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K-Mutual Nearest Neighbour Approach for
Clustering Two-Dimensional Shapes Described
by Fuzzy-Symbolic Features

H.S.Nagendraswamy and D.S.Guru

Abstract— In this paper, a new method of representing two-
dimensional shapes using fuzzy-symbolic features and a
similarity measure defined over fuzzy-symbolic features useful
for clustering shapes is proposed. A k-mutual nearest
neighborhood approach for clustering two-dimensional shapes is
presented. The proposed shape representation scheme is
invariant to similarity transformations and the clustering method
exploits the mutual closeness among shapes for clustering. The
feasibility of the proposed methodology is demonstrated by
conducting experiments on a considerably large database of
shapes and also, its validity is tested by comparing with the well
known clustering methodologies.

Index Terms—Fuzzy-Symbolic features, k-mutual nearest
neighbour, Symbolic data analysis, Shape representation, Shape
clustering.

I. INTRODUCTION

Clustering plays a significant role in several exploratory
pattern analysis, grouping, decision-making, machine learning
situations, including data mining, document retrieval, image
segmentation and pattern classification. In general, cluster
analysis is of great importance in classifying a heap of
information, which is in the form of data patterns. Clustering
of planar objects or images of objects, according to the shapes
of their boundaries along with the inner shape details can
significantly improve database searches in systems with
shape-based queries. For instance, testing a query against
prototypes of different clusters to select a cluster and then
testing against shapes only in that cluster is much more
efficient than testing exhaustively. In order to cluster shapes,
we need to characterize shapes in terms of features, which
best captures the shape information. The concept of symbolic
data sets provides a natural way of capturing shape
information and the concept of fuzzy sets efficiently handles
the uncertainty in the data. Many clustering algorithms have
been proposed for clustering conventional [12], [14], [15],
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[16] as well as symbolic data [5], [6], [8], [9], [10], [11], [14]
and shown that the approaches based on fuzzy-symbolic data
outperforms conventional approaches. The reason is that the
fuzzy-symbolic data provides a natural and realistic analysis
to problems as symbolic data are more unified by means of
relationships [2] and the fuzzy theory handles efficiently the
impreciseness. Even though the concept of fuzzy-symbolic
approach is much explored in data analysis and clustering, its
inherent capabilities in preserving shape properties of an
object have not yet been explored. To the best of our
knowledge, there has been no attempt in proposing an
approach based on fuzzy-symbolic data for shape analysis.
This motivated us to think of clustering two dimensional
shapes effectively by describing shapes in terms of fuzzy-
symbolic features. However, there are several approaches for
shape analysis based on conventional data types. Moment
based features [13], signature based centroidal profile [3],
Fourier Descriptors [19], Curvature Scale Space (CSS) [18],
Editing shock graphs [21], polar representation of the contour
points about the geometric centre of the shape [1] have been
proposed. A detailed survey on shape analysis can be found in
(4], [17].

It has been observed from the literature survey that most of
the conventional agglomerative clustering techniques use
similarity proximity matrix for clustering patterns. The
agglomerative clustering merges two patterns, which possess
high similarity value at each level and continue the merging
process until the desired number of clusters are obtained or all
the patterns are put into one cluster. However, it has been
shown that about 62% of the total numbers of individuals in
random artificial and natural populations are in mutual pairs.
The concept of “Mutual Nearest Neighbourhood” has been
introduced [7] and successfully used for agglomerative and
disaggregate clustering. Thus, it is very appropriate to cluster
patterns by looking at their mutual nearness than just by
looking at their proximity matrix. In the proposed
methodology, the concept of mutual nearest neighbourhood
has been extended such that & patterns are clustered into one
class if they are k-mutually nearest neighbours.

With this backdrop, in this paper, we propose a method of
representing two-dimensional shapes using fuzzy-symbolic
(multi interval membership values) features. Unlike other
existing shape representation schemes, the proposed scheme is
capable of utilizing both contour as well as region
information. A similarity measure defined over the fuzzy-



symbolic features for clustering shapes is also described. The
concept of mutual nearest neighbourhood is extended for
realistic and effective clustering of shapes. The proposed
shape representation scheme is shown to be invariant to
similarity transformations (rotation, translation, scale and
reflection) and the clustering methodology is effective.
Several experimentations have been conducted to demonstrate
the success of the proposed methodology. Moreover, the
proposed methodology is validated by comparing with the
well known clustering methodologies in literature.

The paper is organized as follows: Section 2 presents the
proposed symbolic shape representation scheme and the
proposed similarity measure. Section 3 describes a novel
shape clustering procedure based on the concept of k~-mutually
nearest neighbours. Experimental results are presented in
section 4. A comparative study of the proposed methodology
with the well known clustering techniques is given in section
5 followed by conclusions in section 6.

I1l. PROPOSED METHODOLOGY

This section explains in detail the proposed method of
representing shapes and a similarity measure for estimating
the degree of similarity between two shapes useful for
clustering.

