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Abstract

In this paper, we present an neural network approach to
solve a set of nonlinear equations. A modified Hopfield
network has been developed to optimize a energy function.
This approach provides faster convergence and extremely
accurate solutions for all solvable systems. We solved and
discussed several illustrative examples in order to depict
the powerfulness of the proposed method.
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1 Introduction

The conventional Hopfield model is the most commonly
used model for auto-association and optimization. Hop-
field networks are auto-associators in which node values
are iteratively updated based on local computation princi-
ple: the new state of each node depends only on its net
weighted input at a given time [1]. This network is fully
connected network and the weight matrix determination is
one of the important tasks while using it for any applica-
tion. In [2], author had discussed the computational prop-
erties of biological organisms to the construction of com-
puters. These properties can emerge as the collective prop-
erties of systems having large number of simple equiva-
lent components. He elaborated the notion of content ad-
dressable memory. In this model, the processing devices
are called neurons. Each neuron has two states similar to
those of McCulloch and Pitts [4], i.e., firing(1) and not
firing (0). Each neuron is connected to other neuron by
the connectionist weightWij . The model proposed in [2],
assumes that there is no self connection , i.e.,Wii = 0, and
weights are symmetrical, i.e.,Wij = Wji. Author demon-
strated the stability of the proposed model by giving a valid
Lyapunov function or energy function. The alteration in
states of Hopfield model causes monotonic decrement in
energy or Lyapunov function. In [3], author proposed and
studied the architecture of the continuous model that can
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be implemented using passive and active elements such as
resistor, capacitor and Op-Amp. By applying the nonlin-
ear characteristic of Op-Amp in terms of sigmoidal func-
tion author demonstrated the convergence of Lyapunov
energy function. Soon after this work, author presented
the application of Hopfield neural network in optimization
problems by solving the well defined Traveling-Salesman
Problem [5]. This application of Hopfield neural network
made it a very popular model. Since then, this network has
been applied to various applications. The Hopfield neu-
ral network has a well demonstrated capability of finding
solutions to difficult optimization problems such as Trav-
eling salesman problem (TSP), Analog-to-Digital conver-
sion (A/D) [6, 7], Job scheduling problems [8], Quadratic
assignment and other NP-complete problems [9] etc.

Other than the above applications, Hopfield neural net-
works have been used to several other application such as
matrix inversion [11], parametric identification of dynam-
ical systems [13], economic load dispatch [12] etc. Kanad
et.al. [10] used Hopfield neural network approach for solv-
ing a set of simultaneous linear equations. They treated
this as an optimization problem and hence applied Hop-
field approach to find solution of linear equations.

In this paper, we proposed a modified Hopfield neural net-
work approach to obtain the solutions from a set of nonlin-
ear algebraic equations. A new energy function is formu-
lated for this problem. Weights and bias values for the
network are calculated with the help of derived energy
function. The network results in desired solutions at the
minimum of network’s energy. Results obtained by pro-
posed model are compared with solutions obatined from
Newton′s method.

This paper is organized as follows: Motivation of proposed
work is explained in section 2. Architecture and stabil-
ity analysis of the proposed network is reported in section
3. Simulation results are presented in section 4. We con-
cluded our work with brief discussion in section 5.
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2 Motivation

Researchers have used quadratic form of energy function
or cost function for solving neural-network based opti-
mization problems. For problem having non-quadratic
cost function or higher order cost function, quadractic-cost
function based neural network architectures are not useful.
To overcome this drawback a new approach is necessitated
which can handle such problems efficiently and should re-
sults in desired solutions for such problems. As an exam-
ple, the conventional Hopfield neural network is unable to
provide the desired solutions for a set of nonlinear alge-
braic equations. In this paper, a new approach is proposed
which incorporates higher order combinations of neuron
states while formulating the energy function for the pro-
posed model. These higher order terms in the proposed
network are achieved by using the different combinations
of states i.e. product, summation, or both. This energy
function is used to derive the weights and bias values of
the network. With the appropriate weights and bias values
the total energy of the network decreases to its minimum.

