

Abstract—In this paper the GPC and NGPC model predictive
control techniques are applied to a typical plant and compared in
terms of computational efficiency. The system identification and
predictive control computational performance are examined. The
future control inputs using GPC can be found by the direct
analysis and thus reducing the computational time when
compared with NGPC scheme with variable weight factor. The
NGPC shows the true dynamics of the plant. The weight factor of
the GPC scheme is explored in the implementation of the scheme.
The results show the GPC with variable weight factor is on par
with NGPC.

Index Terms—GPC, Computational time, NGPC, Typical plant.

I. INTRODUCTION

 Generalized Predictive Control (GPC) belongs to the class
of Model-based predictive control (MBPC) techniques and was
first introduced by Clarke and his Co-workers in 1987[1, 2].
Linear model predictive control has a long reputation as a
powerful control tool in industrial control processes. The
applications of the neural network to nonlinear control system
can basically be divided into two classes [3]: control systems
where the controller in itself is a neural network and model
based control systems where the model of the nonlinear
dynamic system is a neural network. The Predictive control is
characterized by accomplishing the prediction of future values
through a model [7]. Then, based on the predicted values, on an

Manuscript received July 27th , 2006.

First Author: D.N.Rao ,graduate with a specialization in Electronics and
Communication Engineering He is working as faulty in T.R.R.College of
Engg.J.N.T.U.email:dhyapulai@yahoo.com,ph No:+91-040-27552909IAENG
member

Second Author: Dr.M.R.K.Murthy, obtained his degree in (1977), Osmania
University (O.U) and P.G. in 1980, from O.U. He received his PhD degree from
IIT, Chennai in 1993.e.mail:dhyapulai@gmail.com, ph No:+91-040-27552909

 S Third Author: Dr.S.R.M.Rao obtained B.E. degree from IISC, Bangalore,
and M.E. from NIT, Warangal. He obtained his PhD from IISC, Bangalore.
Email.com;nag_rai8761@yahoo.com

Fourth Author: D.N.Harshal. He is research Associate at Pentagram Ltd,
Hyderabad. Graduation in specialization ‘Information and technology’.
e..mail:harshal_nag20@yahoo.com,IAENG member.

optimization function and on a control law, the controller
generates a future control action. The objective of this work is
to present in a brief way the implementation of predictive
controllers based on the ANN [6]. It uses some optimization
indexes and control laws usually applied to the conventional
predictive control. In Figure.1 a general structure is presented
to implement Neural Generalized Predictive Controllers
(NGPC) cases, the ANN are properly trained and represent the
dynamics of the plant in a satisfactory way.

Figure 1: Blocks Diagram of Neural Predictive Controllers

The predictive controller, in summary, is characterized by
computing future control actions based on output values
predicted by a model, with vast literature and academic and
industrial interest (Clarke, 1987; Astrom and Wittenmark 1995;
Garcia et all, 1989; Menezes, 1993; Arnaldo, 1998). Currently
there are two techniques used to model nonlinear plants. One is
to linearize the plant about a set of operating points. If the plant
is highly nonlinear the set of operating points can be very large.
The second technique involves developing a nonlinear model
which depends on making assumptions about the dynamics of
the nonlinear plant. If these assumptions are incorrect the
accuracy of the model will be reduced. Models using neural
networks have been shown to have the capability to capture
nonlinear dynamics [3].For nonlinear plants, the ability of the
GPC to make accurate predictions can be enhanced if a neural
network is used to learn the dynamics of the plant instead of
standard modeling techniques. Improved predictions affect rise
time, over-shoot, and the energy content of the control signal.
This next section presents the concepts of Generalized
Predictive Control predictive techniques, using the usual
optimization functions and control laws. The computational
performance of a GPC implementation is largely based on the
minimization algorithm chosen for the CFM block. The
selection of a minimization method can be based on several
criteria such as; number of iterations to a solution,

Computational Comparisons of
 GPC and NGPC Schemes

D.N.RAO, Dr. M.R.K. MURTHY, D.N.HARSHAL and Dr. S.R.M.RAO

Engineering Letters, 14:1, EL_14_1_19 (Advance online publication: 12 February 2007)
__

computational costs and accuracy of the solution. The quality
of the plant’s model affects the accuracy of a prediction.

