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Abstract – Automatic building extraction is an active research in 
remote sensing recently.  It has been going on for more than 20 
years but the automated extractions still encounter problems due 
to image resolution, variation and level of details. Mayunga et al. 
(2005) developed an improved snake model. However their radial 
casting encounters difficulties in initializing the snake model. 
This research paper discusses the development of an active 
contour model initialization algorithm. The prototype uses the 
existing improved snake energy function to compute the snake 
contours, but initialize the model with circular casting algorithm 
instead of radial casting algorithm. 
 

I. INTRODUCTION 

Most of the building extraction methods use generic models 
by assuming all buildings follow a certain pattern. Hence the 
generic models do not provide practical results when buildings 
in unstructured buildings like informal settlements precede the 
particular pattern (Ruther et al. 2002). Buildings in informal 
settlements areas differ in terms of building materials, 
neighborhood distance and orientations. There are limited 
tools and methods to extract unstructured buildings as 
compared to researches on structured building extraction. 
Recently some researches are published such as use of fused 
shadow data with 2D building blobs derived from normalized 
Digital Surface Model (DSM) (Li and Ruther 1999) and still 
video Kodak camera to extract shacks in South Africa 
(Baltsavias and Mason 1995). However DSM suffers from 
insufficient ground sampling data and matching errors due to 
poor image quality, and also occlusion and shadows that lead 
to poor definition of buildings outlines (Baltsavias and Mason 
1995 and Ruther et al. 2002). An effective informal 
settlements extractor should accommodate both structured and 
unstructured buildings (Ruther et al. 2002).  
  
Generally, the main tasks in building extraction from digital 
images are building detection and building reconstruction. 
However building extraction tasks may differ depending on 
the use of geometrical representation with rectangular models 
(Weidner and Frostner 1995), use of multiple images (Ballard 
and Zisserman 2000), and polyhedral shapes (Scholtze et al. 
2002), the use of lines, points and regions to describe building 
outlines (Fisher et al. 1997).  The existing automated building 
extraction techniques are still performing at elementary level 
caused by image variation in terms of type, scale, and required 
level of detail (Wang and Tseng 2003). Furthermore automatic 
recognition of semantic information of an object using 
computers is complicated; most algorithms fail whenever a 
new situation in image space is encountered or objects are 
close to each other (Gruen 2000, Ruther et al. 2002). Sohn and 
Dowman (2001) proposed an automatic method of extracting 

buildings in densely urban areas from IKONOS images. They 
used large detached buildings without analysis of accuracy 
and structure details. Ortner (2002) implemented optimization 
and destruction approaches concurrently for building 
extraction. A point process technique is developed to extract 
well-structured buildings. Fraser et al. (2002) compared 
buildings extracted from IKONOS imagery with those 
obtained using black and white aerial photographs to evaluate 
the potential of high-resolution images. Toutin and Cheng 
(2002) investigated the potential of Quickbird imagery for 
spatial data acquisition, they found out that sensors of 0.6m 
have lessened the gap between satellite images and aerial 
photographs that have resolution from 0.2 to 0.3m. 
Haverkamp (2003) implemented a linking edge chain to 
extract buildings from IKONOS images. Thomas et al (2003) 
concluded that high-resolution imagery is a valuable tool for 
mapping urban areas in extracting land cover information 
from high-resolution images.   
 