A.  Shape representation

The proposed shape representation scheme extracts fuzzy-
symbolic features from a shape with reference to the axis of
least inertia, which is unique to the shape. The axis of least
inertia of a shape is defined as the line for which the integral
of the square of the distances to points on the shape boundary
is a minimum. It serves as a unique reference line to preserve
the orientation of the shape. Preserving the orientation of a
shape is essential for extracting features, which are invariant
to similarity transformations. However, for symmetrical
shapes (star like shapes) more than one axis of least inertia
can be expected. Because of shape symmetry, in spite of
multiple axis of least inertia, the extracted features from a
shape will not change drastically. In addition, variation in
feature values due to rotation and limitations of finite
precision arithmetic is recorded in our feature extraction
methodology. But if the shape is major deformed or occluded
then the axis of least inertia may change its orientation and
hence the extracted feature vector may not agree with the
feature vector of the original shape. Therefore, the proposed
method of shape representation is not intended to handle
major occlusions or deformations. However, the method copes
well with minor occlusions and deformations.

In order to extract fuzzy-symbolic features from a shape,
first, the slope angle 6 of the axis of least inertia of a shape
curve is estimated as described in [22]. Once the slope angle &
is calculated, each point on the shape curve is projected on to
the axis of least inertia.

Let S= {sl,sz,s3,...,sL} represent L points on the shape

curve and (x;,y;) denote the Cartesian co-ordinates of the
point 5; fori =1, 2, 3,..., L, Let C:(Cx,Cy) denote the

centroid of S. Given a point (xl-,yl-) on a shape curve, the co-
ordinates of its projected point (x,’,y{) on the axis of least
inertia can be found as follows:
Since, the points (c,,c, )and (x,.’,yi’) are lying on the axis of
least inertia, we have
/

(C,v — Vi )

Cx - xi/

Similarly, as the point (xl/ yl/) is the projection of the

=tanfd=C, -y =C, tand-x] tan 6. D

point(xi,yi), we have
/
(y", ) tan(90 +0) = ! — y, = x’ tan(90 + 6)— x, tan(90 + 0).

O]

i h

By combining equations (1) and (2), we get
, (€, =y, +x,tan(90+6)-C, tan 6)
s (tan(90 + 6) - tan ) '

From eq. (1) we have y/ =C, + (x,’ -C, )tane

Extreme Point E, B oundary Point (xi, 71

Shape Centroid (T, C‘Jj

Feature point £ (x', ) on the axis of least inertia

Fig. 1. Shape of an object with its axis of least inertia and
extreme points

The two farthest projected points say £/ and E2 on the axis of
least inertia are chosen as extreme points as shown in Fig. 1.
The Euclidean distance between these two extreme points
defines the length of the axis of least inertia.

Once the axis of least inertia of a shape is obtained, keeping
it as a unique reference line, fuzzy-symbolic features are
extracted from the shape. A fixed number say », of equidistant
points called feature points on the axis of least inertia are
found (Fig. 1). The number of feature points defines the
dimension of the feature vector associated with a shape. At
every feature point chosen, an imaginary line perpendicular to
the axis of least inertia is drawn. It is interesting to note that
this perpendicular line intersects the shape curve at several
points. Generally, the number of such intersecting points is
even when the drawn perpendicular line is not tangential to a
shape curve at any point. The number of such intersecting
points is exactly two if the shape is fully convex without
having holes inside. In the case of shapes with holes or with
concave parts, the perpendicular line intersects the shape
curve at more than two points and the number of such
intersecting points is always even.



Once the intersecting points on the shape curve are
identified, we extract fuzzy-symbolic features by using the
concept of fuzzy equilateral triangle membership function. In
this work, we have considered equilateral triangle membership
function formed by any three non-collinear points. Let
6,,6,and 6; be the inner angles of a triangle, in the

order g, > 0, > 0,, and let U be the universe of triangles; i.e.,
U=\(60,,6,)10,>0,>0,>0,0,+6,+0,=180"| (3)
We can define an approximate equilateral triangle for any

triplet of angles fulfilling the constraints given in equation (3)
using the following membership function [20]

H (91192v93):1—ﬁ('91—93) (4)
Thus the membership function x (6, ,0,,6,) assigns a value

between 0 and 1 to a fuzzy set of equilateral triangles. For
instance, the line drawn perpendicular to the axis of least
inertia at the feature point f, intersects the shape curve at four
points P;, P, P; and P, as shown in Fig. 1. A triangle is
formed by considering the first two farthest intersecting points
P,, P,and the feature point (f,+1) then it is approximated to
an equilateral triangle and its membership value (z4) is

calculated using Eq. (4). Similarly, we form a triangle by
considering the next two farthest intersecting points P,, P; and
the feature point (f,+1). The equilateral triangle membership
value (u,) associated with this triangle is also calculated.

Thus {z4,4,} is considered to be the feature value at the

feature point f, The reason behind considering the farthest
intersecting points while forming a triangle is that it measures
the span length of the intersecting points and also the problem
of sequencing feature values in case of multiple values at any
particular feature point can be avoided. Notice that the feature
value is not necessarily a singleton (crisp) but multivalued

The set of all extracted multivalued type features (because
of n feature points chosen on the axis of least inertia) forms
the feature vector of dimension » to represent the shape. In
our work the value for # is set to 15 and is empirically chosen.
Unlike conventional shape representation schemes, where a
shape feature vector is a collection of single valued data, the
proposed shape feature vector is a collection of multivalued
type data. The proposed representation scheme is capable of
capturing the internal details of shapes in addition to capturing
the external boundary details.