3 Modified Hopfield Neural Network Ar-
chitecure

The architecture for the proposed network is shown in Fig-
ure 1. It is a nonlinear interconnected system ofn neu-
rons. The nonlinear amplifier shown in figure has an input-
output characteristics described by a activation function
ϕ(.): < → [0 1]. This function is assumed to be continu-
ously differentiable and strictly monotonically increasing.
The most common activation function is the sigmoid func-
tion and is given by:

x = ϕ(u) =
1

1 + e−u/θ
(1)

where the positive parameterθ controls the slope of acti-
vation function.

The proposed network ofn neurons is shown in Figure 1.
In this nonlinear aggregation at neuron units is considered,
this nonlinear aggregation incorporates both multiplication
and linear summation of states. It is observed from the fig-
ure that the product unit produces functionfij(.), where
(i, j) ∈ [1 . . . n]. The functionf(.) can be any combi-
nation of statesx1, x2..., xi, i ∈ n. The output obtained
from the product units are linearly summed through the
synaptic weightsWij , (i, j) ∈ n. Applying Kirchhoff’s
current law at the input of each amplifier, we get

Ci
dui

dt
+

ui

Ri
=

∑
j

Wijfij(x1, x2, ..., xn) + Ii

(i, j) ∈ n (2)

The output states of the network is given byx = ϕ(u).
The activation functionϕ(.) is strictly increasing, differ-
entiable, and invertible i.e.,u = ϕ−1(x). Rewriting Equa-
tion 2 as

Ci
dϕ−1(xi)

dt
+

ϕ−1(xi)
Ri

=
∑

j

Wijfij(x1, x2, ..., xn)

+Ii (i, j) ∈ n (3)

The energy function for the proposed model is given by:

E =
(∑

i

∫ xi

0

ϕ−1(s)
Ri

ds

−
∑

i

∑
j

Wijfij(x1, x2, ..., xn)xi

−
∑

i

Iixi

)
, (i, j) ∈ n (4)

By using conventional methodology we can show that the
derivative for the proposed energy function is always less
than or equal to zero, i.e. (dE

dt ≤ 0) and energy of the
system is bounded.

In next section, the proposed methodology is demonstrated
by considering two numerical examples. Altough these ex-
amples are very simple examples but it demonstrate the ca-
pability of proposed technique. This approach can be eas-
ily extended for obatining the solutions from complicated
system of nonlinear algebraic equations of any order.

Figure 1: Proposed Hopfield type architecture for solving
the nonlinear equation



3.1 Energy Function Based Approach for Opti-
mization

Consider a set of algebraic equation given by following:

f1(x1, . . . , xj , . . . , xn) = P1

... =
...

fi(x1, . . . , xj , . . . , xn) = Pi

... =
...

fm(x1, . . . , xj , . . . , xn) = Pm (5)

In the above equationfi(.) is function of variables
x1, . . . , xj , . . . , xn∈ < and Pi ∈ < is a real con-
stant. Our objective is to find the values for variables
x1, . . . , xj , . . . , xn such that it satisfies the Equation 5. In
order to solve any optimization problem using proposed
approach the problem has to be cast in the form of energy
function. If formulation of energy function is appropriate
then it can be used to derive weights and bias values of the
network. Numerical simulation of dynamical equations of
model with the appropriate weights and bias results in de-
sired solution of the optimization problem. To obtain the
solution using proposed approach an energy function has
to be formulated. The energy function for the proposed
model is derived as:

E =
m∑

i=1

(
gi(.)

)2

gi(.) =
(
fi(x1, . . . , xj , . . . , xn)− Pi

)
(6)

Equation 6 has been used for designing the proposed net-
work. The number of neurons in network is equal to the
number of variables whose value is to be determined. In
the given problem we haven number of variables hence
the network haven number of neurons. The network dy-
namics are governed by following differential equation:

duj

dt
= − ∂E

∂xj

xi = ϕj(uj), j = 1, . . . , n (7)

whereuj is the net input to thejth neuron in the network
andxj is its output. In this application, the functionϕj(.)
is a linear input-output transfer function for thejth neu-
ron. Calculating the partial derivatives of Equation 6 with
respect to unknown variablesx1, . . . , xj , . . . , xn and col-
lecting the terms of identical order will results in equa-
tion of Hopfield equations like form. The coefficients and
constants in the available expression gives the weights and
bias values for the network respectively.

