

A Method for Secure Query Processing in
Mobile Databases

D. Saha and N. Chowdhury

Abstract—A method for secure query processing in mobile

databases has been presented in this paper. Mobile devices send
queries to the server via point-to-point channels. The mobile
database server computes the superset of results of several similar
queries, which is broadcast on a large bandwidth broadcast
channel. The mobile devices tune to that channel to retrieve their
necessary information. Here the senders of all the said queries can
view not only the result of their own query but also the results of
others’ queries in the same group. This is not desirable, since some
user can maliciously view the results of queries sent by some other
user. In this paper, we have proposed a method that would not
allow any user to do so, although the results of multiple queries
are being sent in the same broadcast channel which is accessible to
all users.

Index Terms— information security, mobile database, superset
computation, query optimization..

I. INTRODUCTION
 Nowadays, there are various popular wireless devices such as
cellular phones, personal digital assistants, and laptop
computers with millions of users. The mobile computing
environment has two parts, namely, mobile computers or
mobile devices and a wired network of computers. In a mobile
database the database and the corresponding database server lie
in the wired network of computers referred to above, and the
database clients lie in the mobile devices. Mobile devices send
queries to the server via point-to-point channels. The mobile
database server processes those queries and may send the
results to the respective senders through the dedicated
point-point channels.
 But sometimes the results of the multiple queries have
common portion and thus this portion of results are sent once
for each query. This leads to inefficient utilization of the
limited bandwidth of point-point channel. One way to solve
this problem is to use a query optimizer/processor that performs
query processing and optimization. Usually the mobile
database server computes the superset of results of several
similar queries, which is broadcast on a large bandwidth
broadcast channel. In this work, we have proposed a method
that would ensure that the result of the query sent by a user can
not be viewed by the sender of other similar queries.

Mobile databases find application in electronic mail, public

safety, stock trading, airline activities, weather information, bill
paying, healthcare and the transportation industry [1]. A mobile
database is a database that provides data to a mobile user [2,3],
and the database may not be mobile itself. P. Sistla et al [4]
propose a mobile database model where some data is present at
the central server and some at the mobile devices, i.e. the data is
distributed. In a distributed architecture there is a possibility of
devices being disconnected or powered off, and thus not able to
answer a request always. In one of our previous works on query
optimization we have assumed a purely centralized
architecture. In this architecture the whole geographical area is
divided into cells. These cells are roughly circular in shape. At
the center of each cell is a Base Station (BS), also referred to as
a server, which communicates with the mobile devices in its
cell area through the wireless channel. Each BS serves an area
and those areas are connected via a wired network as referred to
earlier. When a mobile device moves from one cell to another it
begins communicating with the new BS in the new cell. In a
centralized mobile database the database resides in the central
server or BS. A mobile user can get data from the server in two
methods: pull-based and push-based. In a pull-based method
there are two channels namely an uplink channel and a
downlink channel, which is also called the pull channel. A
mobile device sends the query to the server via the uplink
channel and the query results come to the device via the
downlink channel. The downlink channels are private to each
mobile device. In a push-based method the server broadcasts
the data on a broadcast channel and the mobile devices tune to
that channel to retrieve their necessary information [5]. In this
case the server has to periodically broadcast information to the
clients. In a hybrid model, the push-based method is extended
by using an uplink channel via which clients can send explicit
requests [6]. From the point of view of query processing we
note that in a push-based method answers for each query are
sent separately. But if there be common data among some of the
query results it has to be sent once for each query. This results
in poor bandwidth utilization. In this work we have attempted
to use Multiple Query Processing to optimize bandwidth usage
and have proposed a security measure in order to prevent
malicious unauthorized access of the results of similar queries.