Let S be the shape to be represented and » is the number of
feature points chosen on its axis of least inertia. Then the
feature vector F representing the shape S, is in general of the

form F=[f1, fo, farr [ ], Where fy={u, a1, g1y oees 3 TOX

some /[, > 1. It shall be observed that as the feature extraction
process is based on the axis of least inertia and fuzzy
equilateral triangle membership value, the feature vector F
representing the shape S is invariant to shape similarity
transformations. The angles of the triangle formed by the
intersecting points at a feature point £, with respect to feature
point (f,+1) on the axis of least inertia are scaling invariant.
Thus the membership value does not change even if the shape
is scaled up or scaled down uniformly. The rotational
invariance is automatically achieved, as the axis of least

inertia is invariant to rotation. However, due to rotation the
sequence in which the features are extracted may be different.
A way of alleviating this problem is to sequence the features
such that the first feature corresponds to the extreme point,
which is nearer to the centroid of the shape. An added
advantage of the proposed scheme is that unlike other contour
traversal technique based approaches, the proposed method is
also invariant to flipping transformation. Generally, flipping
invariance is difficult to achieve in shape analysis if a method
is sensitive to the direction of contour traversal because the
direction of contour traversal changes when an object/shape is
flipped over. Since the axis of least inertia of a shape flips
along with the shape about the same line by preserving the
starting point, the proposed representation method is invariant
to flipping.

In practice, however, feature values defined at a feature
point on the axis of least inertia are not exactly same but they
lie within certain range due to finite precision arithmetic.
Thus, each component of the feature value defined at a feature
point is approximated by interval data type as

Sy =0ty 10 LD Lt ot T Where i and

u* represent, respectively, the minimum and the maximum

variations of the respective component. These minimum and
maximum values shall be computed by examining a shape in
all possible orientations and with different scaling factors.
Thus, in a more general format, the symbolic feature vector F
associated with a shape S is a collection of » multi-interval-
valued data type against the crisp data type in case of
conventional shape analysis techniques. In practice, for the
purpose of creating a shape database, we generated a large
number of samples for each shape with different orientations
and scaling factors. However, only one representative vector,
which is an aggregation of all, is stored in the database.

B. A Similarity measure

Similarity is the fundamental notion in clustering shapes,
which defines the closeness or farness of two shapes. A
measure of similarity between two shapes drawn from the
same feature space is essential to most of the clustering
techniques. In this subsection, we present a similarity measure
for estimating the degree of similarity between two shapes
described by multi interval valued features, which is used for
clustering of shapes.

-+ -+ - 4
Let fAk_{|:'uAk1"uAk1:|’|:’uAk2"uAkz jl""’|:’uAkp”uAkp:|} and

_ -+ - o+ -+
ka—{{ﬂBkllﬂBkl}[ﬂBkz,,UBkZ}---,{,Uqu.#qu}} be the

k™ feature component of two shapes 4 and B described by
multi interval valued feature vectors

FA:[fAlvaZlfA3!'-'lfAn] FB:[fBllfBZ!fBS""Ian]
respectively. Here x~ is the lower limit and «* is the upper
limit of the interval.

Since we use the concept of mutual similarity between
shapes for clustering, we first estimate the degree of similarity
(S,,5) from the shape 4 to the shape and B the degree of



similarity (Sj_, ,) from the shape B to the shape 4. Then the

mutual similarity value (MSV) between the shapes 4 and B is
defined to be the average of S, ,; and S;_, ,.

Since the ™ feature component in a feature vector is of type
multi interval valued, the degree of similarity from 4 to B with
respect to their /™ interval is estimated based on degree of
overlapping between their lower and upper limits of their

intervals. If the interval [,u;k ,y:k} describing the 2"
1 1

interval of the " feature of 4 is contained in the interval

['“1;/( e } describing the /™ interval of the X" feature of B
i i

then the degree of similarity from 4 to B is taken as 1,
otherwise it is given by the average degree of similarity
between their respective lower and upper limits.

Thus, the degree of similarity from 4 to B with respect to the
" interval of their k" feature is given by

/ 1 i\, Zﬂék,) and (ﬂ;k, < ﬂ;k,)
Sak—r =

% [77’ + 77*] otherwise ©®)

Similarly, degree of similarity from B to 4 with respect to the
I" interval of their k" feature is given by

1 1 if (/lz;k, 2 ﬂik,) and (,UE/(, ES ﬂ;k,)
SBk>ak =
- % [77_ + 77+] otherwise ©)
where 7~ = ! and

Lt ay, =t | * B
£ is the normalizing factor, which is set to 10.

The mutual similarity value (MSV) between 4 and B with
respect to /" interval is given by

O]

It shall be noticed that if the intervals are one and the same
then the MSV between them is 1 (maximum); otherwise the
similarity value depends on the extent to which the intervals
are separated. More the extent to which they are separated less
shall be the degree of similarity.

It may so happen that in some cases, the number of intervals
(1) in the k™ feature of 4 and B are not the same. Let the
number of intervals present in the " feature of 4 be p and the
number of feature values present in the " feature of B be ¢
and p<g. In such situations we choose the first p components
out of ¢ from B for the computation of similarity; for the
remaining (p-¢) components of B, (for which there are no
corresponding components in 4 for the computation of
similarity), we assume the degree of similarity to be zero.
Thus the overall degree of similarity between the shape 4 and
the shape B with respect to their k™ feature component is
given by

®)

Thus the total degree of similarity between the shape 4 and B
with respect to all the » features is given by

©9)

where #n is the number of feature points chosen on the axis of
least inertia. In our approach, feature values describing the
shape are in the range 0 and 1. Since, the " feature
component similarity between shape 4 and B is in the range 0
and 1, the total degree of similarity between the shape 4 and
the shape B is also in the range 0 and 1.