3.2 Stability Analysis of the Proposed Network

In this section, the stability analysis for the proposed net-
work has been carried out. In order to prove the proposed
energy function is a valid energy function, the basic no-
tions of Lyapuonv stability theory are used. Lyapunov’s
method is a approach which provides us the qualitative as-
pects of system behavior.

Consider an autonomous system given in Equation 5. Let
E(X) be the total energy associated with the system, here
X represents the vector of variablesx1, . . . , xj , . . . , xn .

If the derivativedE(X)
dt is negative for allX(X(t0), t) ex-

cept the equilibrium point, then it follows that energy of
the system decreases ast increases and finally system will
reach the equilibrium point. This holds because energy
is non-negative function of system state which reaches a
minimum only if the system motion stops. In this case the
system has (X∈ x1, . . ., xj , . . ., xn) variables and hence
the energy functionE(X) is given by:

E(X) =
m∑

i=1

(
gi(.)

)2

gi(.) =
(
fi(x1, . . . , xj , . . . , xn)− Pi

)
, i = 1, . . . ,m(8)

At any instant, the total energyE(X) in the system is pos-
itive unless the system is at rest at the equilibrium state,
where the energy is zero. This can be written as:

E(X) > 0 when X 6= 0

E(0) = 0 when X = 0 (9)

The rate of change of energy is given by

d

dt
E(X) =

∂E(X)
∂xj

dxj

dt
, j = 1, . . . , n (10)

The dynamics for the proposed Hopfield model is given by
following:

duj

dt
= −∂E(X)

∂xj
(11)

Using Equation 10 and Equation 11 we get:

d

dt
E(xj) = −duj

dt

dxj

dt
(12)

Stateuj is obtained by passing the statexj through a non-
linear activation function. This relation is represented by:

uj = ϕ(xj)
or

xj = ϕ−1(uj) (13)



The nonlinear activation functionϕ(.) is chosen in such
a way that,ϕ(.) is continuously differentiable and strictly
monotonically increasing, that is,ϕ(p) > ϕ(p′) if p > p′.
Considering the relation as shown in Equations 12 and 13
results in:

d

dt
E(X) = −

(
duj

dt

)2
∂ϕ−1(.)
∂(xj)

(14)

ThusdE(X)
dt is negative at all points except the equilibrium

state. This proves the stability in Lyapunov sense. The
total energy of the system will decrease with time.

4 Application Examples

To illustrate the application and demonstrate the effective-
ness of the proposed method, two example systems are
employed.

4.1 Example 1

Consider the following nonlinear equation:

AX3 + BX2 + CX + D = 0 (15)

Equation 15 is typical algebraic equation having cubic
nonlinearity. X is the state variable.A, B, C and D
are the constant coefficients. The energy function for this
equation is given by:

E = −1
2
(AX3 + BX2 + CX + D)2 (16)

The network dynamics is calculated by using Equation 7
and is given as:

du

dt
= −1

2
(
2× (AX3 + BX2 + CX + D)

×(3AX2 + 2BX + C)
)

(17)

Rewritting Equation 17 we get:

du

dt
= −1

2
(
6A2X5 + 10ABX4 + (8AC + 4B2)X3

+(6AD + 6BC)X2

+(4BD + 2C2)X + 2CD
)

(18)

The proposed Hopfield type architecture for this optimiza-
tion problem is shown in Figure 2. To simplify the ex-
pression we neglected leakage term after the aggregation
and consider only the dynamics of capacitance. Refering
to Figure 2, we write the dynamical equation for the pro-
posed model as:

du

dt
=

(
W1X

5 + W2X
4 + W3X

3

+W4X
2 + W5X + Ibias

)
(19)

whereW1, W2, W3, W4, W5 are the associated weights
and Ibias is the constant input to the network. The
net value of aggregated input at the neuron incorporates
the linear and nonlinear terms. This aggregation re-
flects the biological fact of nonlinear dendritic aggrega-
tion. Equation 20 presents the energy function for the pro-

Figure 2: Proposed architecture for solving the nonlinear
equation,AX3 + BX2 + CX + D = 0

posed Hopfield type architecture.

