
 
 

 

  
Abstract—In this paper the GPC and NGPC model predictive 
control techniques are applied to a typical plant and compared in 
terms of computational efficiency. The system identification and 
predictive control computational performance are examined. The 
future control inputs using GPC can be found by the direct 
analysis and thus reducing the computational time when 
compared with NGPC scheme with variable weight factor. The 
NGPC shows the true dynamics of the plant. The weight factor of 
the GPC scheme is explored in the implementation of the scheme. 
The results show the GPC with variable weight factor is on par 
with NGPC. 
 
Index Terms—GPC, Computational time, NGPC, Typical plant. 
 
 

I. INTRODUCTION 
 

 Generalized Predictive Control (GPC) belongs to the class 
of Model-based predictive control (MBPC) techniques and was 
first introduced by Clarke and his Co-workers in 1987[1, 2]. 
Linear model predictive control has a long reputation as a 
powerful control tool in industrial control processes. The 
applications of the neural network to nonlinear control system 
can basically be divided into two classes [3]: control systems 
where the controller in itself is a neural network and model 
based control systems where the model of the nonlinear 
dynamic system is a neural network. The Predictive control is 
characterized by accomplishing the prediction of future values 
through a model [7]. Then, based on the predicted values, on an 
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optimization function and on a control law, the controller 
generates a future control action. The objective of this work is 
to present in a brief way the implementation of predictive 
controllers based on the ANN [6]. It uses some optimization 
indexes and control laws usually applied to the conventional 
predictive control. In Figure.1 a general structure is presented 
to implement Neural Generalized Predictive Controllers 
(NGPC) cases, the ANN are properly trained and represent the 
dynamics of the plant in a satisfactory way. 

 
 

Figure 1: Blocks Diagram of Neural Predictive Controllers 
 
The predictive controller, in summary, is characterized by 
computing future control actions based on output values 
predicted by a model, with vast literature and academic and 
industrial interest (Clarke, 1987; Astrom and Wittenmark 1995; 
Garcia et all, 1989; Menezes, 1993; Arnaldo, 1998). Currently 
there are two techniques used to model nonlinear plants. One is 
to linearize the plant about a set of operating points. If the plant 
is highly nonlinear the set of operating points can be very large. 
The second technique involves developing a nonlinear model 
which depends on making assumptions about the dynamics of 
the nonlinear plant. If these assumptions are incorrect the 
accuracy of the model will be reduced. Models using neural 
networks have been shown to have the capability to capture 
nonlinear dynamics [3].For nonlinear plants, the ability of the 
GPC to make accurate predictions can be enhanced if a neural 
network is used to learn the dynamics of the plant instead of 
standard modeling techniques. Improved predictions affect rise 
time, over-shoot, and the energy content of the control signal. 
This next section presents the concepts of Generalized 
Predictive Control predictive techniques, using the usual 
optimization functions and control laws. The computational 
performance of a GPC implementation is largely based on the 
minimization algorithm chosen for the CFM block.  The 
selection of a minimization method can be based on several 
criteria such as; number of iterations to a solution, 
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computational costs and accuracy of the solution. The quality 
of the plant’s model affects the accuracy of a prediction. 

 
     

  II.GENERALIZED PREDICTIVE CONTROL SCHEME 
 
    

 The generalized predictive control (GPC) is discussed in [1] 
[2]. It is a receding horizon method. For a series of projected 
controls the plant output is predicted over a given number of 
samples, and the control strategy is based upon the projected 
control series and the predicted plant output. We will 
summaries some of the features of the GPC but refer to [1] [2] 
for a more detailed discussion. 
   The GPC algorithm is derived according to the following. We 
start by calculating the predictor. The optimal predictor can be 
derived according to (starting from the assumed CARIMA 
model structure) 
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In the second equation, we have omitted the index ( 1q− ) for the 
sake of brevity and denoted by A A= Δ .                        (2) 
Defining     11 j jE A q F−= +  
Gives 
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Since deg  ( ) 1jE j= −  (thus the notice term completely in the 
future) the best prediction becomes 
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And where             j jE B G=  