I1l. CLUSTERING OF SHAPES

In order to cluster shapes described by multi interval-valued
features, we first compute the degree of mutual similarity
among all the shapes using the proposed similarity measure as
explained in section 118 and a similarity matrix is obtained. A
similarity position matrix of size (» x r) for all r shapes is
created based on the descending order of their similarities.
The position matrix gives the nearness position of shapes in
terms of their similarity rank. The concept of k&-mutual nearest
neighbor, based on their position in the position matrix, is
employed to cluster shapes. In a position matrix, if the shape
S;is the k™ nearest neighbor of the shape S; , and the shape S is
also the £ nearest neighbor of the shape S; , then S;and S; are
said to be k-mutually nearest neighbors. This idea of &-
mutually nearest neighbors is successfully applied in our
clustering procedure. According to this idea, if m shapes are
put into one cluster then all those m shapes must be k-mutually
nearest neighbors. The value of & is set to 2 initially and
incremented by 1 each time until we get the desired number of
clusters or all shapes are put into a single cluster. Thus the
proposed method of clustering shapes can be algorithmically
expressed as follows.

Algorithm: Clustering-of-Shapes

Input : Shapes described by fuzzy-symbolic features (S;,S>,
Ss, .., S)).

Output : Clusters of shapes (C;, C,,...,C,,).
Method:

1. Obtain similarity matrix of size r x r using the
proposed similarity measure.

2. Create a similarity position matrix of size (» x r) for
all the shapes based on the descending order of their
similarities.

3. Let C={C,, C,, ...,C}, initially contain » number of
clusters each with an individual shape.

4. Set the number of clusters (noc) to r.

5. Setkto2.

6. Merge two clusters C, and C,, if all the shapes in C,
and C, are k-mutual nearest neighbors.

7. Decrement the number of clusters noc by 1.

8. Increment k by 1.

9. Repeat steps 6 to 8 until the desired number of
clusters is obtained or all the shapes are put into
single a cluster.

Algorithm Ends



IV. EXPERIMENTAL RESULTS

We have conducted several experiments on variety of data
sets to validate the feasibility of the proposed methodology. In
this section we present the clustering results on a considerably
large database of shapes.

Experiment I: In order to illustrate the proposed method of
shape clustering, we first consider a sample database of shapes
consisting 9 shapes of 3 classes. The shapes to be clustered are
first subjected to feature extraction process as described in
section 114 and then the similarity measure described in
section I1B is applied on the extracted features to obtain a
similarity matrix. Based on the similarity matrix, a similarity
position matrix is obtained. The similarity position matrix
gives the closeness of the shapes in terms of their position.
The proposed i-mutual nearest neighbor approach is then
applied on the similarity position matrix to obtain clusters as
explained in the algorithm Clustering-of-Shapes. Fig. 2 shows
the shapes and their similarity values, Table | shows the
similarity position matrix and Fig. 3 shows various stages of
clustering for different values of .

Dog-1 Dog-2 | Dog-3 | Hand-l | Hand-2 | Hand-3 | Man-1 | Man-2 | Man-3

R W R R AR

shapes belong to the same category are very near and are
mutual nearest neighbors.

R B EARL

Clusters obtained in the FIRST level (k=2)

L T LYY

Clusters obtained in the SECOND level (k=3)
2

R AL BEB

Clusters ohtained in the THIRD level {(k=8)

REEARA B Y

Dog-1 1.00000 |0.82171|0.78039 |0.63386|0.60306|0.63626[0.61334(0. 65243 |0. 623352

Clusters obtained in the FOUTRTH level (k=9)

Dog-2 0.82171 |1.00000|0.79573 |0.58355|0. 65329 (0. 63984|0.61794|0.64026 |0.62866

Dog-3 0.78039 |0.79573|1.00000 |0.57178|0. 68986 |0, 62634|0.64252|0.66400|0.64910

Hand-1 0.6338F |0.58355|0.57178 |1.00000|0.81063 |0.90650|0.63791(0.66495|0. 64083

Hand-2 0.60306 |0.65320(0.68986 0.81063 |1.00000 |0.87621(0.61034(0.63773|0.61624

Hand-3 0.63626 |0.63984(0.62634 |0.90650 |0.87621 |1.00000(0.64035(0.66731|0.64470

Man-1 0.61334 |0.61794|0.64252 |0.63791(0. 61034 |0. 64035(1.00000|0.86419|0.97281

Man-2 0.65243 |0.64026|0.66400 |0.66A485|0. 63773 (0. 66731|0.86419|1.00000 |0.55297

Man-3 0.62352 |0.628k6(0.64019 (0. 64083 (0. 61624 |0. £4470(0.97281|0.85297|1.00000

