <Parameter>

 <name>rate</name>
 <type>decimal</type>
 <defaultValue>0.07</defaultValue>
</Parameter>

 <Assertion test=”tax=netIncome*$rate"/>
</Constraint>

• Example for rule-based constraints which are simple and

dynamic. This example declares that in the context of element
“employee”, if the value of “netIncome” is less than or equal
to the value of parameter “level”, then the value of “taxRate”
should be 0.05.

• Example for rule-based constraints which are composite and
static. This example declares that in the context of element
“employee”, if the value of “netIncome” is less than or equal
to $50,000, then the value of “taxRate” should be 0.05;
otherwise if the value of “netIncome” is less than or equal to
$100,000, then the value of “taxRate” should be 0.07;
otherwise the value of “taxRate” should be 0.1.

• Example for rule-based constraints which are composite and
dynamic. This example declares that in the context of element
“employee”, if the value of “netIncome” is less than or equal
to the value of parameter “level1”, then the value of
“taxRate” should be 0.05; otherwise if the value of
“netIncome” is less than or equal to the value of parameter
“level2”, then the value of “taxRate” should be 0.07;
otherwise the value of “taxRate” should be 0.1.

Table 1 summarizes the expressiveness of four XML

constraint languages Schematron, XincaML, XCSL, and
XCML based on our classification of semantic constraint
forms.

<Constraint context="employee">
 <Parameter>
 <name>level</name>
 <type>decimal</type>
 </Parameter>
 <If test="netIncome<=$level"/>
 <Then test="taxRate=0.05"/>
</Constraint>

IV. VISUAL MODELING OF XML SEMANTIC CONSTRAINTS
The generation of XML constraint documents for real-world

complex XML documents is a challenging topic. Even though
XCML syntax supports more natural specification of many
semantic constraints, XCML documents are still
system-oriented and not easy for communicating with domain
experts.

We propose a model-driven approach to automate the
XCML document generation process. Our approach is based on
visual modeling of XML data structures (XML data modeling)
and the three-level-design approach (conceptual, logical, and
physical levels) for generating XML Schema documents
[4][21][22][23].

Our approach starts with a UML class diagram representing
the visual modeling of an XML data structure. The invariant
structure of Object Constraint Language (OCL) [13] is used to
specify semantic constraints associated with classes, attributes,
or associations. The output is our constrained conceptual
model, which can facilitate communications between domain
experts/users and data modelers. Our constrained logical
model is obtained from the constrained conceptual model after
we annotating its classes, attributes and associations with
stereotypes from Carlson’s UML profile for XML Schema [4]
and our UML profile for XCML Schema, the latter is described
in Figure 1.

<Constraint context="employee">
 <If test="netIncome<=50000"/>
 <Then test="taxRate=0.05"/>
 <Else>
 <If test="netIncome<=100000"/>
 <Then test="taxRate=0.07"/>
 <Else test="taxRate=0.1"/>
 </Else>
</Constraint>

Invariant
<<stereotype>>

Package
<<metaclass>>

RuleConstrain t
<<stereotype>>

AssertionConstraint
<<stereotype>>

Constraint
<<stereotype>>

Constraints
xsiNamespace : string
xcmlNamespace : string
xsiSchemaLocation : string
name : string

<<stereotype>>

definition
<<stereotype>>

Param eter
name : string
type : string
defaultValue : string

<<stereotype>>

<Constraint context="employee">
 <Parameter>
 <name>level1</name>
 <type>decimal</type>
 </Parameter>
 <Parameter>
 <name>level2</name>
 <type>decimal</type>
 </Parameter>
 <If test="netIncome<=$level1"/>
 <Then test="taxRate=0.05"/>
 <Else>
 <If test="netIncome<=$level2"/>
 <Then test="taxRate=0.07"/>
 <Else test="taxRate=0.1"/>
 </Else>
</Constraint>