The polynomials j and j can easily be calculated recursively 
using equation (4). The Polynomials are given by 
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with 
1, ,0j j je f+ = ,the coefficients of the polynomial 

1jF +
can then be expressed as 

1, | 1 ,0 1j j j i j if f f a+ + += −                                                           (7) 

 and 0...( 1)ai n= − and the polynomial 
1jG +
can be obtained 

recursively as follows; 
1 1

1 1 ,0 ,0( )j j j j j jG E B E f q B G f q B− −
+ += = + = +                   (8) 

 
that is, the first j coefficients of

1jG +
 will be identical to those 

of
JG and the remaining coefficients are will be given by 

                      1, 1 , 1 ,0j j j j j ig g f b+ + += +  
A set of optimal predictors as given by equation (3.6) can be 
rewritten in the form 

1 1( ) ( ) ( ) ( 1)y Gu F q y k G q u k− −′= + + Δ −                            (9) 
where 
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the predictor becomes 1 1( ) ( ) ( ) ( 1)y F q y k G q u k− −′= + Δ −            (10) 
     

Since the last two parts of equation (13) only depend on the 
past, these can be grouped as the free response and denoted f. 
 
                  y Gu f= +                                                        (11) 
The free response f can be calculated recursively as 

1
1 (1 ( )) ( ) ( )i jf q A q f B q u k d j−

+ = − + Δ − +                            (12) 

 
 
The calculation of the controller in turn is performed as to 
minimize with respect to the control moves the objective 
function. The objective is to find a control time series that 
minimizes the cost Function 
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Subject to the constraint that the projected controls are a 
function of available data.N2 is the costing horizon. λ is the 
control weight. The expectation of (1) is conditioned on data   
up to time kith plant output is denoted y, the reference r, and the 
control signal u. ⊗is the shifting operator (1 − q−1 ), such that 
 
 

( 1) 0, uu k j j NΔ + − = >                                                    (14) 
The first summation in the cost function penalizes deviation of 
the plant output y (k) from the reference r (t) in the time interval 

21k k k N+ ≤ ≤ +  . The second summation penalizes control 
signal change Δu (t) of the projected control series. We will 
furthermore introduce the so called control horizon Nu ≤ 
N2.Beyond this horizon the projected control increments uΔ   
is fixed at zero:      ( 1) 0, uu k j j NΔ + − = >  



 
 

 

The projected control signal will remain constant after this 
time. This is equivalent to placing an effectively infinite weight 
on control changes for k > Nu. Small values of Nu generally 
result in smooth and sluggish actuations, while larger values 
provide more active controls. The use of a control horizon Nu < 
N2 reduces the computation burden. In the nonlinear cast the 
reduction is dramatic [1]. 
The quadratic loss function, can be written as 

( ) ( )T TJ Gu f w Gu f w u uλ= + − + − +                                 (15) 
 
where w is the future set-point trajectory. 
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The loss function can be rewritten as 
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        2( )TH G G Iλ= + ,           2( )T Tb f w G= −  
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The minimum of the loss function can be calculated 
analytically (in this linear example and assuming no 
constraints) by making the gradient of the loss-function equal 
to zero. This gives the controller 
as: 1 1( ) ( )T Tu H b G G I G w fλ− −= − = + −               (19) 
 
 
A: Simple GPC design example: 

 
An example that designs a GPC controller for a linear, first 

order system without time delay is chosen. In discrete-time 
representation the process can, for example, be expressed by 
the use of the backward shift operator as a CARIMA-model 
                    1 1

0 1(1 ) ( ) ( ) ( 1) ( ) /aq y k b b q u k e k− −+ = + − + Δ  
where 11 q−Δ = − , we choose the numerical values of the system 
parameters as 
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This gives a system-behavior similar to the one illustrated in 
figure 2 
 
B: The control law for GPC systems (summary): 
 
Let us summarize the control law for a GPC system that can be 
modeled by the CARIMA model for completeness here: 
 