In mobile technology, wireless communication is used. In
wired communication the transmission medium is a guided one
and we use wires or optical fibers as the communication
channel. Whenever we are in need of bandwidth we can lay

Engineering Letters, 14:1, EL_14_1_20 (Advance online publication: 12 February 2007)
__

new set of wires or optical fibers to create a new physical
channel that is totally isolated from all previous channels. But
in the case of wireless communication the transmission medium
is an unguided one. We cannot create new physical channels
hence we cannot create bandwidth. When a new user registers
he/she is allocated a portion of the existing bandwidth. Also in
the mobile environment there is no practical upper limit on the
number of users. So, the bandwidth is very scarce in the mobile
environment.

We have surveyed several works on Multiple Query
Processing and detection of common sub-expression [7,8,9].
These works do not deal with the mobile database environment
and are applicable to the static environment only. Rajeshwari
Malladi and Karen C. Davis [10] report that if there is
subsumption between queries then they can be grouped for
Multiple Query Processing and the result of the biggest query
can be broadcast after sorting the same by a method called
filtering of data [11] such that mobile devices can get their
result by tuning to the broadcast channel at specific times. Thus
this work takes care of only subsumption/equality. In the
present work we have taken care of all types of commonality:
subsumption/equality and overlap if it is of significant degree.
The next section describes the proposed method in detail.
Section 3 states the concluding remarks.

II. THE PROPOSED METHOD

In the static environment the client machines are connected to
the network via high bandwidth wires. So, in that case
bandwidth is not that scarce. But in mobile databases we have
to optimize the number of bytes transmitted for dispatching
query results. So the query optimizer in this case has to take
care of that requirement which is not the case with the static
environment where optimization of the processing time is the
main concern. The query optimizer incorporates Multiple
Query Processing technique. But the results of multiple queries
must be sent in the common broadcast channel in such a way
that the sender of a specific query can get access to the result of
his query only, not to the results of others’ queries.

As stated above, in query optimization, we do not process
each query separately but we process a group of queries
together to take advantage of their similarity. Here Multiple
Query Optimization is being used for computation of superset
of results as discussed later.

To perform Multiple Query Processing we have to choose a
group of queries and process them simultaneously. It may be
noted that for the example database considered for
experimentation in this work, each query requires a specific
subset of tuples from each table in the group. Here we are
identifying the set of tuples required by each query in a group
from each table (in the group’s table list) in that group. Then we
are reducing each table (in the group’s table list) to one that
contains tuples that are required by at least one query in that
group. Then the tables so computed are joined to compute the

superset. While joining these tables we eliminate spurious
tuples (not a part of any query’s result in the group) that will
arise in the process. After the completion of optimization we
are left with an efficiently computed superset Σ of results (ρi , i
= 1..N) for each query (qi, i = 1..N) such that ρi ε Σ for all i =
1..N and if a tuple t ε Σ then there exists a query qi such that t ε ρi

. Then the superset is broadcast. An example database is shown
below.

Table 1. The loan table (lno, bname, amt)

lno bname Amt

L-1
1

Round Hill 900

L-1
4

Downtow
n

1500

L-1
5

Perryridge 1500

L-1
6

Perryridge 1300

L-1
7

Downtow
n

1000

L-2
3

Redwood 2000

L-9
3

Mianus 500

Table 2. The branch table (bname, bcity, assets)

A. The overview of the system and the proposed security
measure

In this work we have adopted a hybrid model and assumed that
there are two kinds of channels in the mobile environment,
namely, a unidirectional (server-to-mobile devices) broadcast
channel of large bandwidth and a number of point-to-point
bi-directional channels of small bandwidth. The broadcast
channel is used for dispatching query results and the
point-to-point channels are used by mobile devices for sending
queries to the server and by the server for sending device
specific control information and encryption keys to the mobile
devices. The point-to-point channels have been assumed to be
secure private channels. This can be achieved by encryption or

Bname bcity assets

Brighton Brooklyn 7,100,000

Downtown Brooklyn 9,000,000

Mianus Horseneck 400,000

North
Town

Rye 3,700,000

Perryridge Horseneck 1,700,000

Pownal Bennington 300,000

Redwood Palo Alto 2,100,000

Round Hill Horseneck 8,000,000

technologies like CDMA. In this work we have focused on
security of the shared channel. In this work we assumed a
simple subset of SQL with the following format for the SQL
query statements.

 select <projection-list>
 from <table-list>
 where<predicate>

 Point-to-point Broadcast channel Channels

Fig. 1. Bandwidth allocation

The system performs its operation in the following steps.