 II.GENERALIZED PREDICTIVE CONTROL SCHEME

 The generalized predictive control (GPC) is discussed in [1]
[2]. It is a receding horizon method. For a series of projected
controls the plant output is predicted over a given number of
samples, and the control strategy is based upon the projected
control series and the predicted plant output. We will
summaries some of the features of the GPC but refer to [1] [2]
for a more detailed discussion.
 The GPC algorithm is derived according to the following. We
start by calculating the predictor. The optimal predictor can be
derived according to (starting from the assumed CARIMA
model structure)

1 1 1 1 1() () () (1) () () / | ()

() (1) (1)

j
j

j j j

A q y k B k q u k C q e k E q q

AE y k j E B u k j d E e k

− − − − −= − + Δ Δ

+ = Δ + − − + +
 (1)

In the second equation, we have omitted the index (1q−) for the
sake of brevity and denoted by A A= Δ . (2)
Defining 11 j jE A q F−= +
Gives

1(1) (1) (1) (1)j j jq F y k E B u k j d E e k−− + = Δ + − − + + (3)

(1) () (1) ()j j jy k F y k E B u k j d E e k j+ = + Δ + − − + + (4)

Since deg () 1jE j= − (thus the notice term completely in the
future) the best prediction becomes

(|) (1) ()j jy k j k E B u k j d F y k+ = Δ + − − + (5)
And where j jE B G=

The polynomials j and j can easily be calculated recursively
using equation (4). The Polynomials are given by

0

0

1 1 (1)
,0 ,1 , 1

1
,0 ,1 ,

1 1
1 1

() ...

() ...

() ()

j
j j j j j

n
j j j j n

j
J j j

E q e e q e q

F q f f f q

E q E q e q

− − − −
−

−−

− − −
+ +

= + +

= + + +

= +

 (6)

with
1, ,0j j je f+ = ,the coefficients of the polynomial

1jF +
can then be expressed as

1, | 1 ,0 1j j j i j if f f a+ + += − (7)

 and 0...(1)ai n= − and the polynomial
1jG +
can be obtained

recursively as follows;
1 1

1 1 ,0 ,0()j j j j j jG E B E f q B G f q B− −
+ += = + = + (8)

that is, the first j coefficients of

1jG +
 will be identical to those

of
JG and the remaining coefficients are will be given by

 1, 1 , 1 ,0j j j j j ig g f b+ + += +
A set of optimal predictors as given by equation (3.6) can be
rewritten in the form

1 1() () () (1)y Gu F q y k G q u k− −′= + + Δ − (9)
where

ˆ(1|)
ˆ(2 |)
ˆ(|)

y k d k
y k d k y
y k d N k

+ +⎡ ⎤
⎢ ⎥+ + =⎢ ⎥
⎢ ⎥+ +⎣ ⎦

,
()

(1)
(1)

u k
u k u

u k N

Δ⎡ ⎤
⎢ ⎥Δ + =⎢ ⎥
⎢ ⎥Δ + −⎣ ⎦

0

1 0

1 2 0

0 ... 0
... 0

. . . .
...N N

g
g g

G

g g g− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

1
1

1
2

1

1

()
()

().
.
()

d

d

d N

F q
F q

F q

F q

−
+

−
+

−

−
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

&

0

0

0

1
1

1 1 2
1 1

1

1 (1)
1 1

(())

(())
().

.
(())

d

d

N N
d

G q g q

G q g g q q
G q

G q g g q q

−
+

− − −
+

−

− − −
+

⎡ ⎤−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ ′=⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

the predictor becomes 1 1() () () (1)y F q y k G q u k− −′= + Δ − (10)

Since the last two parts of equation (13) only depend on the
past, these can be grouped as the free response and denoted f.

 y Gu f= + (11)
The free response f can be calculated recursively as

1
1 (1 ()) () ()i jf q A q f B q u k d j−

+ = − + Δ − + (12)

The calculation of the controller in turn is performed as to
minimize with respect to the control moves the objective
function. The objective is to find a control time series that
minimizes the cost Function

2 2
2 2

1 1
(() ()) (1))

N N

NGPC
j j

J E y k j r k j u k jλ
= =

⎧ ⎫
= + − + + Δ + −⎨ ⎬

⎩ ⎭
∑ ∑ (13)

