

A Comparison between Genetic Algorithms and
Evolutionary Programming based on Cutting Stock Problem

Raymond Chiong, Member, IEEE, and Ooi Koon Beng, Member, IEAust

Abstract—Genetic Algorithms (GA) and Evolutionary

Programming (EP) are two well-known optimization methods
that belong to the class of Evolutionary Algorithms (EA). Both
methods have generally been recognized to have successfully
solved many problems in recent years, especially with respect to
engineering and industrial problems. Even though they are two
different types of EA, the two methods share a lot of
commonalities in the genetic operators they use and the way they
mimic natural evolution. This paper aims to bring forth an
introductory review on how these two methods tackle the
one-dimensional Cutting Stock Problem (CSP). We draw
comparison on the effectiveness of GA and EP in solving CSP, and
propose an improved algorithm using a combination of the two
methods based on our observations. In the concluding remarks,
some future works are suggested for further investigations.

Index Terms—Cutting stock problem, evolutionary
programming, genetic algorithms, optimization methods.

I. INTRODUCTION
Many problems in industrial engineering nowadays concern

themselves with the goal of an “optimal” solution. Various
optimization methods have therefore emerged, being
researched and applied extensively to different optimization
problems. For small scale problems, exact solution methods
such as linear programming can be used effectively. When the
problems are large and complex, however, heuristic methods
have to be called into play due to the exponential growth of the
search space and the time required to find optimal or near
optimal solution. Over the past few decades, researchers have
proposed many novel nature inspired heuristic methods such as
the evolutionary algorithms (EA) for optimization design based
on specific domain knowledge. Two well-developed methods
belong to the class of EA are Genetic Algorithms (GA) and
Evolutionary Programming (EP). In this paper, we present a
study to illustrate the use of both GA and EP in tackling the
Cutting Stock Problem (CSP), and draw comparison on their
effectiveness in finding the optimal solution for CSP.

As one of the classical optimization problems in Operational
Research, there are many reasons for CSP to be an interesting

topic of research. Its applicability in many industries such as
the steel, glass, wood, plastic and paper manufacturing has
caused CSP to be widely studied [1-2]. Besides that, CSP also
seems to have shared similar structure with some other
industrial problems like capital budgeting, processor
scheduling, VLSI design, etc. [2]. The capacity of CSP in
reflecting the diversity and complexity of the real world
problems have definitely intensified the search for better
heuristic solutions for it.

The rest of this paper is organized as follows. Section II
introduces the background theory of CSP, and describes some
existing solution methods for it. Following which, section III
and IV show introductory reviews on how CSP is being tackled
by GA and EP based on [3] and [4] respectively. We then bring
forth some discussion by comparing the effectiveness of both
methods on CSP, and present an idea to improve the algorithms
in section V. Finally, section VI concludes with a summary of
this work together with some possible future works.

II. CUTTING STOCK PROBLEM
The CSP is a combinatorial optimization problem that

involves cutting larger stock sheets into smaller pieces.
Generally, two problems arise when small items are to be cut
from large objects, which Hinxman [5] called the assortment
problem and the trim loss problem. The assortment problem
deals with issue of choosing proper dimensions from large
objects, whereas trim loss problem addresses the issue of how
to minimize wastage in cutting out the smaller items from larger
objects. To understand it better, Fig. 1 below shows a simple
illustration for the CSP.

Fig.1. A simple illustration for CSP

From Fig. 1, we see that a stock sheet with fixed length of

100 is available. Given a set of requested items, each with
certain length at 20, 30, 25 and 15 to be cut from the stock
sheet, the wastage or trim loss will be 10. Here, the stock sheet
is referred to as the large object, and the set of requests is the
so-called small items. If there is more than one stock sheet to be
cut to fulfill several sets of requests, the problem becomes more

Manuscript received March 3, 2006.
Raymond Chiong is with the School of Information Technology, Swinburne

University of Technology (Sarawak Campus), State Complex, 93576 Kuching,
Sarawak, Malaysia (phone: +60 82 416353 ext 607; fax: +60 82 423594;
e-mail: rchiong@swinburne.edu.my).