1 1 1( ) ( ) ( ) ( ) ( ) /A q y k q B q u k C k− − −= + Δ                                (1) 
where e (k) is an uncorrelated random sequence. 
We introduce 
 

 
 
 
Figure 2. A step-response when the input changes from zero to 
one at time k = 0. The effect of the noise is significant, note that 
the system in the absence of noise has a low frequency gain of 
five (and thus the output would move from zero to five in 
response to the input change). 
 In our example we get the controller algorithm, where only the 
first row is used, since only the first control move is 
implemented: 

( ) 0.396 ( 1) 0.604 ( 2) 0.133 ( 1)
0.147 ( 3)

u k u k u k w k
w k

= − + − − +
+ +

 

This controller is implemented in figure 2 and some 
simulation results are as seen in figure 3. 
            
                 
 

 
Figure 3. The control response to a set point change with small 
amplitude of white noise present. Upper graph shows output 
and set point, the lower graph shows the manipulated variable. 
We assume no model/plant mismatch. This example did not 
include any constraints, and therefore the optimization could be 
solved analytically. 
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and let  

KY  represent data up to time k. We now note, that 
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where in turn 
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In GPC case σ is independent of u  and yN, and when 
minimizing the cost function, σ constitutes a constant value that 
can be ignored. We can separate Ny  into two terms: [1].                      

YN Gu f= +                                                                          (11) 
where f is the free response, and  Gu  is the forced response. 
The free response is the response of the plant output as a result 
of the current state of the plant with no change in input. The 
forced response is the plant output due to the control sequence 
u  . The linearity allows for this separation of the two 
responses. The important fact is that f depends on the plant 
parameters and NY  (i.e. past values of u and y) while the 
matrix G only depends on the plant parameters. G does not 
change over time, and f can be computed very efficiently. Using 
(22) and (23) 

2 2( ) ( )J YN W uλ= − +  
 

2 2( ) ( )Gu f w uλ= + − +  

( ) ( )T TGu f w Gu f w u uλ= + − + − +  
The minimization of the cost function on future controls results 
in the following control Increment vector: [1] 
 
min 1* ( ) ( )T TJ u G G I G w fλ −= = + −  
and in the following current control signal 

( ) ( 1) ( )Tu k u k g w f−= − + −  .Where Tg − is the first row. 
of 1( )T TG G I Gλ −+  
 

 
III. The Neural generalized predictive control 

 
 
A: Nonlinear Case: 

 
If the plant is nonlinear, the cost function (1) & (19) to (23) 

remains the same, but implementation of the algorithm is done 
in a different way. Especially the prediction of the plant outputs 
YN  based on the projected control series u can not be done in 
the same way. For a nonlinear plant the prediction of future 
output signals can not be found in a way similar to (25): The 
relation of the control signal series to the plant output series is 
nonlinear, i.e. the multivariable function f, that 
fulfils ( , )kYN f y u=  is nonlinear. Therefore we can not 
separate the free response from the forced response. To solve 
this problem we need to implement the prediction of yN, i.e. f in 
(12) in a different way. We need nonlinear predictor yN  for 
future plant outputs. 
 
       ( , )kYN f y u=                                                                  (11) 
This is where the neural network comes into play [4] [5] [6]: 
We will facilitate the neural network to the workings of the 
function f in (11) to obtain the predictionsYN .We will train a 

neural network to do a time series prediction of plant outputs 
YN  for a given control signal time series u  . This will let us 
evaluate the GPC cost function (1) for a nonlinear plant. Using 
a suitable optimization algorithm on the projected control 
signal series with respect to the cost function, we find a control 
series that minimizes the cost function: min J= *u .  ( Note that 

σ in equation (22) is not independent of u  nor yN for a nonlinear plant. 
We will however assume that the effects of σ   are small and can be 
ignored.) 
 