Subject to the constraint that the projected controls are a
function of available data.N2 is the costing horizon. λ is the
control weight. The expectation of (1) is conditioned on data
up to time kith plant output is denoted y, the reference r, and the
control signal u. ⊗is the shifting operator (1 − q−1), such that

(1) 0, uu k j j NΔ + − = > (14)
The first summation in the cost function penalizes deviation of
the plant output y (k) from the reference r (t) in the time interval

21k k k N+ ≤ ≤ + . The second summation penalizes control
signal change Δu (t) of the projected control series. We will
furthermore introduce the so called control horizon Nu ≤
N2.Beyond this horizon the projected control increments uΔ
is fixed at zero: (1) 0, uu k j j NΔ + − = >

The projected control signal will remain constant after this
time. This is equivalent to placing an effectively infinite weight
on control changes for k > Nu. Small values of Nu generally
result in smooth and sluggish actuations, while larger values
provide more active controls. The use of a control horizon Nu <
N2 reduces the computation burden. In the nonlinear cast the
reduction is dramatic [1].
The quadratic loss function, can be written as

() ()T TJ Gu f w Gu f w u uλ= + − + − + (15)

where w is the future set-point trajectory.

[](1) (2)... (Tw w k d w k d w k d N= + + + + + + (16)

The loss function can be rewritten as

0

1
2

T TJ u Hu b u f= + + (17)

 2()TH G G Iλ= + , 2()T Tb f w G= −

 0 () ()Tf f w f w= − − (18)

The minimum of the loss function can be calculated
analytically (in this linear example and assuming no
constraints) by making the gradient of the loss-function equal
to zero. This gives the controller
as: 1 1() ()T Tu H b G G I G w fλ− −= − = + − (19)

A: Simple GPC design example:

An example that designs a GPC controller for a linear, first

order system without time delay is chosen. In discrete-time
representation the process can, for example, be expressed by
the use of the backward shift operator as a CARIMA-model
 1 1

0 1(1) () () (1) () /aq y k b b q u k e k− −+ = + − + Δ
where 11 q−Δ = − , we choose the numerical values of the system
parameters as

1
1

1(1 0.8) () (0.4 0.6) (1) ()
(1)

y k q u k e k
q

−
−− = + − +

−

This gives a system-behavior similar to the one illustrated in
figure 2

B: The control law for GPC systems (summary):

Let us summarize the control law for a GPC system that can be
modeled by the CARIMA model for completeness here:

1 1 1() () () () () /A q y k q B q u k C k− − −= + Δ (1)
where e (k) is an uncorrelated random sequence.
We introduce

Figure 2. A step-response when the input changes from zero to
one at time k = 0. The effect of the noise is significant, note that
the system in the absence of noise has a low frequency gain of
five (and thus the output would move from zero to five in
response to the input change).
 In our example we get the controller algorithm, where only the
first row is used, since only the first control move is
implemented:

() 0.396 (1) 0.604 (2) 0.133 (1)
0.147 (3)

u k u k u k w k
w k

= − + − − +
+ +

This controller is implemented in figure 2 and some
simulation results are as seen in figure 3.

Figure 3. The control response to a set point change with small
amplitude of white noise present. Upper graph shows output
and set point, the lower graph shows the manipulated variable.
We assume no model/plant mismatch. This example did not
include any constraints, and therefore the optimization could be
solved analytically.

2[(1), (2),... ()]TYN y k y k y k N= + + + (19)

2[(), (1),... (1)U u k u k k N= Δ Δ + Δ + − (20)

2[(1), (2),... ()]TW r k r k r k N= + + + (21)
and let

KY represent data up to time k. We now note, that

{ }2 2() () |N kJ E Y W u Yλ= − + Δ

 2 2() ()NY W uλ σ= − + + (22)
where in turn

}{ˆ | ,N kY E Y u Y= (23)

In GPC case σ is independent of u and yN, and when
minimizing the cost function, σ constitutes a constant value that
can be ignored. We can separate Ny into two terms: [1].