Ooi Koon Beng is with the School of Engineering, Swinburne University of
Technology (Sarawak Campus), State Complex, 93576 Kuching, Sarawak,
Malaysia (e-mail: kooi@swinburne.edu.my).

Engineering Letters, 14:1, EL_14_1_14 (Advance online publication: 12 February 2007)
__

complicated. The purpose of CSP is thus to find cutting patterns
that could minimize the number of stock sheets used, and at the
same time minimize the wastage resulting from the trim loss.

Many solutions for CSP have been presented since 1960s,
and one of the pioneering solutions can be found in the work of
Gilmore and Gomory based on a linear programming (LP)
approach [6]. Gilmore and Gomory used an LP model with
delayed pattern generation technique to solve the trim loss
problem efficiently without needing to enumerate all the
cutting patterns. Their technique is especially useful when
some extremely large stock sheets with millions of possible
patterns need to be cut. Besides that, the delayed pattern
generation technique is also potential of solving the trim loss
problem in a much shorter time [7].

The LP approach of Gilmore and Gomory has subsequently
been adopted by many other researchers for various LP-based
solutions (see [1] and [5] for more details), and most of them
have proven to be successful for CSP along the years. The
limitation of LP-based approach, however, is that it focuses
solely on minimizing trim loss [4]. When it comes to the real
world problems which are mostly non-linear, the LP approach
seems to be weak. As a result, researchers nowadays tend to
show more interest on the innovative heuristic search methods.

To name just a few, some of the renowned heuristic
approaches include the best first search, simulated annealing,
tabu search, etc. Unlike the LP approach, heuristic approach is
capable of dealing with both the assortment problem as well as
the trim loss problem effectively. Moreover, heuristic approach
is more convenient in a way that it can produce integer
solutions without needing to solve the rounding problems
which are common in the LP-based solutions. Nevertheless,
heuristic methods are normally very problem-dependent, thus
specific domain knowledge is required for finding good
heuristics.

Since the 1990s, the field of EA has experienced certain
degree of exponential growth. This is evidenced by a range of
successful applications of EA in diverse fields such as
Engineering, Biomedical, Economics, Operational Research,
Robotics, Social Sciences, Physics, Chemistry, etc. EA is a
generic term used to describe computer-based problem solving
methods based on the concept of biological evolution. They are
search algorithms that maintain a population of structures and
evolve according to rules of selection as well as other genetic
operators like crossover and mutation [8]. By incorporating
problem-dependent knowledge using natural data structures
and problem-sensitive genetic operators [9], EA can be an
extremely promising heuristic approach in finding optimal or
near optimal solutions to complex combinatorial optimization
problem such as CSP within reasonable computational time.

It is necessary to note that EA differ slightly from other
heuristic approaches. One distinctive difference is that EA
work within a population or a solution set while other heuristic
approaches use a single solution for optimization [9]. The clear
advantage of EA over other methods here is that they are able to
handle a set of solutions and use their inductive nature to
converge the solutions towards optimum without knowing the

internal rules. However, by working on a solution set the
evolution process of EA has the risk of getting stuck at the local
optima. In order to avoid this, EA have to explore the whole
search space. When the search space is extremely large, the
computational time of the search will increase significantly.
Some local searching methods therefore need to be
incorporated to speed up the convergence of EA’s solutions [9].

There are many specific examples of EA, and most of them
are similar in nature but differ in the details of their
implementation and the problem domains to which they have
been applied to. For the sake of brevity, in this paper we will
not discuss all but concentrate merely on the use of GA and EP
in tackling the classical CSP.

GA and EP are two important optimization methods in EA.
Both have been used successfully to solve a great deal of hard
combinatorial optimization problems, and one of such is the
CSP. As two major classes of EA, the main difference between
GA and EP is that GA uses both crossover and mutation, with
crossover as the primary search operator, while EP uses only
mutation without crossover. The existing works showed that
GA has been applied extensively to solve various kinds of
CSPs, but the application of EP is relatively few [4].
Nevertheless, most of the literature after the mid 1990s
considered EP to be much simpler, faster and more efficient
than GA [4, 10].