1. Collection of queries.
2. Decomposition into groups.
3. Computation of supersets.
4. User specific encryption of the superset
5. Broadcasting the superset.
6. Extraction of the individual results.

1) Collection of queries
The optimizer is a multithreaded program. In this step the main
thread of the program waits for a specific time window and
collects all the queries arriving at the server. Then a new thread
is created to perform query optimization while the main thread
goes on collecting queries for another time window. This
process goes on. The optimal span of the time window depends
upon several system parameters: the size and capacity of the
system, the load on the system, query arrival pattern etc.

 Main thread starts query collection

 Time window T1
 Main thread starts query
 Collection for the second
 Time window

 A secondary thread starts
 Processing queries collected
 In T1
 Time window T2

The heuristic : For each attribute corresponding to a table
we compute the superset of ranges of attribute values required
by queries in a group. Query Q1 in G1 wants the range [900,
1400] for the attribute ‘amt’ whereas Q3 in the same group
wants the range [950, 1500] for ‘amt’ from the table loan. So,
the superset S of the attributes is [900, 1500]. We ensure that
the range length of attributes for each table for each query must

 Fig. 2. The operation of the query optimizer

2) Decomposition into groups
Different queries have different structures. Some queries are
best evaluated together while others are not. Based on
structural similarity the queries collected in a specific time
window are decomposed into groups such that the queries in a
group have maximum possible commonality. The criteria used
for group decomposition is the equality of the projection list
and the table list so that the result of each query in a group has
the same domain. For example, let us consider the following
incoming queries in a specific time window.

Q1: select lno
from loan , branch
where amt between 900 and 1400 and assets >=
1700000 and loan.bname = branch.bname

Q2: select bname
from branch
where bcity = ‘Brooklyn’

Q3: select lno
from loan , branch
where amt between 950 and 1500 and assets >= 2100000 and
loan.bname = branch.bname

Q4: select bname
from branch
where bcity = ‘Brooklyn’

The set of queries collected S = {Q1, Q2, Q3, Q4} is
portioned into disjoined subsets G1, G2 and the like. The
projection list for Q1 = {lno}, projection list for Q3 = {lno}.
The table list for Q1 = {loan, branch}, table list for Q3 = {loan,
branch}. From this we see that the queries Q1 and Q3 have the
identical projection list and table list. Similarly the queries Q2
and Q4 have the same projection list and table list. So, there
will be two groups G1 = {Q1, Q3} and G2 = {Q2, Q4}. The
groups so formed are processed separately.

There will be queries that cannot be grouped with any other
queries. For example, if only the queries Q1, Q2 and Q3 had
arrived in this time window then Q2 could not be grouped with
any other query. There can be multiple such queries. These
queries are put in a separate group such that queries in that
group are separately evaluated and results are separately
dispatched. If in a group there is not much commonality then
this procedure will lead to extra overhead and in that case we
will get better results by processing and dispatching them
separately. So we use a heuristic for measuring degree of
commonality in a specific group.

be greater than 70% of the length of the superset for that table.
This should hold for each attribute in the predicates of queries
and for each table in the group otherwise we subdivide the
group into smaller groups and if necessary some queries in the
group are marked for separate processing and dispatching.

 For Q1 in G1 and for attribute ‘amt’, the range length =
1400 – 900 = 500, the length of S = 1500 – 900 = 600.
Therefore the percentage of commonality = 500/600*100 =
80%. For Q3 in G1 and for attribute ‘amt’, the range length =
1500 – 950 = 550 and percentage of commonality =
550/600*100 = 91.67%.