YN Gu f= + (11)
where f is the free response, and Gu is the forced response.
The free response is the response of the plant output as a result
of the current state of the plant with no change in input. The
forced response is the plant output due to the control sequence
u . The linearity allows for this separation of the two
responses. The important fact is that f depends on the plant
parameters and NY (i.e. past values of u and y) while the
matrix G only depends on the plant parameters. G does not
change over time, and f can be computed very efficiently. Using
(22) and (23)

2 2() ()J YN W uλ= − +

2 2() ()Gu f w uλ= + − +

() ()T TGu f w Gu f w u uλ= + − + − +
The minimization of the cost function on future controls results
in the following control Increment vector: [1]

min 1* () ()T TJ u G G I G w fλ −= = + −
and in the following current control signal

() (1) ()Tu k u k g w f−= − + − .Where Tg − is the first row.
of 1()T TG G I Gλ −+

III. The Neural generalized predictive control

A: Nonlinear Case:

If the plant is nonlinear, the cost function (1) & (19) to (23)

remains the same, but implementation of the algorithm is done
in a different way. Especially the prediction of the plant outputs
YN based on the projected control series u can not be done in
the same way. For a nonlinear plant the prediction of future
output signals can not be found in a way similar to (25): The
relation of the control signal series to the plant output series is
nonlinear, i.e. the multivariable function f, that
fulfils (,)kYN f y u= is nonlinear. Therefore we can not
separate the free response from the forced response. To solve
this problem we need to implement the prediction of yN, i.e. f in
(12) in a different way. We need nonlinear predictor yN for
future plant outputs.

 (,)kYN f y u= (11)
This is where the neural network comes into play [4] [5] [6]:
We will facilitate the neural network to the workings of the
function f in (11) to obtain the predictionsYN .We will train a

neural network to do a time series prediction of plant outputs
YN for a given control signal time series u . This will let us
evaluate the GPC cost function (1) for a nonlinear plant. Using
a suitable optimization algorithm on the projected control
signal series with respect to the cost function, we find a control
series that minimizes the cost function: min J= *u . (Note that

σ in equation (22) is not independent of u nor yN for a nonlinear plant.
We will however assume that the effects of σ are small and can be
ignored.)

B: The complete control algorithm iterates through these three
steps:

1. Choose (a new) control change time series u .

2. Predict plant output time’s series Ŷ .
3. Calculate cost function J

That is, first we choose a control time series u . Using a model
we look at what would happen if we choose this series of
control signals: we predict the plant output Ŷ . Then we use a
cost function (1) to tell us how good or bad the outcome is.
Then we let the optimization algorithm choose a new control
time series u that is better by means of the cost function (1).
We iterate these steps in order to find a series of control signals
that is
optimal with respect to the cost function (1).

There are 3 distinctive components in this controller:
• Time series predictor of plant outputs
• cost function
• Optimization algorithm.

Figure 4 The Neural Networks based Predictive Control

The cost function is given by (1). For the optimization

algorithm we can use a simplex method which is implemented
as a Matlab built-in function, such as fminsearch. The time
series predictor will use a neural network model of the plant.
The complete system diagram is sketched in figure 4. The
neural network model runs alongside the plant and is used by
the controller as discussed above to predict plant outputs to be
used by the controller’s optimization algorithm There are four
tuning parameters in the cost function, N1, N2, Nu, and λ. The
predictions of the plant will run from N1 to N2 future time
steps. The bound on the control horizon is Nu. The only
constraint on the values of Nu and N1 is that these bounds must
be less than or equal to N2. The second summation contains a
weighting factor, λ that is introduced to control the balance

between the first two summations. The weighting factor acts as
a damper on the predicted u (k+1). As noted earlier in section
2.1, the control horizon Nu≤ N2 limits the number of projected
control signal changes such that ∆u (k + j − 1) = 0, j > Nu.

If we set the control horizon to some value Nu < N2, the
optimizer will only work on a series of Nu projected control
signal changes, while evaluating a predicted plant output series
that has N2 samples. Reducing Nu will dramatically reduce the
computational burden, as it effectively reduces the dimension
of the multidimensional variable that the optimizer works on.

C: Neural model

Feed forward networks with a single hidden layer using
threshold or sigmoid activation functions are universally
consistent estimators of binary classifications (Farago and
Lugosi, 1993). Also cited in Tan and Cauwenberghe (1996)
and Hecht-Nielsen (1990), it is proven that a neural net, with
only one hidden layer, is able to represent any function of

n mR R→ Rm, just limited by the number of neurons in the
hidden layer.