Before we describe in details how GA and EP are used to
solve the CSP, contiguity or pattern sequencing is another
important issue that we need to address. As small items need to
be cut from large objects according to some specific patterns,
the basic idea of contiguity is to ensure the sequence of cutting
patterns can minimize the items which are cut partially.

For CSP without contiguity, the sequence of the patterns is
not a concern at all since changing the cutting sequence makes
no difference to the optimization result. When a list of items is
cut continually, however, we need to consider a queue where
partially cut items can be stored and be reused until the
requested number of items is completely cut. In large-size real
world problems, the arrangement for contiguity issue is quite
crucial. For that reason, the industry is trying hard to sequence
the patterns in a way that the requested items could be cut in
continuous patterns as to minimize the handling costs.

III. GENETIC ALGORITHMS FOR CUTTING STOCK PROBLEM
In this section, we will give an introductory review on how

GA is used to tackle the CSP based on [3]. We consider CSP
with contiguity and also without contiguity. First, we address
the problem representation on CSP using GA, and subsequently
describe the search operators, the fitness function and the
replacement strategy.

A. Problem Representation
In general, two representations can be found for solving CSP

using GA, namely the group-based representation and the
order-based representation. A group-based representation
refers to a selection of items that will be cut from stock sheet
with same stock length, and an encoder is used to map the

groups. An order-based representation, on the other hand,
focuses on the order of the items, and a decoder is used to
organize the ordered list into a solution. According to [3], the
group-based representation is more favourable to the
order-based representation for CSP without contiguity, and
they are comparable for CSP with contiguity. The main
problem with order-based representation is that the crossover
operator in GA will find it hard to exploit the ordering
information in it. With ordering information encapsulated
within groups in the group-based representation, crossover can
work much better.

In GA with group-based representation, the chromosome is
represented with a number of groups of items to be cut. A first
fit algorithm is normally used to group the items from the
requested list into groups which are considered as genes. To
form the group, a stock length is first chosen at random by the
encoder, and then the items to be cut are picked without
replacement based on the first fit algorithm. It is necessary to
note that each group will be cut only from a single stock length.
As the stock length is implied by the group itself, it is not
recorded in the chromosome. The smallest stock length from
which the group of items can be cut completely is mapped to
each group, as showed in Fig. 2 below.

Fig. 2. Mapping solutions for group-based GA

The distinctiveness of the mapping solutions above is that

the number of groups, or genes, is variable [3]. Besides that, the
order of the groups and the order of items in each group have no
significance. These made the group-based GA very suitable for
CSP.

In GA with order-based representation, the chromosome is
represented with an ordering list of all the items to be cut. A
decoder is used to form groups from the ordering list based on a
given stock length. As the information of stock length is hard to
identify in order-based GA, the stock length available is being
restricted to only one in [3]. Since the ordering of the items is a
concern, a next fit algorithm that selects the next item that fits to
form groups from the list of items is a good option. If the next
item cannot fit into an existing group, next fit algorithm starts a
new group using that item. The only problem with next fit
algorithm is that it does not work well with the crossover

operator. As a result, the first fit algorithm that is used for
group-based GA is also used for the order-based GA, and it has
been proven to be successful in [11]. Fig. 3 shows the mapping
solutions for order-based representation using a single stock
length.

An ordering list of items:

(10, 6, 5, 2, 15, 6, 5, 7, 6, 10, 5)

Single stock length available:

15

Mapping Solutions

Items Stock size to be used Wastage
(10) 15 5
(6, 5, 2) 15 2
(15) 15 0
(6, 5) 15 4
(7, 6) 15 2
(10, 5) 15 0

Fig. 3. Mapping solutions for order-based GA

 From the above illustration on group-based representation
and order-based representation, we can see that the
group-based is clearly a better choice with less wastage as
compared to the order-based. However, order-based
representation is essential especially when we need to deal with
CSP with contiguity. This is because with contiguity the order
in the chromosome becomes significant. As such, Liang et al.
[4] proposed an intuitive algorithm in EP to solve this
order-based problem in GA. EP will be discussed later in
section IV.