E = −X
(
W1X

5 + W2X
4 + W3X

3

+W4X
2 + W5X + Ibias

)
(20)

The weights and bias values are obtained by performing
the comparison between Equation 19 and Equation 18.
These weights and bias are given by:

W1 = −1
2
(6A2)

W2 = −1
2
(10AB)

W3 = −1
2
(8AC + 4B2)

W4 = −1
2
(6AD + 6BC)

W5 = −1
2
(4BD + 2C2)

Ibias = −1
2
(2CD) (21)

The input-output relation for thepth neuron of model is
given by Xp = φ(up). For our application, the func-
tion φp is considered a linear input-output transfer func-
tion. The response for this transfer function is drawn in
Figure 3. The network is simulated numerically usingEu-
ler’s methodafter determining the weights and bias. The



Figure 3: Plot of linear transfer function

Euler′s formation of the network dynamics is given by:

u(t + 1) = u(t) + ∆t
(
W1X

5(t)

+W2X
4(t) + +W3X

3(t)
+W4X

2(t) + W5X(t) + Ibias

)
(22)

Results with parametersA = 1, B = −6, C = 11 and
D = −2 are shown in Table 1 at different initial val-
ues i.e. u(0), X(0). The energy profile of the network
is drawn in Figure 4. It is evident here that the energy
for the proposed model monotonically decreases to zero
and model possesses stable dynamics. We compared our
results withNewton’s method(Table 1), which is conven-
tionally used to calculate the solutions of equations. It is
observed here that the solutions obtained from both the
methods are same. The performance of proposed method
will improve for higher dimensional systems because we
need to determine the suitable weights and biases that min-
imizes the energy function. InNewton’s methodthe calcu-
lation of Jacobian matrix and its inverse for finding the
solutions of equations is one of the prime limitation and
this can be overcomed by the proposed method.

X0 u0 Xfinal Value of
Equation 15

Proposed Method
0.001 0.0 0.2037 −6.6× 10−16

0.31 0.5 0.2037 0.0
1.9 -0.09 0.2037 8.8× 10−16

Newton′s Method
0.001 - 0.2037 0.0
0.31 - 0.2037 0.0
1.9 - 0.2037 0.0

Table 1:Solution of the Equation 15 at different initial conditions with
the proposed methodandNewton’s method. Parameters during simula-
tions are:A = 1, B = −6, C = 11 andD = −2.

Figure 4: Energy function profile for the model

4.2 Example 2

This example demonstrates the application of proposed
method for solving a pair of nonlinear equations, given by:

A1X1 + A2X2 + A3X1X2 + A4 = 0 (23)

B1X1 + B2X2 + B3X1X2 + B4 = 0 (24)

whereX1 andX2 are the state varibles whose solutions for
some particular set of constant coefficients have to be find
out. A1, A2, A3, A4, B1, B2, B3, andB4 are the constant
coefficeint of these equations. The energy function with
the given nonlinear equations is formulated as:

E = −1
2

(
(A1X1 + A2X2 + A3X1X2 + A4)2

+(B1X1 + B2X2 + B3X1X2 + B4)2
)

(25)

Using Equation 7 the time derivativesdu1
dt anddu2

dt are cal-
culated as:

du1

dt
= − ∂E

∂X1

du2

dt
= − ∂E

∂X2
(26)

These dynamical equations for proposed network is rewrit-
ten in its expanded form by:

du1

dt
= −1

2
{(2(A1X1 + A2X2 + A3X1X2 + A4)

(A1 + A3X2)
+2(B1X1 + B2X2 + B3X1X2 + B4)
(B1 + B3X2)}

du2

dt
= −1

2
{2(A1X1 + A2X2 + A3X1X2 + A4)

(A2 + A3X1)
+ 2(B1X1 + B2X2 + B3X1X2 + B4)

(B2 + B3X1)} (27)



which is further simplified as

du1

dt
= −1

2
{P1X1 + P2X2 + P3X1X2

+P4X
2
2 + P5X1X

2
2 + P6}

du2

dt
= −1

2
{M1X1 + M2X2 + M3X1X2

+M4X
2
1 + M5X

2
1X2 + M6} (28)

where

P1 = −2(A2
1 + B2

1)
P2 = −2(A2A1 + A3A4 + B1B2 + B3B4)
P3 = −2(2A1A3 + 2B1B3)
P4 = −2(A3A2 + B3B2)
P5 = −2(B2

3 + A2
3)