II. ACTIVE CONTOUR MODEL 

Active contour model is a useful model to extract structured 
and unstructured objects from digital images for informal 
settlements (Mayunga et al. 2005). It is defined by an energy 
function. The energy function (ESnakes) is a weighted 
combination of internal (EInter), image (EImg) and external 
constraint (ECont) forces as in Equation 1. The internal energy 
force describes the shape of the active contour; the image 
force attracts the active contours to the boundaries of the 
object, the external energy force comes from the image itself 
or higher level image processing. The solution of the active 
contour model is activated by its intrinsic trend of minimizing 
its energies. The energy function reaches minimum when the 
active contours control points locks the object boundaries in 
the image space. Kaas et al (1988) represented a contour by a 
vector, V(s) = [x(s), y(s)], having the arc length s as a 
parameter, where x and y are the coordinates of a active 
contour point. The total energy of an active contour is:  
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Several approaches have been proposed to remedy the above-
mentioned problems. For example; the use of active contours 
and least squares method to extract buildings in 2D and 3D 
using aerial photography and satellite images (Mayunga et al. 
2005). Cohen and Cohen (1990) used pressure force to control 
the movement of active contour. Although the method worked 
well, the parameter that controls the inflating force is difficult 
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to estimate for high level noise in imagery. Tabb et al. (2000) 
combined active contours and neural networks to detect and 
categorize objects in images. The active contour is stored as a 
vector of (x, y) coordinates reflecting the position of different 
control point on the contour’s spline. The coordinates are the 
input for neural network.  Kreschner (2001) used homologous 
twin active contours and integrated in a bundle adjustment. 
The method fails when the system chooses wrong active 
contour. Ruther et al. (2002) use active contour and dynamic 
programming optimization technique to model buildings in 
informal settlement areas. However, dynamic programming is 
computational expensive and fails in more complex 
topologies. Guo and Yasuoka (2003) adopted a “balloon snake 
model”. Multiple Height Bin (MHB) technique was employed 
to obtain the approximate active contours. MHB technique 
could not provide correct representation of the extracted 
objects.  
 
In Mayunga et al. (2005) proposed an improved active contour 
energy function with radial casting initialization, the external 
energy that creates boundary effects for unstructured buildings 
and weighted coefficients are discarded. The algorithm being 
minimized is expressed as: 
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It consists of three energy terms that are Continuity, Curvature 
term and Image. Image term describes the radiometric content 
of the image and it restricts the active contour points to move 
towards the points of highest gradient. The gradient of image 
at each control point is normalized to show small differences 
in values at the neighborhood of that control point.  In this 
case, the gradient magnitude is negative to enable control 
points with large gradient to have small values. The image 
term attract the contours to the image points with minimum 
gradient magnitude. Continuity term creates equal space 
contours control points to avoid grouping and minimize 
distances. Curvature term expresses the curvature of the active 
contours.  
 

III. ACTIVE CONTOUR INITIALIZATION 

Mayunga et al (2005) proposed a radial casting algorithm for 
initiating the active contour model as shown in Figure 1. The 
contour’s centre point C is measured, and from this point radial 
lines are projected outwards at definable angular intervals, β 
consists of four, eight, or sixteen radial lines ranging from 0 to 
360. Each active contour control point in image space, advance 
to a new position where the gradient energy in a search window 
is maximum. The advancement has to proceed using angular 

intervals as well. The centre point C of the building polygon is 
always fixed and the radial distances, l to the active contour 
control points is variable depending on the size of the building 
object.  

 
Figure 1 Radial Cast Model 

 
The problem with this radial case is the number of radial lines 
depends on the complexity of the building.  Hence more 
complex structure would require a high volume of lines to 
make the active contours. Furthermore the radial cast model 
claimed to be effective where a maximum of 16 radical lines 
should be sufficient to extract a building. However this is not 
feasible where unstructured building has irregular shape as 
shown in Figure 2. The extracted building C varied from the 
original building A, object B shows the 16 radial lines derived 
for the building from its centre.  
 

 
Figure 2 Irregular Shape and Radial Casting 

 
On the other hand, the active contour control points from point 
C possibly cause the curve to be smaller than desired during 
radiation. If it happened, the generated active contour control 
points are deleted and a new centre point C is established. This 
causes inconsistency for all other control points built unless 
they are all deleted and rebuilt.  
 

IV. PROPOSED ACTIVE CONTOUR INITIALIZATION 

As response to the problems in existing radial casting, the 
circular cast initialization for active contour is developed. A 
control point, C can be measured at any point of the building 
object not necessarily the center as picking up center requires 
manual operator. Hence this allows automation where the 
point can be picked by comparing pixel using corner detector 
(Haris and Stephens 1988). Corner point detector works by 
searching for pixel in an object based on the assumption that 
corners are associated with maxima of the local 
autocorrelation function. It calculates corner value for each 
pixel of the image, and if C is a local maximum above certain 
threshold, the pixel is declared a corner. Consequently a 



circular cast is initiated from any of this first found corner 
pixel as control point. The circular cast has a diameter of 37 
pixels as it is the standard use in image edge and feature 
detection (Perez and Dennis 1997).  
 