A number of groups of items:

(10) (6, 5, 2) (15) (6, 5) (7, 6) (10, 5)

Stock lengths available:

12, 13, 15

Mapping Solutions

Items Stock size to be used Wastage
(10) 12 2
(6, 5, 2) 13 0
(15) 15 0
(6, 5) 12 1
(7, 6) 13 0
(10, 5) 15 0

B. Reproduction Operators
With different representations, different search operators are

used for optimizing the solutions. In this section, we describe
the reproduction operators for CSP with and without contiguity
separately.

For CSP without contiguity, Hinterding and Khan [3] used a
grouping crossover and a group mutation with the group-based
GA. Their implementation on the crossover and mutation
operators was based on [12]. The grouping crossover builds an
offspring by combining a segment of one parent into another
parent using an insertion point. In other words, the offspring
inherits meaningful information from both the parents with the
selection of best possible genes the parents have. The offspring
is built by first copying the genes from one parent up to the
insertion point. Then the genes from the segment in another
parent are copied, followed with the genes after the insertion
point from the first parent again. The grouping crossover,
however, is not straightforward because the genes from parents
have to be added to the offspring with some restrictions to
avoid duplicate items. As per the group mutation, a number of
genes are chosen and deleted from time to time in order to form
new genes in the chromosome. The deleted genes are normally
those with greater wastage. The idea behind is to get rid of

those bad genes in hope that the new genes produced would
provide a better solution. This mutation operator, however, is
more time consuming than the traditional simple swap
mutation.

For CSP with contiguity, Hinterding and Khan [3] used the
uniform grouping crossover with the order-based GA based on
[13]. The uniform grouping crossover gives more significance
to the ordering information which is essential in CSP with
contiguity. This crossover operator uses a template of binary
bits generated at random to exchange some items from both
parents to an offspring while at the same time maintain the
relative order information. As per the mutation, the remove and
reinsert mutation operator is used together with the group
mutation described earlier for swapping.

It is necessary to highlight again that the crossover used for
GA is not a straightforward one, and its implementation is a
tricky and complicated task. It also costs a lot of computational
time, and immensely degrades the performance of GA in
finding an optimal solution for CSP as a whole.

C. Fitness Function
A fitness function is an objective function that quantifies the

optimality of a solution. It is therefore crucial for us to describe
the fitness function used to evaluate the optimization results of
the CSP here. In this section, we present the fitness function for
CSP with and without contiguity based on [3].

For the CSP without contiguity, the fitness function contains
two terms, with the first to reduce the wastage and the second to
encourage solutions with fewer stock lengths that contain
wastage. The cost function can be calculated as below:









∑ +=
n n

wastednumber

ilengthstock
iwaste

n ,1

_

_

1
cost

where
n = number of groups
stock_lengthi = the stock length that groupi is to be cut
wastei = stock_lengthi – sum of items in groupi
number_wasted = number of stock lengths with wastage

For the CSP with contiguity, the fitness function again

contains two terms, with the first to reduce the wastage and the
second to maximize the contiguity by minimizing the number
of partially cut items. The cost function can be calculated as
below:



















∑ +

+
=

n lengthsdiff
itemspartial

ilengthstock
iwaste

n ,1

2

_
_

10
_10

1
cost

where
n = number of groups
stock_lengthi = the stock length that groupi is to be cut

 wastei = stock_lengthi – sum of items in groupi
 partial_items = number of partially cut items
 diff_lengths = number of different item lengths

D. Replacement Strategy
The GA in [3] used a steady-state GA based on [13].

Tournament selection with a tournament size of 2 is used to

give faster and comparable results. As for the parameter setting,
the replacement rate is set from 0 to 100%. Poisson distributed
random variable is used to determine the number of genes to be
mutated in a chromosome. A new chromosome is produced
either through crossover or mutation but not both at the same
time in order to know the separate effects of them.