Figure 5. Multi-layer feed forward neural network with a time
delayed structure

The purpose of our neural network model is to do time series
prediction of the plant output. Given a series of control signals
u and past data Yk we want to predict the plant output series
YN . We will train the network to do multi-step ahead
prediction, i.e. to predict the plant output 1KY + given the

current control signal ku and plant output KY (see figure3).
The neural network will implement the function
 1 (,)K k kY f u y+ = (28)

As will be discussed below, yk has to contain sufficient
information for this prediction to be possible. To achieve multi
step ahead prediction of all the plant outputs in (28) we will
cycle the one step ahead prediction back to the model input. In
this manner, we get predicted signals step by step for time
k+1,k+2, . . .k+n.

D: NGPC– T Steps ahead:

The preceding algorithm can be improved using predictive
control techniques. Thus, scalar values can now be expressed as
predicted vectors consider a real nonlinear model expressed by:

y(k +1) = f[y(k),y(k -1),..,y(k -n),u(k),u(k - 1),.,u(k -m)] (29)

where f is a nonlinear function of the system output [y (k), y
(k-1), y (k-n)] and input values [u (k), u (k-l), u (k-m)]. m is the
number of exogenous regressors

Figure 6. Multi-step predictor

The variable n is the number of auto regressors and But, to
represent dynamic systems, it is necessary to introduce the
feedback effect in the ANN, characterizing the application of
the Recursive ANN (RANN). As in the ARX models
(Autoregressive with exogenous inputs), the input signals of
the net are associated to its own input and output
past values. Then, let use a net with three layers, and base the
study on the neural structure illustrated in the Figure 5. where N
represents the number of the hidden layer neurons, and the
blocks represents a single-valued monotonic nonlinear sigmoid
function to be applied at the output of each hidden layer neuron.
bs represents the bias of the output linear neuron. The matrixes
of weights W1 and W2 have dimensions N x (n+m) and 1 x N
respectively and represent the weights of the connections
among layers 1-2 and 2-3.

The NGPC [13] algorithm has the following important
steps. (see figure. 1):

1) Generate a reference trajectory. If the future trajectory of ym
(n) is unknown, keep ym (n) constant for the future trajectory.
2) Start with the previous calculated control input vector, and
predict the performance of the plant using the model.
3) Calculate a new control input that minimizes the cost
function,
4) Repeat steps 2 and 3 until desired minimization is achieved,
5) Send the first control input, to the plant,
6) Repeat entire process for each time step.

E: Topology of a multi-layer perception:

The neural network was trained to model the plant using the

same pulse train. The network architecture contains a single
hidden layer with four hidden nodes and a single output node.
The input layer is composed of two inputs, one that is externally
fed with four time delayed nodes and the other is fed back from
the output of the plant with four time delayed nodes. The
hidden layer’s nodes use the hyperbolic tangent as an activation
function and the output is scaled linearly. Normalized Root
Mean Squared error (NRMS) and Max error were used to
measure training of the network. The NRMS error measure,
where T is the desired target output, O is the output of the
network, p is the training pattern, and n is the output node. In
this example, n is 1 and p is 1000 (100 time steps sampled at 0.2
seconds).A cycle is defined as all of the input/output relations
that form the entire pulse train. The NRMS error and the Max
error for 10,000 cycles of network training are shown in Figure
7 and Figure 8.

 2

2

()

()

np np
n p

np
n p

T O
NRMS

T

−
=

∑∑

∑∑

The principal importance of a neural network is not only the
way a neuron is implemented but also how their
interconnections (more commonly called topology) are made.
The topology of a human brain is too complicated to be used as
a model because a brain is made of hundreds of billions of
connections which can't be effectively described using such a
low-level (and highly simplified) model.

The topology we will study is therefore not the topology of a
human brain but actually a simple topology designed for easy
implementation on a digital computer. One of the easiest forms
of this topology at the moment is made of three layers:

• one input layer (the inputs of our network)
• one hidden layer
• one output layer (the outputs of our network)

All neurons from one layer are connected to all neurons in the
next layer This forms a whole network with full
interconnection, please note also that the weight (and therefore
the importance) of each connection is not represented (for
practical reason) here but must exist in the reality.