Figure 1: UML profile for XCML Schema

Our physical models are XML Schema and XCML instance
documents derived from our constrained logical models. We

use XML Metadata Interchange (XMI) [20][24][20] and XSLT
[5] technologies to accomplish this task. The major advantage
of doing so is that both XMI and XSLT are open standards and
their toolkits are open source and freely available. We designed
and implemented three reusable sets of XSLT stylesheets [9].
The workflow of this process is shown in Figure 2. A
constrained logic model is first written in an XMI (a kind of
XML) file. The first XSLT stylesheet was used to extract
information related to syntax and constraints out of the XMI
file with the help of an XSLT processor. The extracted partial
XMI document is further processed by the same XSLT
processor, once to derive XML Schema instance document
according to our second XSLT stylesheet, and the second time
to derive XCML instance document according to our third
XSLT stylesheet.

XSLT stylesheet
(extract metadata

from XMI
document)

XMI toolkit

XMI document
(XML)

XSLT processor

 XMI document
after extraction

Logical model

XSLT processor

XSLT stylesheet
(transform XMI

document to XCML
instance document)

XSLT stylesheet
(transform XMI

document to XML
Schema document)

XCML instance
documents

XML Schema
documents

Figure 2: Workflow of deriving XML Schema and XCML

instance documents

Now we present a concrete example for an Employee profile.

Figure 3 shows the constrained conceptual model in which
three semantic constraints are specified with OCL invariants:
(1) an employee has savings fund if and only if he/she has
worked for five years in the company; (2) an employee’s net
income should be equal to his/her salary plus his/her bonus
minus his/her tax; (3) an employee will manage one or more
departments if and only if he/she is a manager.

Employee

employeeID : String
firstName : String
lastName : String
email : String
role : RoleType
telephoneNumber : String
address : AddressType
yearsOfWork : Integer
payroll : PayrollType

RoleType
secretary
manager

AddressType
street : String
city : String
state : String
country : String

PayrollType
salary : Float
bonus : Float
taxRate : Float
tax : Float
netIncome : Float
hasSavingFund : Boolean

DepartmentType
departmentName : String
employeeID : String

0..*

1

0..*

1
<<Invariant>>
context Employee
inv ManagerConstraint:
if role = 'manager'
then department.multiplicity >= 1
else department.multiplicity = 0
endif

<<Invariant>>
context Employee
inv BonusConstraint:
if yearsOfWork >= 5
then payroll.hasSavingFund = true
else payroll.hasSavingFund = false
endif

<<Invariant>>
context Employee.payroll
inv NetIncomeConstraint:
salary + bonus - tax = netIncome

department

Figure 3: Constrained conceptual model of Employee profile

Figure 4 shows the constrained logical model for the
Employee profile.

PayrollType
<<XSDelement>> salary : Float
<<XSDelement>> bonus : Float
<<XSDelement>> taxRate : Float
<<XSDelement>> tax : Float
<<XSDelement>> netIncome : Float
<<XSDelement>> hasSavingFund : Boolean

<<XSDcomplexType>>
RoleType

secretary
manager

<<enumeration>>
AddressType

<<XSDelement>> street : String
<<XSDelement>> city : String
<<XSDelement>> state : String
<<XSDelement>> country : String

<<XSDcomplexType>>

<<RuleConstraint>>
context Employee
inv ManagerConstraint:
if role = 'manager'
then department.multiplicity >= 1
else department.multiplicity = 0
endif

<<RuleConstraint>>
context Employee
inv BonusConstraint:
if yearsOfWork >= 5
then payroll.hasSavingFund = true
else payroll.hasSavingFund = false
endif

<<AssertionConstraint>>
context Employee.payroll
inv NetIncomeConstraint:
salary + bonus - tax = netIncome

DepartmentType
<<XSDelement>> departmentName : String
<<XSDelement>> employeeID : String

<<XSDcomplexType>>

Employee
<<XSDattribute>> employeeID : String
<<XSDelement>> firstName : String
<<XSDelement>> lastName : String
<<XSDelement>> email : String
<<XSDelement>> role : RoleType
<<XSDelement>> telephoneNumber : String
<<XSDelement>> address : AddressType
<<XSDelement>> yearsOfWork : Integer
<<XSDelement>> payroll : PayrollType

<<XSDtopLevelElement>>

0..*

1

0..*

1

department

<<XSDelement>>

Figure 4: Constrained logical model of Employee profile

Listing 1 shows the XCML instance document derived from

the constrained logical model for the Employee profile.