IV. EVOLUTIONARY PROGRAMMING FOR
CUTTING STOCK PROBLEM

Motivated by the fact that the performance of order-based
GA is degraded when crossover is used, Liang et al. [4]
proposed a new EP for CSP with and without contiguity based
on the classical EP in [9]. They used only mutation as the
reproduction operator, thus their algorithm is considered to be
much simpler than GA. In this section, we will give an
introductory review on how EP is used to tackle the CSP.
Similar to section III, we first address the problem
representation on CSP using EP, and subsequently describe the
search operators, the fitness function and the replacement
strategy.

A. Problem Representation
The EP proposed in [4] is indeed a very simple algorithm that

uses an order-based representation. In EP, the chromosome is
represented with an ordering list of all items to be cut without
any additional parameter for self-adaptation being used. The
cutting points for the ordering list are decided using a decoder.
According to [4], the principle of their EP is simply to make a
cut before the accumulated item length matches any stock
length or exceeds the available stock length. An example is
given below for better understanding towards the cutting
process.

We assume the request for items to be cut is as follows:
 2 items of length 3
 2 items of length 4
 1 items of length 5
 3 items of length 6

A chromosome that is randomly generated can be
represented with an ordering list like this: (5, 4, 6, 3, 3, 4, 6, 6).
Given a single stock length of 12, the cutting solutions and the
total wastage are showed in Fig. 4 below.

Fig. 4. Cutting solutions for EP with single stock length

An ordering list of items:

(5, 4, 6, 3, 3, 4, 6, 6)

Single stock length available:

12

Mapping Solutions

Items Stock size to be used Wastage
| 5, 4 | 12 3
| 6, 3, 3 | 12 0
| 4, 6 | 12 2
| 6 | 12 6

In the situation when multiple stock lengths are available, the
cutting process can be more complex. For example, if there are
three stock lengths of 12, 15 and 22, the decoder has to compare
and decide on the best cutting points based on the three stock
lengths with the aim to minimize wastage. Fig. 5 shows the
cutting solutions for EP with multiple stock lengths.

Fig. 5. Cutting solutions for EP with multiple stock lengths

From the illustration in Fig. 5 above, it is obvious that with

the availability of multiple stock lengths, the wastage is
significantly reduced. However, the mechanism of finding the
best stock length for cutting can be complicated and needs to be
handled with extra care.

B. Reproduction Operators
As mentioned before, the EP works without any crossover

operator. This is because Hinterding and Khan [3] have
observed that the crossover caused degradation in performance
of GA, especially for CSP with contiguity. As a result, only a
simple swap mutation is used by Liang et al. [4] in their
proposed EP. It is necessary to note that their simple swap
mutation is different from the traditional mutation operator
used in classical EP. The reason being that in CSP, the items in
the request list are unchangeable. What can be changed or
mutated then is only the order of the items.

The simple swap mutation operator works based on a three
point swaps (3PS) which swaps three items in a list. For
example, the first item is swapped with the second item, and the
new first item, which is originally the second item, is then
swapped with the third item in the list. The swapping of three
items in an ordering list may accelerate the convergence
towards the global optimum, if the original list is far away from
the global optimum. However, it may also hinder the
convergence if the global optimum is already very close to the
original list. A balance therefore needs to be maintained in the
number of times the 3PS being applied in one mutation.

Apart from the swap mutation operator, a stock remove and
insert (SRI) operator is also being incorporated when it comes
to CSP with contiguity. SRI is designed for the purpose of
rearranging the cutting sequence in order to reduce the number
of partially cut items. In SRI, an item is uniformly picked from
the ordering list initially. The stock sheet that is used to cut the
selected item is then being removed. A search is performed

through the ordering list to find another stock sheet that cuts the
same length. Once such stock sheet is found, the removed stock
sheet is reinserted behind it. Similar to the design of 3PS in
simple swap mutation operator, the number of SRI being used
within one mutation needs to be devised properly.