F: Training and memory of a neural network

The neural network presented above is not of any interest

because it has not been trained (so it is not able to solve any
particular problem). This situation can be compared to a little
baby, whose brain is fully developed and ready for work but
who is not able to do anything because it has not experienced
any stimulus. So a neural network without learning is
analogous to a human without education. Therefore, a neural

network must be trained to solve some particular problem. The
methodology of the training is analogous to the way you would
teach a child to read or to count, that is by presenting some
number or letter and by assigning the letters and numbers some
values. For example you could show a child of 5 years an image
of an A and you could then tell him that it's an "A'ye" with the
best pronunciation you could manage.

 You will teach a neural network in exactly the same way,
namely you will feed our network with a set of numbers and the
network will give you a result in its output layer. Since the
weights of the connections in the network are initially in a
random state, this result will surely at the beginning not satisfy
you, so you will change the weight of some connections in
order to obtain a better result. You will change the weight of the
connections in fact until you get the desired result (this is the
training stage). Next you will feed the input layer of the
network with other examples and continue adjusting weights,
until eventually you obtain the desired output for each example.

 The first step in the control design process is the
development of the plant model. The performances of neural
network controllers are highly dependent on the accuracy of the
plant identification. In this section we will begin with a
discussion of
some of the procedures that can use to facilitate accurate plant
identification. As with linear system identification, we need
insure that the plant input is sufficiently exciting. For nonlinear
black box identification, we also need to be sure that the system
inputs and outputs cover the operating range for which the
controller will be applied. For our applications, we typically
collect training data while applying random inputs which
consists of a series of pulses of random amplitude and duration.

The duration and amplitude of the pulses must be chosen
carefully to produce accurate identification. If the identification
is poor, then the resulting control system may fail. Controller
performance tends to fail in either steady state operation, or
transient operation, or both. When steady state performance is
poor, it is useful to increase the duration of the input pulses.
Unfortunately, within a training data set, if we have too much
data in steady state conditions, the training data may not
representative of typical plant behavior. This is due to the fact
that the input and output signals do not adequately cover the
region that is going to be controlled. This will result in poor
transient performance. The following example will illustrate
the performance of the predictive controller when we use
different ranges for the pulse widths of the input signal to
generate the training data.

After training the network with the data set as shown in
figure 7a the resulting neural network predictive control system
if unstable and based on the poor response of the initial
controller,

we determined data did not provide significant coverage.
Therefore, we changed the range of the input pulse widths as

shown in figure7b one can see that the training data set, the
resulting predictive system was stable, although it resulted in

Figure 7. (a&b) Training data with long and short pulse width.

 Figure 8Training data with mixed pulse width.

large steady-state errors. In the third test, we combined short
pulse width and long pulse width (steady state) data. The long
pulses were concentrated only on some ranges of plantoutputs.
We chose to have steady-state data over the ranges where the
tracking errors from previous case were large, shown in the
figure8.The resulting controller performed well in both
transient and study state conditions.

The entire set of training examples must be shown to the
network many times in order to get a satisfactory result. You
would not expect a child to learn to read having
seen each letter or word only once, similarly the network
requires many examples. After all of this training, the network
is hopefully able to solve the problem - we say that it has
learned, and its `knowledge' is stored by all the different
connection weights. Care must be taken, when training
perception networks, to ensure that they do not over fit the
training data and then fail to generalize well in new situations.
Several techniques for improving generalization are discussed.
Consider a network with two hidden nodes (had=2), one output
node, and input consisting of u (n) and two previous inputs
(nod=2), and of three previous outputs (did=3). Suppose that a
2-step prediction needs to be found, that is, the network needs
to predict the output at times n+1 and n+2. The information
required by the neural network at each time instant is conveyed
in Figure 4.
The example plant below depicts a prediction of the plant for
k=2. To produce the output y (n+2), inputs u (n+1) and u (n+2)
are needed. The prediction process is started at time n, with the
initial conditions of [u (n) u (n-1)] and [y (n) y (n-1) y (n-2)]
and the estimated input u (n+1). The output of this process is yn

(n+1), which is fed back to the network and the process is
repeated to produce the predicted plant’s output yn (n+2).