---------------------------------------------------------------- 
Set local maxima = control point 
while extraction is not closed 
   create circular cast 
   while there is more pixel  within circular cast 
 get pixel 
 if pixel attribute = local maxima 
     append pixel as a node to active contour 
 end if 
 end while 
end while 
---------------------------------------------------------------- 

Figure 3 Circular Cast Algorithm 
 
The circular cast built for the irregular shape is similar to 
building A in Figure 2. The circular cast resolves the inability 
of radial cast to cope for irregular shape as proposed in 
Mayunga et al. (2005). The algorithm works by checking all 
the pixels with the cast’s boundary, the extracted pixel is 
compared to the local maxima obtained from the control point, 
the cast stops expanding when the extraction is closed. In 
Figure 4 illustration A to D shows the inflation of the cast as 
the contour is incomplete, illustration E shows the completed 
extraction where the contour is fully closed. 
 

V. PROTOTYPING  

The proposed active contour initialization methodology for 
buildings extraction from satellite imagery is prototyped. The 
prototype consists of image pre-processing and building 
extraction. The variation in illumination conditions, 
shadowing and building density in urban areas makes it very 
difficult to distinguish individual buildings from its 
surrounding.  In order to solve this problem, a non-linear 
anisotropic diffusion model (Weickert 1999) was used to 
normalize the noise effects around the buildings. The image 
normalization process brings the variation of pixels around the 
buildings at the same level. The diffused image is then used as 
an input for building extraction.  

 

 
Figure 4 Sample of Circular Cast built for Irregular Building 

Structure from Step A to E 

 
Once a corner is obtained for a building in the image space 
and then the active contour are automatically generated. User 
is given an option to accept or reject a single snake contour or 
all generated snake contours. If a snake contour is accepted, an 
iterative minimization function is invoked, minimum and 
maximum energy values in the neighborhood are computed. 
Neighborhood point with the lowest energy value is the new 
position in the image space. The iteration stops when active 
contour locks a building outline.   
  
The proposed method was applied to extract buildings from 
the buildings at Burlington city. The images used were 
obtained from the website and geo-rectified by the image 
vendor DigitalGlobe, it has 4-band spectral resolution at 16 
bits/pixel, pre-processed by vendor and geometrically 
corrected.  The prototype is implemented using a desktop 
(Pentium (R) 4 CPU 2.99 GHZ processor), VBA and 
ArcScene. Figure 5 show a portion of Quickbird imagery for 
Burlington, Figure 6 shows the test area, Figure 7 shows 
extracted buildings. Figure 8 shows 2D buildings in vectorized 
layer.  
 



 

Figure 5 A Quickbird Imagery of Burlington 

 

 

Figure 6 Imagery for the Test Area 

 

 

Figure 7 Extracted Buildings from the Test Area 

 

 

Figure 8 Extracted Area in Vectorized View 

VI. QUANTITATIVE ANALYSIS  

A total of 100 building corner points from 2D vectorized layer 
were randomly compared with their corresponding points from 
the ground truth data.  
  

No. of 
points 

RMSE 
(m) 

Std dev. 
in x 

Std dev. 
in y 

100 1.0 0.75 0.95 

Figure 9 The RMSE and deviations of randomly measured 
building corner points 

 
Root Mean Square Error (RMSE) was computed to determine 
the internal accuracy of the measurement. Standard deviations 
in (x, y) were also computed in Table 2. The possible reason 
contributing to this figure is closeness of buildings and 
resolution of the image. Informal settlements consists of 
random noise causes edges along the corners to divert from 
their correct positions.   There is a need for post-processing 
stage to refine the edges if higher accuracy application is 
required.  

CONCLUSION 

The improved snake energy function (Mayunga 2005) works 
well with proposed circular casting algorithm in this study. It 
improved the RMS and standard deviations from the ground 
truth data. It is a significant contribution to building extraction 
from high-resolution satellite imagery. The approach has been 
tested on structured and unstructured buildings in a Burlington 
urban settlement. Buildings with irregular shapes are extracted 
with reliable accuracy.   
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