B: The complete control algorithm iterates through these three 
steps: 
 
1. Choose (a new) control change time series u . 

2. Predict plant output time’s series Ŷ  . 
3. Calculate cost function J 
 
That is, first we choose a control time series u   . Using a model 
we look at what would happen if we choose this series of 
control signals: we predict the plant output Ŷ   . Then we use a 
cost function (1) to tell us how good or bad the outcome is. 
Then we let the optimization algorithm choose a new control 
time series u   that is better by means of the cost function (1). 
We iterate these steps in order to find a series of control signals 
that is 
optimal with respect to the cost function (1). 
 
There are 3 distinctive components in this controller: 
• Time series predictor of plant outputs 
• cost function 
• Optimization algorithm. 

 
 

Figure 4 The Neural Networks based Predictive Control 
 
The cost function is given by (1). For the optimization 

algorithm we can use a simplex method which is implemented 
as a Matlab built-in function, such as fminsearch. The time 
series predictor will use a neural network model of the plant. 
The complete system diagram is sketched in figure 4. The 
neural network model runs alongside the plant and is used by 
the controller as discussed above to predict plant outputs to be 
used by the controller’s optimization algorithm There are four 
tuning parameters in the cost function, N1, N2, Nu, and λ. The 
predictions of the plant will run from N1 to N2 future time 
steps. The bound on the control horizon is Nu. The only 
constraint on the values of Nu and N1 is that these bounds must 
be less than or equal to N2. The second summation contains a 
weighting factor, λ that is introduced to control the balance 



 
 

 

between the first two summations. The weighting factor acts as 
a damper on the predicted u (k+1). As noted earlier in section 
2.1, the control horizon Nu≤ N2 limits the number of projected 
control signal changes such that ∆u (k + j − 1) = 0, j > Nu. 
 
 

If we set the control horizon to some value Nu < N2, the 
optimizer will only work on a series of Nu projected control 
signal changes, while evaluating a predicted plant output series 
that has N2 samples. Reducing Nu will dramatically reduce the 
computational burden, as it effectively reduces the dimension 
of the multidimensional variable that the optimizer works on. 
 
 
C: Neural model 
 

Feed forward networks with a single hidden layer using 
threshold or sigmoid activation functions are universally 
consistent estimators of binary classifications (Farago and 
Lugosi, 1993). Also cited in Tan and Cauwenberghe (1996) 
and Hecht-Nielsen (1990), it is proven that a neural net, with 
only one hidden layer, is able to represent any function of 

n mR R→   Rm, just limited by the number of neurons in the 
hidden layer. 
 

 
 
Figure 5. Multi-layer feed forward neural network with a time 
delayed structure 
 
The purpose of our neural network model is to do time series 
prediction of the plant output. Given a series of control signals 
u   and past data Yk we want to predict the plant output series 
YN . We will train the network to do multi-step ahead 
prediction, i.e. to predict the plant output 1KY +   given the 

current control signal ku   and plant output KY   (see figure3). 
The neural network will implement the function  
        1 ( , )K k kY f u y+ =                                                   (28) 
 
As will be discussed below, yk has to contain sufficient 
information for this prediction to be possible. To achieve multi 
step ahead prediction of all the plant outputs in (28) we will 
cycle the one step ahead prediction back to the model input. In 
this manner, we get predicted signals step by step for time 
k+1,k+2, . . .k+n. 
 
 

D: NGPC– T Steps ahead: 
 
 

The preceding algorithm can be improved using predictive 
control techniques. Thus, scalar values can now be expressed as 
predicted vectors consider a real nonlinear model expressed by: 
 
y(k +1) = f[y(k),y(k -1),..,y(k -n),u(k),u(k - 1),.,u(k -m)]     (29) 
 
where f is a nonlinear function of the system output [y (k), y 
(k-1), y (k-n)] and input values [u (k), u (k-l), u (k-m)]. m is the 
number of exogenous regressors 
 
 

         
Figure 6. Multi-step predictor 

 
 