IV: SIMULATION RESULTS

For a large number of systems a linearising approach is

acceptable and any relatively small non-linearities, being
effectively linearised by the GPC. In order to obtain improved
control over systems with small non-linearities or to deal with
systems with stronger nonlinearities, it is necessary to take into
account of the nonlinearities in an appropriate way. By using
instantaneous linearization of a nonlinear model incorporating
the GPC and the NGPC techniques can be applied to
NARMAX and neural networks model. The control
performance using both methods is examined and compared.
Consider the typical plant;
Y (k) = 0706 y (k-1) + 0.2885 y (k-2) + 0.066 u (k-1) - 0.03 u
(k-2) + 0.7202 y (k-1) y (k-2) (30)

Proposed constant and variable λ⎣ :

It is observed that the plant nonlinearity and no symmetry
make the plant output behaves differently for rising edge and
falling edge of the reference signal. The idea is try to found a
perfect adaptability to⎣ , to compensate the plant
characteristics. Some empiric rules were used with satisfactory
practical results. Considering the plant linearization around the
operating point it is observed that it is required to adopt the
variable λ , for each step, and the practical results become
excellent as showed below.

According to Section 3, the neural net will be characterized
by the number of auto regressors, the number of exogenous
regressors and the number of hidden layer neurons. In the
proposed application, we select the neural network model with
only 6 hidden layer neurons (N=6), 4 auto regressors (n=4), 4
exogenous regressors (m=4) and use the hyperbolic tangent as
sigmoid function. After appropriate training, the validity of the
model is verified in a large operation strip. The obtained
results are presented in the Figure 4; it shows the level
changing from 2 to 9 units that practically represents the whole
plant. So, the proposed neural network model properly trained
can satisfactorily represent the model in a quite satisfactory
way. Hence the net is ready to NGPC implementation [12, 13]

B: With constant λ :

Figure 9. shows the plant output behavior with respect to
reference signal and Figure10. clearly shows the control action
stability. It also illustrates de satisfactory performance of the
NGPC. Note in Figure 9 the value of λ is large enough to
generate an output overshoot when the reference signal raises.
However, it is too small to guarantee an effective time to
stabilize the output plant when the reference signal falls.

C: With variable λ:

To enhance the system control action, with variable λ . It
compensates the overshoot at the reference signal rises and the

Figure9: Reference signal and plant output with constant⎣

 Figure 10: Control action with constant λ

stabilization time at the falls.Then λ , is maximum at the low
limit and decreases when the output level rises. As in to the
proposed system with variable λ and the obtained results is
showed in Figure 11&12. Figure.13 illustrates the respective
control action behavior.

Figure 11: Reference signal and plant output with adaptable λ

Figure 12: Control action with adaptable λ

CONSTANT WEIGHT FACTOR [λ]: In the figure when
constant weight factor it performs very poor as shown in the
figures9&10 and, figure13&14. The table 1 shows the poor
performance of the GPC when the λ is constant, and the NGPC
shows good performance .The poor performance could be
corrected by adaptable weight factor λ. which is very close to
NGPC scheme. This is applicable when the order of the plant is
lower

Figure 13 GPC and NGPC with constant set value.

Figure 14 GPC and NGPC with variable set value.

TABLE 1 SUMMARY COM. OF GPC AND NGPC

V: CONCLUSIONS:

The typical plant control using instantaneous GPC and
NGPC based techniques was discussed in this paper. Their
features and main properties were presented and their control
performance was illustrated and compared. It was shown that
both of them
provided an optimal control performance. The future control
inputs using GPC can be found by the direct analysis, thus
reducing the computational time and so it is more suitable for
the real industrial applications. The results shows that the GPC
with the variable weight factor ’λ’ approach performs on par
with NGPC. But the NGPC is enable us to address the plant”
true” dynamics. The CPU time, no. of predictions, the time to
reach the set value with constant weight factor the GPC
performs on par with NGPC. But the NGPC though with more
computational efforts the performance accuracy is good
because of system identification capabilities.