C. Fitness Function
For the purpose of comparing the effectiveness of EP with

GA, the fitness functions used for CSP with and without
contiguity in [4] are exactly the same as the ones used in [3],
which have been described in the previous section.

An ordering list of items:

(5, 4, 6, 3, 3, 4, 6, 6)

Multiple stock lengths available:

12, 15, 22

Mapping Solutions

Items Stock size to be used Wastage
| 5, 4, 6 | 15 0
| 3, 3, 4 | 12 2
| 6, 6 | 12 0

D. Replacement Strategy
The EP used in [4] is a modified one from the classical EP

[9]. For CSP without contiguity, tournament selection is used
with an initial population being randomly generated. Fitness
function is called with the cost value for individual in the
population being calculated. Each parent creates a single
offspring through mutation. Pairwise comparisons are made
over the parents and offspring with opponent size of 10 for each
individual. For each comparison, individual with cost lesser
than the opponent’s survives and will be selected to be the
parent for next generation. This replacement strategy is
well-known for temporarily keeping some bad genes in order to
maintain the diversity throughout the entire search procedure. It
is necessary to note that the opponent size used has a direct
influence to the speed of convergence. As for CSP with
contiguity, the procedure is basically the same with CSP
without contiguity apart from that SRI is used together with
3PS as the mutation operators.

V. COMPARISON AND DISCUSSION
The GA and EP that we have reviewed in the previous

sections are two of the most significant optimization methods
proposed for CSP with and without contiguity to date. From our
reviews, we see that the group-based GA has significant
advantage over the order-based GA, especially in the case of
CSP without contiguity. The crossover operator presents a
major problem for the order-based GA, even though the
uniform grouping crossover has been proposed for better
performance in [3]. In some occasions, the crossover operator
used in order-based GA could even destruct the ordering
information in the chromosome. We believe that the decoder
used for mapping the solutions after crossover takes place
could be harmful to the useful grouping information, thus
making the crossover nothing more than a random swap.

Realizing the importance of the ordering information and the
disadvantage of the crossover in order-based GA, EP has been
presented in [4] with the aim of using mutation as the only
search operator. A much simpler and less time-consuming
algorithm has thus emerged. Based on our observation, we
believe that EP outperforms GA because the reproduction
operators used in EP for mapping the solutions are much more
heuristic and simpler than those used in GA. On the other hand,
we have also found that the steady-state replacement strategy
used for GA in [3] has a good balance of replacement rate for

better convergence.
Drawing from the comparison made between GA and EP, we

believe that a combination of the two methods can produce an
improved algorithm for solving CSP. In EP, the SRI is
deployed to gather together all the stock sheets that can be used
for items with same length. As SRI operates based on groups,
this mutation operator is still not able to gather items with the
same length into the same stock sheets for more contiguity. In
view of this restriction, we propose an order-based SRI
mutation for better optimization. The new order-based SRI can
be implemented as follows:

1. Select an item uniformly at random from the ordering
list.

2. Remove the selected item from the ordering list.
3. Search through the ordering list to find the item that

has the same length.
4. Insert the removed item right behind the first such

found item.
Our proposed algorithm also incorporates the idea of the

steady-state replacement strategy from GA [3] for a better
convergence in the replacement process. Experiments need to
be conducted to verify the improved algorithm.

VI. CONCLUSION AND FUTURE WORK
The CSP has gained a lot of attention as a mean to increase

efficiency for many industrial problems nowadays. In this
paper, we reviewed and made some general observations on
how GA and EP were used to solve the CSP. Several
components deemed to be important in the applications of these
methods are the problem representation, the search operators,
the fitness function and the replacement strategy. Most
important of all here is the issue of representation, for without
proper and domain-specific representation, we simply cannot
apply these EA to solve real world problems. A good
replacement strategy is also essential to improve the efficiency
of the optimization process.