> >3 >3 €€ XXX

Fig. 2 Similarity matrix

TABLE |
SIMILARITY POSITION MATRIX

Sitrilarity Positions (k)
Shapes — z 3 7 5 ; 7 3 D
Dog 1 | Dogl | Dodd | Dog3 | Mand | Wan3 | Man | Hend-3 | HendZ | Hand 1
Dog2 | Dog2 | Dog-1 | Dog3 | Man-2 | Hand-3 | Hand-2 | Man-3 | Man-1 | Hand-1
Dog3 | Dog3 | Dogl | Dog2 |Hand 2| Wan2 | Hand3 | Mans | Manl | Hand 1
Hand-| | Hand-| | Hand-3 | Hend 2 | Man 2 | Dog 2 | Dog3 | Dogl | Wan-l | Man 3
Hand-2 | Hand-2 | Hand-3 | Hand1 | Dog-3 | Wan2 | Doga | Dogl | Man | Man ]
Hand-3 | Hand-3 | Hand-1 | Hend-2 | Man 2 | Dog-1 | Dog3 | Man3 | Man-l | Dog2
Wen-1 | Man1 | Man3 | Man2 | Dog 1 | Hand 3 | Dog3 | Dog2 | Hend2 | Hand 1
Wanl | Man? | Man1 | Men3 | Dog 1 | Hand3 | Dog3 | Dogd | Hand 1| HendZ
Wan3 | Mans | Man1 | Man2 | Dog 1 | Hand-3 | Dog3 | Dog2 | HendZ | Hand

In the example, we have considered 3 categories of shapes
viz., Dog, Hand and Man. One can observe a significant
variation among shapes belonging to the same category. The
similarity matrix (Fig. 2) shows that the shapes belong to the
same category possess more similarity value than the shapes
belong to the outside category. Similar observation can be
made from the similarity position matrix (Table 1) that the

Fig. 3. Various stages of clustering

From Fig. 3, we can observe that the shapes Dog-1 and Dog-
2, the shapes Hand-1 and Hand-3 and the shapes Man-1 and
Man-3 are 2-mutually nearest neighbors (k = 2), hence, they
are clustered in the first level itself. We can also observe that
they are visually more similar than the other shapes. In the
second level, the shapes Dog-1, Dog-2 and Dog-3 are put into
cluster 1, the shapes Hand-1, Hand-2 and Hand-3 are put into
cluster 2 and the shapes Man-1, Man-2 and Man-3 are put into
cluster 3 as they are 3-mutually nearest neighbors (k = 3). No
clusters are formed for £ = 4, 5, 6 and 7, this shows the clear
margin between shapes belonging to same category and
shapes belonging to outside the category. Shapes Dog-1, Dog-
2, Dog-3, Man-1, Man-2 and Man-3 are clustered into one
group when & = 8 and finally all the shapes are put into one
cluster when £ = 9.

Experiment 2: In order to demonstrate the success of the
proposed shape clustering methodology, we have conducted
an experiment on a considerably large database of shapes. Fig.
4 shows the 350 shapes categorized into 35 classes, each class
with 10 example shapes. So it is expected to obtain 35 clusters
from the proposed clustering methodology.

Figure 5 (a-d) shows the clusters obtained for the shapes
shown in Fig. 4. We have shown only the last 4 levels of the
clusters obtained by the proposed methodology. An ideal
system is the one, which produces all the 35 true clusters for
k=10 as there are 10 shapes in each category. But because of
large intra class variation among shapes, we cannot expect all
the true clusters for £4=10. We can observe from Fig. 5(a) that
26 true clusters are formed for k=73. APPLE and HEAD,
FISH and LEAF are merged together at this level to produce 2



clusters instead of 4 clusters. This is because the shapes in
these categories are visually very similar to each other. That is
APPLE shapes are similar to HEAD shapes and FISH
category shapes are similar to LEAF category shapes. This can
be observed in Fig. 4. Shapes in the categories PLANE,
HAND, HUMAN, MOMENTO and DOG are not completely
formed their clusters at this level because shapes in these
categories possess large intra class variations as observed in
Fig. 4. Totally, we obtained 38 clusters at this level. In the
next level, we have obtained 37 clusters for k=82. Shape
categories BELL and BUTTERFLY are merged at this level
and formed single group as shown in Fig. 5(b). No changes
were observed in the clusters belongs to PLANE, HAND,
HUMAN, MOMENTO and DOG categories. In the next level,
for k=84, 36 clusters are realized. At this level CHOPPER and
RABBIT are merged together to form a single cluster as they
appear to be similar and they are all mutually nearest
neighbors for k=84 as shown in Fig. 5(c). Finally, we obtained
34 clusters for k=88 as shown in Fig. 5(d). Shape categories
HAND and DOG, respectively, formed their true clear
clusters. However, shape categories PLANE, HUMAN and
MOMENTO still could not form their complete clusters.
PLANE category results with 2 clusters with shapes {101,
102, 103, 108, 109} and {104, 105, 106, 107, 110}. HUMAN
category results with 2 clusters with shapes {141, 142, 143,
144, 145, 146, 147, 148} and {149, 150}. Shapes {149, 150}
are quite more deformed with widespread legs. Since our
method of feature extraction measures such span information,
these shapes are not merged with all the other shapes in its
category. However, these shapes are not merged with any
other shape categories. This shows that the proposed method
of clustering is effective and realistic in nature. Similarly,
shapes in the category MOMENTO formed 2 clusters with
shapes {281, 282, 283, 284, 289, 290} and {285, 286, 287,
288%}. Similar argument is true for this category also.