P6 = −2(A1A4 + B1B4) (29)

M1 = −2(A1A2 + A3A4 + B1B2 + B3B4)
M2 = −2(A2

2 + B2
2)

M3 = −2(2A2A3 + 2B2B3)
M4 = −2(A3A1 + B3B1)
M5 = −2(A2

3 + B2
3)

M6 = −2(A2A4 + B2B4) (30)

The architecture for the proposed network for this opti-
mization problem is shown in Figure 5. Figure 5 is used
to develop the dynamical equations and energy function
for the proposed network. The dynamic equations for
the proposed network and corresponding energy function
with these dynamic equations are given in Equation 31 and
Equation 32 respectively. We derived following dynamic
equations (equation 31) for the model depicted in Figure 5.

du1

dt
= (W1X1 + W2X2 + W3X1X2

+W4X
2
2 + W5X1X

2
2 + Ibias1)

du2

dt
= (V1X1 + V2X2 + V3X1X2

+V4X
2
1 + V5X2X

2
1 + Ibias2) (31)

E = −1
2
{X1(W1X1 + W2X2 + W3X1X2

+W4X
2
2 + W5X1X

2
2 + Ibias1)

+X2(V1X1 + V2X2 + V3X1X2

+V4X
2
1 + V5X2X

2
1 + Ibias2)} (32)

The weights and biases for the network shown in Figure 5
are calculated by comparing coefficients of Equation 31

Figure 5: Proposed Hopfield neural network like architec-
ture for finding the solutions for the set of nonlinear equa-
tions given in Equation 23 and 24

with those of Equation 28. The calculated weights and
bias values in terms of coefficients of the equations are
given as:

W1 = −2(A2
1 + B2

1)
W2 = −2(A2A1 + A3A4 + B1B2 + B3B4)
W3 = −2(2A1A3 + 2B1B3)
W4 = −2(A3A2 + B3B2)
W5 = −2(B2

3 + A2
3)

Ibias1 = −2(A1A4 + B1B4) (33)

V1 = −2(A1A2 + A3A4 + B1B2 + B3B4)
V2 = −2(A2

2 + B2
2)

V3 = −2(2A2A3 + 2B2B3)
V4 = −2(A3A1 + B3B1)
V5 = −2(A2

3 + B2
3)

Ibias2 = −2(A2A4 + B2B4) (34)

Solutions for the given nonlinear equations are obtained
after the numerical simulations at different initial condi-
tions. These solutions are compared to the solutions ob-
tained from conventionalNewton’s method. Table 2 shows
the simulation results. The total energy profile for the pro-
posed network during the simulation is drawn in Figure 6.
It is evident that the total energy of the system monotoni-
cally decreases to zero and attains its global minima.



It is found from simulation results (Table 2) and energy
function plot (Figure 6) that the proposed Hopfield type
model owns stable dynamics and the energy of the system
decreases monotonically.

Figure 6: Energy function profile for the model

5 Conclusion

In this paper, a novel approach for solving a set of non-
linear algebraic equations using a Hopfield neural network
type architecture has been proposed. Energy function for-
mulation and stablity analysis for the network has been
carried out. The capablity of the proposed network is
tested by solving two difficult examples. The total en-
ergy profile of the system during simulation is sketeched
for both cases. It is observed that the total energy of sys-
tem decreases monotonically and finally settles to its min-
imum. The network provides the desired solutions at its
energy minima. Results for the nonlinear equations used
in the numerical examples are tabulated in Table 1 and Ta-
ble 2 at three different initial conditions. The performance
of the proposed network is efficient in terms of the compu-
tational cost and total time require to obtain final results.
Results are compared withNewton′s method. It has been
observed that results obtained with both of these methods
are same, but the proposed methods avoids the inherent
limitations of Newton′s method i.e. calculations of the
Jaccobian matrix and its inverse.

Hence, it can be concluded, the proposed approach avoids
the limitaion of conventional Hopfield neural network and
it can be applied to non-quadratic or higher order optimiza-
tion problems efficiently. When compared to conventional
Newton′s method in finding the solutions for nonlinear
set of algebraic equations it avoids the calculations of the
Jaccobian matrix and its inverse. The proposed network is
a fixed weight, it can solve any order nonlinear algebraic
set of equations with lesser computational cost.
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