3) Superset computation
For each group the optimizer computes the superset of the
individual results of the queries in that group. The motivation
behind superset computation is taking care of common data. If
the results of multiple queries have common data then this
common data is present in the superset only once. So, if we
broadcast this superset instead of sending the results
individually we will have to transmit less data and thus save
bandwidth. Let us consider some example query results below.

Table 3. Example Query Results

q1 q2 q3 q4
T1 T2 T3 T1
T2 T3 T4 T5
T3 T4 T5 T6
T7 T5 T6 T7
T8 T7 T8

The above table shows tuples comprising the result of

queries q1, q2, q3, q4. If the query results were dispatched
separately 19 tuples would have to be transmitted. But we note
that there are only 8 distinct tuples. If we broadcast the superset
Σ = {T1, T2, T3, T4, T5, T6, T7, T8} then only 8 tuples have to
be broadcast.

Table 4. The Superset

The superset computation algorithm should perform better

than brute-force superset computation algorithm. In brute-force
method all the queries are evaluated separately and then their
superset is computed. But the superset computation algorithm
used in this work examines the predicates of the queries in the
group and identifies the range of attribute values each query

requires from each table in that group. In query Q1 we have the
predicate “amt between 900 and 1400”. From this we get the
range [900, 1400]. Similarly, from predicate “amt between 950
and 1500” in Q3 we get the range [950, 1500]. The predicate
“assets >= 1700000” in Q1 gives the range [1700000,
MAX_ASSETS] and “assets >= 2100000” in Q3 gives
[2100000, MAX_ASSETS]. Here MAX_ASSETS is the
maximum value of the attribute assets in the table loan. The
following algorithm is used for identifying the ranges. Here rijk

is the data structure for storing the (range, query) pair for group
i table j and attribute k, and table-list [i] gives the table list of
group i.

The Algorithm :

for each group i
 for each table j in table-list[i]
 for each attribute k in table j
 for each query l in group i
 begin

 find the range R required by the query l
 add (R,l) to rijk

 end.
 end for {each query l}
 end for {each attribute k}
 end for {each table j}
end for {each group i}

The above algorithm gives the following results. r113 = {

([900, 1400], Q1), ([950, 1500], Q3) }, r123 = { ([1700000,
9000000], Q1), ([2100000, 9000000], Q3)}(Here
MAX_ASSETS = 9000000). We see that [900, 1400] ∪ [950,
1500] = [900, 1500] and [1700000, 9000000] ∪ [2100000,
9000000] = [1700000, 9000000]. Now from the table loan we
select tuples with 900 <= amt <= 1500 to from a new table loan’
and from the table branch we select tuples with 1700000 <=
assets <= 9000000 to form a new table branch’. From the data
structure rijk we can find which tuple in these tables are needed
by which queries. Now we join the tables loan’ and branch’ to
get the superset.

Table 5. The table loan’

T1
T2
T3
T4
T5
T6
T7
T8

lno bname amt Needed
by

L-11 Round Hill 900 Q1
L-14 Downtown 1500 Q3
L-15 Perryridge 1500 Q3
L-16 Perryridge 1300 Q1, Q3
L-17 Downtown 1000 Q1, Q3

Table 6. The table branch’

bname bcity assets Needed
by

Brighton Brooklyn 7.1M Q1, Q3
Downtown Brooklyn 9M Q1, Q3
North Town Rye 3.7M Q1, Q3
Perryridge Horseneck 1.7M Q1
Redwood Palo Alto 2.1M Q1, Q3
Round Hill Horseneck 8M Q1, Q3

 Now while performing the join operation we note that 3rd
tuple (t1) in loan’ joins with the 4th tuple (t2) in the branch’
table. But t1 is needed by Q3 only whereas t2 is needed by Q1
only hence they are not joined. Otherwise the join operation
will create a spurious tuple t1t2 that is not a part of any of the
query’s result. This technique eliminates spurious tuples. The
4th tuple in loan’ is needed by Q1, Q3 and the 4th tuple in
branch’ is needed by Q1 hence they are joined. Two matching
tuples t1 and t2 are joined if t1 (needed by) ∩ t2 (needed by) ≠
ϕ. After join operation we get the following join result.