We have not encountered any miss grouping at any level.
This is because all the shapes to be clustered into one group
must be mutually nearest neighbors. So only those shapes,
which belong to the same category, agree in their structure
and they only can be mutually nearest neighbors. Thus the
proposed mutually nearest neighbor clustering technique
avoids possible miss grouping, which might arise in case of
simple agglomerative clustering technique. In simple
agglomerative clustering technique, we could not get clear
clusters for APPLE, HEAD, GREEBLE, BELTI, BELT2,
FISH, LEAF and MOMENTO categories.

Since the proposed method of shape description is based on
the axis of least inertia, which depends on the global structure
of the shape, more shape deformation or occlusion might
change the orientation of the axis of least inertia yielding
feature vectors, which are entirely different. Therefore the
proposed method of shape clustering is not intended to
consider major shape deformations or occlusions. But one of
the strength of the proposed shape description is that it takes
care of internal details of shapes such as holes, which plays a
significant role in most of the shape analysis applications.
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Fig. 4. Set of 35 categories of shapes each with 10 examples



Humber of Clusters : 38
KMNN Value : 73

Number of Clusters :37
EMNN Value : 82

Cateqories Shape Humbarsz clusters
APPLE 12345673910 .
HEAD 51 52 53 54 55 56 57 58 59 60
BELL 111213 1415 16 17 1819 20 1

BUTTERFLY NNRBRABWTHBN 1
CHILD ARNVBAB T RPN 1

CHOPPER Al 42 43 44 43 46 47 43 49 2 1
RABRIT G152 63 94 95 66 57 98 56 100 1
LAMP 61 62 63 64 65 66 67 68 69 0 1
PEOPLE NN TIRD D 1
FI&H 81 82 &3 B4 85 34 87 8B 80 90
LEAF 31 531 393 334 335 36 337 536 339 340 N
o |([OTEED 2
GREEELE 11012103 14 115 116 117 118 119 130 1
WRENCH 121122125 14 125 126 127 128 19130 1
HAND (131 134 135 137 199 140) (132133 136 138) 2
o 2
CHAIR 151 152 153 154 155 156 157 158 159 160 1
COT 161 162 163 168 165 164 167 162 187 170 1

SPORTSCUR | 171172173 174 175 176 177 178 179 180 1

TAPERECORDER | 181 182 13 184 185 136 127 182 189 190 1
DUCKET 101 192 103 194 195 196 197 198 100 200 1

FLOWERPOT | 201 202203 304 205 206 207 208 200 210 1
LOCK 211212213 214 215 216 217 213219 220 1

NUMERALE | 22l 232 220 224235 226 227 228 329 230 1
cue 231 232 233 24 235 236 237 238 230 M0 1
BONE 1 242 243 M4 245 246 M7 248 149 250 1
HOUSE 251 151 753 284 I55 256 257 158 2159 160 1
BELT1 261 260 263 164 265 266 367 268 260 370 1
BELTZ NIV TITLE DI IR FO 1

MOMENTO  |(H1E 4 759 191) (353 288 387 388) F

JUICECUR 1 207 263 304 395 206 207 208 190 300 1

SPECTACLE 301 302 300 304 305 306 307 308 309 310 1
STOOL 311 312313 314 315 306 317 318319 320 1
HOUSE 21322323 124 325 306 327 328329 330 1

G z
(@)
Humber of Clusters :3é
EMNN Value : 84

Categories Shape Humbsrs Clusters
APPLE 12345673910 N
HEAD 51 52 53 54 55 56 57 58 59 60
BELL 11213 M 151617 1819 210 N

BUTTERFLY (N R WM B W T B 910
CHILD ARNVBAB T RPN 1

CHOPPER A1 42 43 44 43 46 47 A3 A W N

RABBIT 91 92 93 94 95 96 97 98 59 100
LAMP 61 62 63 64 65 6 67 68 69 T0 1

PEOPLE TNTTITATISIETITET9 @ 1
FI&H 81 82 &3 B4 85 34 87 8B 80 90
LEAF J51 332533 334 335 330 337 338 339 80 N
il 2
GREEELE 11012103 14 115 116 117 118 119 130 1
WRENCH 121122125 14 125 126 127 128 19130 1
HAND (131 134 135 137 199 140) (132133 136 138) 2
o 2
CHAIR 151 152 153 154 155 156 157 158 159 160 1
COT 161 162 163 168 165 164 167 162 187 170 1

SPORTSCUR | 171172173 174 175 176 177 178 179 180 1

TAPERECORDER | 181 182 13 184 185 136 127 182 189 190 1
DUCKET 101 192 103 194 195 196 197 198 100 200 1

FLOWERPOT | 201 202203 304 205 206 207 208 200 210 1
LOCK 211212213 214 215 216 217 213219 220 1

NUMERALE | 22l 232 220 224235 226 227 228 329 230 1
cue 231 232 233 24 235 236 237 238 230 M0 1
BONE 1 242 243 M4 245 246 M7 248 149 250 1
HOUSE 251 151 753 284 I55 256 257 158 2159 160 1
BELT1 261 262 263 164 265 266 367 268 160 3170 1
BELTZ NIV TITLE DI IR FO 1

MOMENTO  |(B1B2283 2% ) (&3 228 287 B%) 2

JUICECUR 1 207 263 304 395 206 207 208 190 300 1

SPECTACLE 301 302 300 304 305 306 307 308 309 310 1
STOOL 311 312313 314 315 306 317 318319 320 1
HOUSE 21322323 124 325 306 327 328329 330 1
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Categeries Shape Numbers Clusters
APPLE 12345673010 N
HEAD 5152 53 54 55 56 57 53 59 60
BELL 111213 14 15 16 17 18 19 20 X