The variable n is the number of auto regressors and But, to 
represent dynamic systems, it is necessary to introduce the 
feedback effect in the ANN, characterizing the application of 
the Recursive ANN (RANN). As in the ARX models 
(Autoregressive with exogenous inputs), the input signals of 
the net are associated to its own input and output 
past values. Then, let use a net with three layers, and base the 
study on the neural structure illustrated in the Figure 5. where N 
represents the number of the hidden layer neurons, and the 
blocks represents a single-valued monotonic nonlinear sigmoid 
function to be applied at the output of each hidden layer neuron. 
bs represents the bias of the output linear neuron. The matrixes 
of weights W1 and W2 have dimensions N x (n+m) and 1 x N 
respectively and represent the weights of the connections 
among layers 1-2 and 2-3. 
 
The NGPC [13] algorithm has the following important 
steps. (see figure. 1): 
 
1) Generate a reference trajectory. If the future trajectory of ym 
(n) is unknown, keep ym (n) constant for the future trajectory. 
2) Start with the previous calculated control input vector, and 
predict the performance of the plant using the model. 
3) Calculate a new control input that minimizes the cost 
function, 
4) Repeat steps 2 and 3 until desired minimization is achieved, 
5) Send the first control input, to the plant, 
6) Repeat entire process for each time step. 
 
 



 
 

 

E: Topology of a multi-layer perception: 
 

 
The neural network was trained to model the plant using the 

same pulse train. The network architecture contains a single 
hidden layer with four hidden nodes and a single output node. 
The input layer is composed of two inputs, one that is externally 
fed with four time delayed nodes and the other is fed back from 
the output of the plant with four time delayed nodes. The 
hidden layer’s nodes use the hyperbolic tangent as an activation 
function and the output is scaled linearly. Normalized Root 
Mean Squared error (NRMS) and Max error were used to 
measure training of the network. The NRMS error measure, 
where T is the desired target output, O is the output of the 
network, p is the training pattern, and n is the output node. In 
this example, n is 1 and p is 1000 (100 time steps sampled at 0.2 
seconds).A cycle is defined as all of the input/output relations 
that form the entire pulse train. The NRMS error and the Max 
error for 10,000 cycles of network training are shown in Figure 
7 and Figure 8. 
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The principal importance of a neural network is not only the 
way a neuron is implemented but also how their 
interconnections (more commonly called topology) are made. 
The topology of a human brain is too complicated to be used as 
a model because a brain is made of hundreds of billions of 
connections which can't be effectively described using such a 
low-level (and highly simplified) model. 
 
The topology we will study is therefore not the topology of a 
human brain but actually a simple topology designed for easy 
implementation on a digital computer. One of the easiest forms 
of this topology at the moment is made of three layers: 
 
• one input layer (the inputs of our network) 
• one hidden layer 
• one output layer (the outputs of our network) 
 
All neurons from one layer are connected to all neurons in the 
next layer This forms a whole network with full 
interconnection, please note also that the weight (and therefore 
the importance) of each connection is not represented (for 
practical reason) here but must exist in the reality. 
 
F: Training and memory of a neural network 

 
The neural network presented above is not of any interest 

because it has not been trained (so it is not able to solve any 
particular problem). This situation can be compared to a little 
baby, whose brain is fully developed and ready for work but 
who is not able to do anything because it has not experienced 
any stimulus. So a neural network without learning is 
analogous to a human without education. Therefore, a neural 

network must be trained to solve some particular problem. The 
methodology of the training is analogous to the way you would 
teach a child to read or to count, that is by presenting some 
number or letter and by assigning the letters and numbers some 
values. For example you could show a child of 5 years an image 
of an A and you could then tell him that it's an "A'ye" with the 
best pronunciation you could manage. 
 
   
     You will teach a neural network in exactly the same way, 
namely you will feed our network with a set of numbers and the 
network will give you a result in its output layer. Since the 
weights of the connections in the network are initially in a 
random state, this result will surely at the beginning not satisfy 
you, so you will change the weight of some connections in 
order to obtain a better result. You will change the weight of the 
connections in fact until you get the desired result (this is the 
training stage). Next you will feed the input layer of the 
network with other examples and continue adjusting weights, 
until eventually you obtain the desired output for each example. 
 