Table 7. The join result

lno bname amt bcity assets neede
d by

L-1
1

Round Hill 900 Horseneck 8M Q1

L-1
4

Downtown 1500 Brooklyn 9M Q3

L-1
6

Perryridge 1300 Horseneck 1.7M Q1

L-1
7

Downtown 1000 Brooklyn 9M Q1,Q3

The project operation gives the superset for group G1 as

shown below.

Table 8. The superset to be broadcast

lno
L-11
L-14

L-16
L-17

Table 9. The indivigual result for Q1

lno
L-11
L-16
L-17

Table 10. The individual result for Q3

lno
L-14
L-17

The individual results for Q1 and Q3 are as shown in Table 9

and Table 10 respectively. The tuples in the superset are
ordered in such a way that tuples belonging to the same query
are as contiguous as possible (table 11). As a result the superset
now consists of three blocks of BL1 = { L-11, L-16} , BL2 =
{L-17} and BL3 = {L-14}.

Table 11. Superset with contiguous tuples

lno Needed by
L-11 Q1
L-16 Q1
L-17 Q1, Q3
L-14 Q3

4) User specific encryption of the superset
We can see that in the above procedure the superset broadcast
contains tuples that belong to multiple queries. Hence some
tuples in the superset are not part of some queries. Each mobile
device can read the whole superset but they accept some of the
tuples and reject others according to the bit streams sent to them
via point-to-point channels under their own volition. So there is
every chance that a malicious user will accept tuples that are not
part of his result because he cannot be forced to obey the bit
stream sent to him. To solve this problem we have to encrypt
the tuples belonging to a specific user by a randomly created
key before broadcasting the superset. And these keys are sent to
individual mobile devices via point-to-point channels. In the
above procedure we already keep track of which broadcast
tuples belong to which query. Our scheme is illustrated below.

Table 10. User specific encryption of the superset

Block
s of
tuples

Correspondin
g users/mu’s

Keys used
for
encryptio
n

Sizes of
encrypte
d blocks
in units
of time

BL1 U1 K1 S1
BL2 U1, U2 K2 S2
BL3 U2, U3 K3 S3
BL4 U3 K4 S4

 Suppose the superset to be broadcast consists of 4 blocks of

tuples BL1, BL2, BL3, and BL4. BL1 is required by user U1,
BL2 by U1 and U2, BL3 by U2 and U3, BL4 by U3. The keys
are randomly generated by the server for each bloack. BL1 is
encrypted by K1, BL2 by K2 etc. The keys are sent to the
mobile devices via point-to-point channels. The key K1 and K2
is sent to the user U1; the keys K2 and K3 are sent to U2; and

the keys K3 and K4 are sent to user U3. The server computes
for each device the ranges of times during which that device has
to tune to the broadcast channel. This can be computed by
keeping track of sizes of different blocks of tuples. The server
sends to each mobile device the start time and the end time of
each range along with the keys. These informations are sent via
secure point-to-point channels.

U1 receives {0,S1}K1 ; {S1,S1+S2}K2
U2 receives {S1,S1+S2}K2 ; {S1+S2,S1+S2+S3}K3
U3 receives {S1+S2,S1+S2+S3}K3 ; {S1+S2+S3,
S1+S2+S3+S4}K4

5) Broadcasting the encrypted superset
The superset so computed is broadcast on the broadcast
channel. Individual mobile devices have to find out individual
results from the superset. The server also sends a bit stream to
each mobile device through the point-to-point channels to
them. This mechanism is explained in the next section.