BUTTERFLY (N NBM BT B9
CHILD UNBHBWT I WO 1

CHOPPER a1 47 43 48 45 % 47 a8 4 A 1
RAEBIT 91 52 93 94 95 96 97 98 99 100 1
LAMP 81 62 63 65 65 66 67 65 69 0 1
PEOPLE NMIIAISI6TIT89 @ 1
FISH 1 87 3 84 65 86 &7 88 09 0
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HUMAN [E53E) 2
CHAIR 151 152 153 154 155 156 157 158 199 160 1
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LOCK 211212213 114 215 216 217 13 219 220 1

NUMERALE | 221 222323 234 225 236 227 138 28 130 1
cup 131 232233 14 235 136 237 138 19 40 1
BONE M1 242 243 4 245 290 W7 295 290290 1
HOUSE 51 252 153 24 155 256 257 158 199 260 1
BELT1 261 262 263 164 365 266 267 26 269 170 1
BELT2 371 2372 193 174 175 176 277 178 179 180 1
HOMENTO 2

JUICECUR 1 291293 B4 295 206 T 2% 199 300 1

LE | 301 02303 304 305 306 307 508 309 310 1
STOOL 311312313 314 315 316 317 318 319 320 1
HOUSE 1322371 124325 1 1T 12819 330 1
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BONE M1 242 243 W4 245 290 W7 245 99180 1
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Fig. 5 Last four levels of clusters obtained by the proposed methodology for shapes shown in Fig. 4




V. DISCUSSIONS AND COMPARATIVE STUDY

In order to show the feasibility of the proposed similarity
measure for symbolic patterns and the proposed mutually
nearest neighbourhood clustering technique, we have
conducted several experiments on variety of data sets. In this
section we present the clustering results on a few well-known
data sets.

A. Experiment 1

The first experiment is conducted on Ichino’s fat oil data,
which has been used by several researchers as a typical
example of a data set involving interval-valued features. It is
composed of eight patterns described by four interval-valued
features [14]. The proposed similarity measure is employed
on the data set to estimate the degree of similarity and the
similarity matrix is obtained (see Table Il). Based on the
similarity matrix, a position matrix, which gives the relative
nearness of patterns in the descending order of similarity, is
created (see Table IIl). The concept of k-mutual nearest
neighborhood is employed on the position matrix and the
dendrogram representation of the cluster formed is shown in
the Fig. 6. A dendrogram is a special type of tree structure
that provides a convenient picture of a hierarchical clustering

[15]. It consists of layers of nodes, each representing a cluster
and lines connecting nodes to represent clusters which are
nested into one another. Cutting dendrogram horizontally
creates a clustering.

From Fig. 6, we can observe that the patterns {1, 2}, {3, 4},
{5, 6} and {7, 8} are 2-mutually nearest neighbors (k=2).
That means, the pattern 2 is in the second position according
to similarity rank for the pattern 1. Similarly, the pattern 1 is
in the second position according to similarity rank for the
pattern 2. One can notice this fact from the similarity matrix
shown in Table Il and the position matrix shown in Table I11.
Thus the patterns {1, 2} are clustered in the first level itself
(dendrogram). The above argument is true for the patterns {3,
4%, {5, 6} and {7, 8}. The Patterns {3, 4} and {5, 6} are 5-
mutually nearest neighbors (See Table I11) and hence they are
clustered in the second level (for k=5) as shown in the
dendrogram (Fig. 6). As there are no patterns, which are
mutually nearest neighbors for k=3 and k=4, no patterns are
merged for k=3 and k=4. The patterns {3, 4, 5, 6} and {1, 2}
are 6-mutually nearest neighbors and are clustered at the level
3. No clusters are formed for (k=7) and finally we get a single
cluster at the level 4 for £=8. We can cut the dendrogram at
any level and realize the clusters depending on the desired
number of clusters.

TABLE II k=8
SIMILARITY MATRIX FOR FAT OIL
1 2 3 4 8 B 7 g k=6
q 1.00000 | 0.63303 0.47567 | 0.60108 | 0.67750 | 0.54414 0.33637 0.32890
7 0.63303 1. 00000 0.66609 | 0.66711 | 0.E5824 | 0.58490 0. 42265 0.41518 k=5
3 0.47567 0.65602 1.00000 0.80402 0.71845 0. 74422 047223 047131
4| o.s010s | o.eemL 0.80402 | 1.00000 | 0.63%98 | 0.68102 0. 40771 0.41510 | k=2 | | k=2 | | k=2 ‘ ‘ k=2 |
5 0.67750 0.55824 0.71845 | 0.6399% | 1.00000 | 0.54383 0.42711 0.47161
g 0.54414 0. 58490 0.74422 | 0.68102 | 0.84983 | 1.00000 0. 45558 0. 48231 1 3 4 5 6 7
7 0.33697 0.42265 0.47223 | 0.40771 | 0.42711 | D0.45856 1. 00000 0.71089
a8 0.32880 0.4151%8 0.47131 | 0.41510 | 0.47161 | D0.48231 0.71053 1. 00000
TABLE 111
POSITION MATRIX OBTAINED BASED ON THE SIMILARITY RANK
Pattern Similarity Positions
Number 1 2 3 4 5 6 7 8
P P P> Ps P4 Ps Ps P7 Ps
P, P, P P4 Ps Ps Ps P7 Ps
Ps Ps P4 Ps Ps P, P P; Pg
P4 P4 Ps Pe P> Ps P Ps Pz
Ps Ps Ps Ps P P4 P, Ps Pz
Ps Ps Ps Ps P4 P2 P Ps Pz
P7 P7 Ps Ps Ps Ps P, P4 P1
Ps Ps P7 Ps Ps Ps P, P4 P