REFERENCES

1. Clarke, D.W.; Mohtadi, C. and Tuffs, P.S.: "Generalized
predictive control. Pan I: the basic algorithm". Automatic, Vol.
23 n°2, pp. 137-148. 1987.
2. Clarke, D.W.; Mohtadi, C. and Tuffs, P.S.: "Generalized
predictive control. Part II: extensions and interpretations".
Automatica, Vol. 23 n° 2, pp. 149-160. 1987.
3. Ahmed, M.S. and Anjum, M.F.: "Neural-net-based direct
self-tuning control of nonlinear plants". International Journal of
Control. Vol. 66, n° 1, pp. 85-104. 1997.
4. Brown, M. and Harris, C.: "Neurofuzzy adaptive modeling
and control". Prentice Hall. 1994.
5. Chauvim, Y. and Rumelhart, D.E.: "Backpropagation theory:
architectures and applications". Laurence Erlbaum Associates
Inc. 1995.
6. Cichocki A. and Unbehauen R.: "Neural networks for
optimization and signal processing". John Wiley & Sons Ltd. &
E.G. Teubner. 1995.
7. Garcia, C.E.; Prett, D.M. and Morari, M..:"Model predictive
control: theory and practice - a survey”. IFAC Workshop on
Model Based Control, Atlanta-USA, pg 335- 348. June, 1989.

8. Haykin, S.: "Neural Networks: a comprehensive
foundation". Macmillian College Publishing Company Inc.
1994.
9. Hunt, K.J.; Sbarbaro, D.; Zbikowski, R. and Gawthrop, P.J.:
"Neural networks for control systems - a survey". Automatica.
Vol. 28 n° 6. pp. 1083-1112. 1992.
10. Hyland, D.C.; Collins, E.G.Jr.; Haddad, W.M. and Hunter,
D.L.: "Neural network system identification for improved noise
rejection". International Journal of Control. Vol. 68, n° 2, pp.
233-258. 1997.
11. Miller, W.T.; Sutton, R.S. and Werbos, P.J.: Neural
networks for control'. MIT Press, Cambridge, MA. 1990.
12. Narendra, K.S.: "Neural networks for control: theory and
practice". Proceedings of the IEEE. Vol.84, n° 10, pp.
1385-1406. 1996.
13. Soloway, D. and Haley, P.: "Neural generalized predictive
control: a Newton- Raphson implementation". NASA
Technical Memorandum 110244. February, 1997.
14 YANG Can , ZHU Shan-an, KONG Wan-zeng LU Li-ming
“Application of neuralized predictive controlling networked
control system” Journal of Hewing University SCIENCE A,
pp 225-233, ISSN 1009-3095, Jan.2006
15.N.Groschwitz, G.Polyzos, A. “Time series model of long
term traffic on the NSFnet Backbone”, in proceedings of the
IEEE International Conference on Communicatios.2004

First Author:D.N.Rao ,graduate with a specialization in Electronics and
Communication Engineering from Government college of engineering,
Anantapur, J.N.T.University, Hyderabad(1981),India and.M.E. Degree in
control systems engineerg, Walchand College of Engineering, India. He is
presently pursuing Ph.D. from Osmania University, Hyd. India. He has
published several research papers. International journals, has many conferences
to his credit. His areas of interest include neuro computing, system modeling,
and control engineering. He is working as faulty in T.R.R.College of
Engg.J.N.T.U.email:dhyapulai@yahoo.com

Second Author: Dr.M.R.K.Murthy, obtained his degree in (1977), Osmania
University (O.U) and P.G. in 1980, from O.U. He received his PhD degree from
IIT, Chennai in 1993. He worked as professor and H.O.D. in the department,
O.U., Hyderabad, India. He published several national, international journals
and has numerous conferences to his credit. His areas of interest include
communications, control systems, neural networks. At Present he is working as
Head of Department in M.J.I.College of Engineering, Hyderabad.

S Third Author: Dr.S.R.M.Rao obtained B.E. degree from IISC, Bangalore, and
M.E. from NIT, Warangal. He obtained his PhD from IISC, Bangalore. He
worked as a Scientist-F in ISRO, INDIA for more than 25 years; His areas of
interest are Artificial Neural Networks, signal and systems. At present he is
working as professor in E.C.E., Departent.He pulished several papers in reputed
journals.

 Fourth Author: D.N.Harshal. He is research Associate at Pentagram Ltd,
Hyderabad. Graduation in specialization ‘Information and technology’.
C.B.I.T., Osmania University, Hyderabad, India. His areas of interest are
Robotics, Neural Networks and Image processing