Listing 1: XCML instance document for Employee profile

V. XSLT-BASED XML CONSTRAINT VALIDATION
While the syntactic validation of an XML document is

straightforward once its XML Schema is available, the
semantic validation of an XML document is much more
complicated. This section focuses on how to perform the
semantic validation of an XML document against its XCML
instance document.

The workflow of validating XML documents is shown in
Figure 5. The syntactic validation against XML Schemas is
executed in the first step. If there are any syntactic errors, the
validation process stops. Otherwise, the semantic validation is
performed.

A reusable XSLT stylesheet [9] is written to convert an
XCML instance document into a model-specific XSLT
stylesheet, with the help of an XSLT processor. The latter
stylesheet is, in turn, used to semantically validate the XML
instance documents, with the help of an XSLT processor, to see
whether their contents make sense to the particular application.

Semantic validation

Syntactic validation

Generate XSLT stylesheet
for semantic validation

XML schema

XML parser
XML document

XSLT processor
Semantic

validation resultXSLT stylesheet
(for semantic

validation)

XSLT processor
XCML document

XSLT stylesheet
(for transforming

XCML document to
XSLT stylesheet)

if there is
syntactic errors stop

yes

no

finish

Figure 5 Workflow of XML document validation

VI. CONCLUSION
A complete framework has been proposed for XML

semantic constraint specification, modeling, document
generation, and validation, all based on public domain
technologies XML, XML Schema, UML, OCL, XSLT, and
XPath. Its potential applications include system data
integration, XML data management, data warehousing, and
decision support systems for various industry domains like
e-commerce.

REFERENCES
[1] Altova, Inc., “XMLSpy 2004: XML development environment,” 2004,

http://www.xmlspy.com (valid by February 20, 2006)
[2] T. Beale, “OCL 2.0 Review Based on Initial Submission 1.6 - 6 Jan

2003,” draft review. Deep Thought Informatics, April 4, 2003,
http://www.deepthought.com.au/it/ocl_review.html (valid by February
20, 2006)

[3] T. Bray, et al., “Extensible Markup Language (XML) 1.0,” World Wide
Web Consortium (W3C) Recommendation, 1998,
http://www.w3.org/TR/1998/REC-xml-19980210 (valid by February 20,
2006)

[4] D. Carlson, Modeling XML Applications with UML: Practical e-Business
Applications, Addison-Wesley, 2001.

[5] J. Clark, “XSL Transformations (XSLT) 1.0,” W3C Recommendations,
1999, http://www.w3.org/TR/xslt (valid by February 20, 2006)

[6] J. Clark and S. DeRose, “XML Path 1.0 (XPath),” W3C Recommendation,
1999, http://www.w3.org/TR/xpath (valid by February 20, 2006)

[7] L. Dodds, “Schematron: Validating XML Using XSLT,” Proceedings of
XSLT UK Conference, Keble College, Oxford, England, 2001,
http://www.ldodds.com/papers/schematron_xsltuk.html (valid by
February 20, 2006)

[8] D. Fallside, “XML Schema Part 0: Primer,” W3C Recommendations,
2001. http://www.w3.org/TR/xmlschema-0 (valid by February 20, 2006)

[9] J. Hu, “Visual Modeling of XML Constraints Based on a New Extensible
Constraint Markup Language,” doctoral dissertation, CSIS, Pace
University, New York, 2003.