6) Extraction of indivigual results

Each mobile device uses the information sent via point-to-point
channels to tune to the broadcast channel for specific time
periods and decrypt the information using corresponding keys
and thus receive their own tuples.

B. Conclusion and scope for further work

A method of security in the context of query processing in
mobile database has been presented in this paper. The proposed
method can prevent unauthorized access of multiple query
results sent through the same broadcast channel. Note that, in
some previous work [10], no security measure has been used in
the context of query processing in mobile database. Besides,
they considered only subsumption while performing grouping
of queries. So, with the query set Q1, Q2, Q3, Q4 only {Q2,
Q4} will be grouped, but the queries Q1 and Q3 will be
separately processed as there is no subsumption among them.

REFERENCES
[1] R. Malladi and D.P. Agrawal. “Wireless and Mobile Networks: Advances

and Challenges.” Proceedings of the 4th World Multiconference on
Systemics, Cybernetics and Informatics (SCI2000) and the 6th
InternationalConference on Information Systems Analysis and Synthesis
(ISAS2000), , Orlando, FL, USA, July 2000, pp.218-223.

[2] T. Imielinski and B.R. Badrinath. “Data Management for Mobile
Computing.” SIGMOD RECORD, 1993, Vol. 22, No. 1, pp. 34-39.

[3] D. Barbara. “Mobile Computing and Databases – A Survey.” IEEE
Transactions on Knowledge and Data Engineering, Jan/Feb 1999, Vol.
11, No. 1, pp. 108-117.

[4] P. Sistla, O. Wolfson, S. Chamberlain and S. Dao. “Modeling and
Querying Moving Objects.” Proceedings of the International Conference
on Data Engineering, Birmingham, UK, 1997, pp. 422-432.

[5] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. “Broadcast Disks:
Data Management for Asymmetric Communication Environments.”
Proceedings of ACM SIGMOD Conference, San Jose, CA, May 1995.

[6] S. Acharya, M. Franklin, and S. Zdonik. “Balancing Push and Pull for
Data Broadcast.” Proceedings of ACM SIGMOD Conference, Phoenix,
AZ, May 1997.

[7] F. Chen and M.H. Dunham. “Common Subexpression Processing in
Multiple-Query Processing.” IEEE Transactions on Knowledge and Data
Engineering, Vol. 10, No. 3, May/June 1998, pp. 493-499.

[8] M. Jarke. “Common Subexpression Isolation in Multiple Query
Optimization.” Query Processing in Database Systems, Springer Verlag,
New York, 1985, pp. 191-205.

[9] T.K. Sellis. “Multiple-Query Optimization.” ACM Transactions on
Database Systems, Vol. 13, No. 1, Mar 1988, pp. 23-52.

[10] R. Malladi and Karen C. Davis. “Applying Multiple Query Optimization
in Mobile Databases.” Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS’03), IEEE Computer Society, pp
294-303.

[11] T. Imielinski, S. Viswanathan and B.R. Badrinath. “Power Efficient
Filtering of Data on the Air.” Proceedings of the EDBT Conference,
Cambridge, UK, March 1994.

D. Saha is with the Department of Computer Science and Engineering,

Jadavpur University, Kolkata – 700032, India. Phone: 91 94330 65130; fax: 91
33 2413 1766; e-mail: neruda0101@ yahoo.com.

N. Chowdhury is with the Department of Computer Science and

Engineering, Jadavpur University, Kolkata – 700032, India. e-mail:
nirmalya_chowdhury@yahoo.com.

	I. INTRODUCTION
	II. The Proposed Method
	A. The overview of the system and the proposed security measure
	
	1) Collection of queries
	2) Decomposition into groups
	3) Superset computation
	4) User specific encryption of the superset
	5) Broadcasting the encrypted superset
	
	6) Extraction of indivigual results

	B. Conclusion and scope for further work