 
    The first step in the control design process is the 
development of the plant model. The performances of neural 
network controllers are highly dependent on the accuracy of the 
plant identification. In this section we will begin with a 
discussion of 
some of the procedures that can use to facilitate accurate plant 
identification. As with linear system identification, we need 
insure that the plant input is sufficiently exciting. For nonlinear 
black box identification, we also need to be sure that the system 
inputs and outputs cover the operating range for which the 
controller will be applied. For our applications, we typically 
collect training data while applying random inputs which 
consists of a series of pulses of random amplitude and duration. 
 
 

The duration and amplitude of the pulses must be chosen 
carefully to produce accurate identification. If the identification 
is poor, then the resulting control system may fail. Controller 
performance tends to fail in either steady state operation, or 
transient operation, or both. When steady state performance is 
poor, it is useful to increase the duration of the input pulses. 
Unfortunately, within a training data set, if we have too much 
data in steady state conditions, the training data may not 
representative of typical plant behavior. This is due to the fact 
that the input and output signals do not adequately cover the 
region that is going to be controlled. This will result in poor 
transient performance. The following example will illustrate 
the performance of the predictive controller when we use 
different ranges for the pulse widths of the input signal to 
generate the training data. 

After training the network with the data set as shown in 
figure 7a the resulting neural network predictive control system 
if unstable and based on the poor response of the initial 
controller, 

we determined data did not provide significant coverage. 
Therefore, we changed the range of the input pulse widths as 



 
 

 

shown in figure7b one can see that the training data set, the 
resulting predictive system was stable, although it resulted in 

 
 
Figure 7. (a&b) Training data with long and short pulse width. 
 
  

               
 
        Figure 8Training data with mixed pulse width. 
 
 
large steady-state errors. In the third test, we combined short 
pulse width and long pulse width (steady state) data. The long 
pulses were concentrated only on some ranges of plantoutputs. 
We chose to have steady-state data over the ranges where the 
tracking errors from previous case were large, shown in the 
figure8.The resulting controller performed well in both 
transient and study state conditions. 
 

The entire set of training examples must be shown to the 
network many times in order to get a satisfactory result. You 
would not expect a child to learn to read having 
seen each letter or word only once, similarly the network 
requires many examples. After all of this training, the network 
is hopefully able to solve the problem - we say that it has 
learned, and its `knowledge' is stored by all the different 
connection weights. Care must be taken, when training 
perception networks, to ensure that they do not over fit the 
training data and then fail to generalize well in new situations. 
Several techniques for improving generalization are discussed. 
Consider a network with two hidden nodes (had=2), one output 
node, and input consisting of u (n) and two previous inputs 
(nod=2), and of three previous outputs (did=3). Suppose that a 
2-step prediction needs to be found, that is, the network needs 
to predict the output at times n+1 and n+2. The information 
required by the neural network at each time instant is conveyed 
in Figure 4. 
The example plant below depicts a prediction of the plant for 
k=2. To produce the output y (n+2), inputs u (n+1) and u (n+2) 
are needed. The prediction process is started at time n, with the 
initial conditions of [u (n) u (n-1)] and [y (n) y (n-1) y (n-2)] 
and the estimated input u (n+1). The output of this process is yn 

(n+1), which is fed back to the network and the process is 
repeated to produce the predicted plant’s output yn (n+2). 
 