[10] IBM Corporation, “eXtensible Inter-Nodes Constraint Mark-up Language
(XincaML),” 2002, http://www.alphaworks.ibm.com/tech/xincaml (valid
by February 20, 2006)

[11] IBM Corporation, “XMI toolkit 1.05,” 1999,
http://www.alphaworks.ibm.com/tech/xmitoolkit (valid by February 20,
2006)

<?xml version="1.0" encoding="UTF-8"?>
<xcml:Constraints
 xmlns:xcml="http://www.csis.pace.edu/dps/xcml">
 <Constraint context="employee">
 <Rule>
 <If test="role='manager'"/>
 <Then test="count(department) >= 1"/>
 <Else test="count(department) = 0"/>
 </Rule>
 </Constraint>
 <Constraint context="employee">
 <Rule>
 <If test="yearsOfWork = 5"/>
 <then test="payroll/hasSavingFund = 'true'"/>
 <Else test="payroll/hasSavingFund = 'false'"/>
 </Rule>
 </Constraint>
 <Constraint context="employee/payroll">
 <Assert test="salary + bonus - tax = netIncome"/>
 </Constraint>
</xcml:Constraints>

[12] M. H. Jacinto et al., “Constraint Specification Languages: Comparing
XCSL, Schematron and XML-Schemas,” XML Europe 2002, Barcelona,
Spain, 2002

[13] W. Jos and K. Anneke, Object Constraint Language: Precise Modeling
with UML, Addison-Wesley, 1998.

[14] Microsoft Corp., MSXML 4.0 Service Pack 2 (Microsoft XML Core
Services), 2003, http://www.microsoft.com/downloads, (valid by
February 20, 2006)

[15] C. Nentwich et al., “Xlinkit: A Consistency Checking and Smart Link
Service,” Research Note RN/00/66, University College London, Dept. of
Computer Science, 2000.

[16] OMG, XML Metadata Interchange Production of XML Schema
Specification 1.0, 2001, http://www.omg.org/docs/formal/03-05-02.pdf
(valid by February 20, 2006)

[17] OMG, Unified Modeling Language Semantics v1.1, 1997,
http://www.omg.org/docs/ad/97-08-04.pdf (valid by February 20, 2004)

[18] OMG, OMG Unified Modeling Language Specification 1.4, 2001,
http://www.omg.org/docs/formal/01-09-67.pdf (valid by February 20,
2006)

[19] OMG, Unified Modeling Language Specification 2.0 Suite, 2003,
http://www.omg.org/uml (valid by February 20, 2006)

[20] OMG, XML Metadata Interchange Specification 1.1, 1999,
http://www.omg.org/docs/formal/00-11-02.pdf (valid by February 20,
2006)

[21] W. Provost, UML for W3C XML Schema Design, 2002,
http://www.xml.com/pub/a/2002/08/07/wxs_uml.html (valid by February
20, 2006)

[22] J. C. L. Ramalho, “Constraining Content: Specification and Processing,”
XML Europe 2001, Berlin, Germany, 2001.

[23] N. Routledge et al., “UML and XML Schema,” Thirteenth Australasian
Database Conference (ADC2002), Monash University, Melbourne,
Victoria, 2002.

[24] Unisys Software Corp, “Unisys Rose UML 1.3.6 plug-in,” 2003,
http://www-106.ibm.com/developerworks/rational/library/content/03July
/2500/2834/Rose/rational_rose.html, (valid by February 20, 2006)

[25] XML-Dev List Group, “Extending XML Schemas,” XML Schemas: Best
Practices, http://www.xfront.com/BestPracticesHomepage.html (valid by
February 20, 2006)

Jingkun Hu is a senior software engineer at Philips Medical Systems - Nuclear
Medicine SPECT, Milpitas, CA. Part of this paper is based on his dissertation
research work. He received his Doctorate degree in Computing from Pace
University in 2004.

Lixin Tao is a tenured full professor of computer science with Computer
Science Department of Pace University. He obtained his Ph.D. degree in
computer science from University of Pennsylvania in 1988. His current
research interests include Internet computing, XML and Web services,
distributed software component technologies, and combinatorial optimization.
He is a senior member of IEEE.

	I. INTRODUCTION
	II. Classification and Specification of XML Constraints
	III. Extensible Constraint Markup Language XCML
	A. XCML Syntax
	B. XCML Instance Document Samples
	IV. Visual Modeling of XML Semantic Constraints
	V. XSLT-Based XML Constraint Validation
	VI. Conclusion