We have also proposed an improve algorithm based on the
combination of GA and EP, using the steady-state replacement
strategy and an order-based SRI mutation. We believe that our
proposed algorithm can improve the optimization results of
CSP significantly. As EA are heuristic in nature, finding good
design for the parameter settings is a major task and requires
substantial experience. Extensive experiments therefore need
to be done to verify our proposed algorithm and make it more
effective.

As a matter of fact, there are still a lot of rooms for
improvement in using EA to tackle CSP. One of such is to
investigate the use of self-adaptation for the evolution process
in applying the search operators. Self-adaptation is able to
handle the search biases and evolve the replacement rate of the
steady-state replacement strategy for better control over the
optimization process. Other than that, investigation on better
heuristics especially for the mapping process can also be
carried out.

ACKNOWLEDGMENT
The authors would like to thank Professor Xin Yao from the

School of Computer Science, University of Birmingham, UK
for his feedback. The authors would also like to thank Dr
Argenes Siburian from the School of Engineering, Swinburne
University of Technology (Sarawak Campus) for his helps and
comments.

REFERENCES
[1] H. Dyckhoff, “A typology of cutting and packing problems,” European

Journal of Operational Research, vol. 44, pp. 145-159, 1990.
[2] E. E. Bischoff and G. Wascher, “Cutting and packing,” European Journal

of Operational Research, vol. 84, pp. 503-505, 1995.
[3] R. Hinterding and L. Khan, “Genetic algorithms for cutting stock

problems: with and without contiguity,” in Progress in Evolutionary
Computation (X. Yao, ed.), vol. 956 of Lecture Notes in Artificial
Intelligence, Berlin, pp. 166-186, Springer, 1995.

[4] K. H. Liang, X. Yao, C. Newton, and D. Hoffman, “A new evolutionary
approach to cutting stock problems with and without contiguity,”
Computers and Operations Research, vol. 29, pp. 1641-1659, 2002.

[5] A. Hinxman, “The trim-loss and assortment problems: A survey,”
European Journal of Operational Research, vol. 5, pp. 8-18, 1980.

[6] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the
cutting stock problem – part II,” Operations Research, vol. 11, pp.
863-88, 1963.

[7] P. Sweeney and E. Paternoster, “One-dimensional cutting stock decision
packing problems,” Journal of the Operational Research Society, vol. 43,
no. 7, pp. 691-706, 1992.

[8] W. M. Spears, K. A. De Jong, T. Back, D. B. Fogel, and H. de Garis, “An
overview of evolutionary computation,” in Proceedings of the European
Conference on Machine Learning (ECML’93), Vienna, Austria: Springer
Verlag, 1993, vol. 667, pp. 442-459.

[9] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs: A Hierarchy of Evolution Programs, Berlin: Springer, 1996.

[10] D. Fogel, “A comparison of evolutionary programming and genetic
algorithms on selected constrained optimization problems,” Simulation,
vol. 64, no. 6, pp. 397-404, 1995.

[11] R. Hinterding, “Mapping, order-independent genes and the knapsack
problem,” in Proceedings of the First IEEE Conference on Evolutionary
Computation (ICEC'94), Orlando, Florida, USA, 1994, pp. 13-17.

[12] E. A. Falkenauer and A. Delchambre, “A genetic algorithm for bin
packing and line balancing,” in Proceedings of the IEEE International
Conference on Robotics and Automation (RA92), Nice, France, 1992, pp.
1186-1193.

[13] L. Davis, ed., Handbook of Genetic Algorithms, New York: Van Nostrand
Reinhold, 1991.

	INTRODUCTION
	Cutting Stock Problem
	Genetic Algorithms for Cutting Stock Problem
	Problem Representation
	Reproduction Operators
	Fitness Function
	Replacement Strategy

	Evolutionary Programming for �Cutting Stock Problem
	Problem Representation
	Reproduction Operators
	Fitness Function
	Replacement Strategy

	Comparison and Discussion
	Conclusion and Future Work