 
IV: SIMULATION RESULTS 

 
 
For a large number of systems a linearising approach is 

acceptable and any relatively small non-linearities, being 
effectively linearised by the GPC. In order to obtain improved 
control over systems with small non-linearities or to deal with 
systems with stronger nonlinearities, it is necessary to take into 
account of the nonlinearities in an appropriate way. By using 
instantaneous linearization of a nonlinear model incorporating 
the GPC and the NGPC techniques can be applied to 
NARMAX and neural networks model. The control 
performance using both methods is examined and compared. 
Consider the typical plant; 
Y (k) = 0706 y (k-1) + 0.2885 y (k-2) + 0.066 u (k-1) - 0.03 u 
(k-2) + 0.7202 y (k-1) y (k-2)                                         (30) 
 
Proposed constant and variable λ⎣ : 
 

It is observed that the plant nonlinearity and no symmetry 
make the plant output behaves differently for rising edge and 
falling edge of the reference signal. The idea is try to found a 
perfect adaptability to⎣ , to compensate the plant 
characteristics. Some empiric rules were used with satisfactory 
practical results. Considering the plant linearization around the 
operating point it is observed that it is required to adopt the 
variable λ , for each step, and the practical results become 
excellent as showed below. 

According to Section 3, the neural net will be characterized 
by the number of auto regressors, the number of exogenous 
regressors and the number of hidden layer neurons. In the 
proposed application, we select the neural network model with 
only 6 hidden layer neurons (N=6), 4 auto regressors (n=4), 4 
exogenous regressors (m=4) and use the hyperbolic tangent as 
sigmoid function. After appropriate training, the validity of the 
model is verified in a large operation strip. The obtained 
results are presented in the Figure 4; it shows the level 
changing from 2 to 9 units that practically represents the whole 
plant. So, the proposed neural network model properly trained 
can satisfactorily represent the model in a quite satisfactory 
way. Hence the net is ready to NGPC implementation [12, 13] 
 
B: With constant λ : 
 

Figure 9. shows the plant output behavior with respect to 
reference signal and Figure10. clearly shows the control action 
stability. It also illustrates de satisfactory performance of the 
NGPC. Note in Figure 9 the value of λ is large enough to 
generate an output overshoot when the reference signal raises. 
However, it is too small to guarantee an effective time to 
stabilize the output plant when the reference signal falls. 
 
C: With variable λ: 



 
 

 

To enhance the system control action, with variable λ . It 
compensates the overshoot at the reference signal rises and the  

 
 
Figure9: Reference signal and plant output with constant⎣ 
 
 

 
 
             Figure 10: Control action with constant  λ 
 
stabilization time at the falls.Then λ , is maximum at the low 
limit and decreases when the output level rises. As in to the 
proposed system with variable λ and the obtained results is 
showed in Figure 11&12. Figure.13 illustrates the respective 
control action behavior. 
 

 
 
Figure 11: Reference signal and plant output with adaptable λ 
 

 

 
Figure 12: Control action with adaptable λ 

 
 
 
CONSTANT WEIGHT FACTOR [λ]: In the figure when 
constant weight factor it performs very poor as shown in the 
figures9&10 and, figure13&14. The table 1 shows the poor 
performance of the GPC when the λ is constant, and the NGPC 
shows good performance .The poor performance could be 
corrected by adaptable weight factor λ. which is very close to 
NGPC scheme. This is applicable when the order of the plant is 
lower 

 
 
 

 
Figure 13 GPC and NGPC with constant set value. 
 
 
 
 

 
 
Figure 14 GPC and NGPC with variable set value. 
 
 
 
 
 
 



 
 

 

 
 
 
 

 
TABLE 1 SUMMARY COM. OF GPC AND NGPC 

 
 

 
V: CONCLUSIONS: 

 
   

The typical plant control using instantaneous GPC and 
NGPC based techniques was discussed in this paper. Their 
features and main properties were presented and their control 
performance was illustrated and compared. It was shown that 
both of them 
provided an optimal control performance. The future control 
inputs using GPC can be found by the direct analysis, thus 
reducing the computational time and so it is more suitable for 
the real industrial applications. The results shows that the GPC 
with the variable weight factor ’λ’ approach performs on par 
with NGPC. But the NGPC is enable us to address the plant” 
true” dynamics. The CPU time, no. of predictions, the time to 
reach the set value with constant weight factor the GPC 
performs on par with NGPC. But the NGPC though with more 
computational efforts the performance accuracy is good 
because of system identification capabilities. 
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