Fig. 6.Dendrogram representation of the clusters
formation at various levels for Fat-Oil data
by the proposed methodology



B Experiment 2

We have also conducted an experiment on the data set
given in [14] on microcomputers. The data set describes a
group of microcomputers consisting of 12 patterns. Each
pattern has five features. Two of the features are qualitative
(Display and Microprocessor) and the rest are quantitative
(RAM, ROM and Keys). The similarity proximity matrix for
this data set is given in the Table IV. The dendrogram
representation of the clusters formed at various levels is
shown in Fig. 7. The proposed algorithm resulted in two
clusters {1, 2, 3,4,5, 6, 8,9, 10, 11, 12} and {7}.

In order to validate the correctness, we have compared the
results of the proposed method with that of other available
methodologies. For this purpose we have considered six
methodologies which are listed in Table V.

Table V summarizes the results obtained through the

applications of all the seven methodologies including the
proposed methodology on two different data sets viz., Fats
and Oils data and Microcomputer data, as the results on these
two data sets are studied by all the six methodologies.

It can be noticed in Table V that the fats and oils patterns
are either grouped into 2 clusters or into 3 clusters. The
methods [6], [9], [11], [14] have grouped the patterns into 2
clusters ({1,2,3,4,5,6},{7,8}) and the methods [5], [8] have
grouped the patterns into 3 clusters ({1,2}, {3,4,5,6}, {7.,8})
based on their own cluster indicator function which acts as a
stopping criterion. The entries not available in the Table V
denote that the corresponding result has not been shown in
the respective research work. We have not computed the same
during experimentation as those methodologies require a prior
knowledge of the number of samples in each pattern, which is
indeed a real drawback of those approaches. Authors [14]

TABLE IV
SIMILARITY MATRIX FOR MICROCOMPUTER DATA
1 2 3 4 5 53 7 2] 2] 10 11 12
1 1.00000|0.91429(0.70804 |0.70595|0.42657 |0.48797|0.29192(0.52454|0.83926(0.96234|0.7%5a67(0.58724
2 0.91429 (1.00000|0.73916|0.791a7 |0.45768 |0.519208 |0.29979 (0. 61026 (0. 80718 |0. 93025 (0. 76359 (0. 61835
3 |0.70804 (0.73916 |1.00000 |0.5566A%|0.50422 |0.54676 |0, 43697 | 0. 45559 | 0. 83807 (0.71499 (0. 60241 |0. 62372
4 0.70595|0,79167 |0, 556062 (1. 00000 |0, 63959 (0, 62860 (0,245804 (0,71278(0,52884 |0,72192|0.84136 |0, 70882
5 |0.42657 (0. 45768 |0.50429 |0. 63359 |1. 00000 (0.%1765 |0, 43089 |0.695314 |0.40420 (0.43351|0.55682 |0.76388
5] 0.48797 [0.51908 |0. 54676 |0. 62860 | 0. 91765 |1. 00000 |0. 43281 (0. 77549 | 0. 46561 |0. 49491 (0. 60444 (0. 80192
T 0.29192 (0.29979 |0. 43697 |0. 34804 |0.4308% |0.43281 |1.00000(0.28654 (0. 41715 |0.29407 (0.34471 (0. 40404
8 |0.52454 |0.61026|0. 45559 |0, 71978 |0. 69314 [D. 77549 |0. 28654 |1.00000|0.51120 |0. 54051 |0. 65003 | 0. 57741
9 |0.83926|0.80718 (0. 83807 |0.59884 |0. 40420 |0. 46561 |0. 41715 (0.51120|1.00000|0.87692|0.71026|0. 47110
10 |0, 96234 |0. 93025 (0. 71499 (0. 72192 |0. 43351 (0.49491 |0.29407 | 0.54051|0.876%92 [1.00000|0. 83333 |0.59418
11 |0.79567 [0.76359 |0, 60941 |0. 84136 |0.55682 |0.60444 |0.34471 (0. 65003 |0.71026 |0. 83333 (1. 00000 |0.75132
12 |0.58724 |0. 61835 |0, 62372 |0. 70882 |0. 763585 |0. 80192 |0. 46404 | 0. 57741 (0. 47110 |0.5%418 |0.75132 |1. 00000
k=12
k=11
k=10
k=7
k=6
k=4
k=3 [ k=3
k=2 T [k=2] |k=2‘ T
1 10 2 3 9 8 4 M 5 § 12 7

Fig. 7. Dendrogram representation of the clusters formed at various levels for Microcomputer data by the proposed methodology



have given the clustering of samples grouped into 2 clusters
and as well as the samples grouped into 3 clusters. When our
method is employed on the fats and oils data and the
dendrogram (Fig. 6) is cut at the level of 3 clusters, the results
are same as that of all the methods which yield 3 clusters [5],
[8], [11], [14] and when agglomeration is allowed to continue
up to 2 clusters then the result obtained is exactly same as that
of the methods which yield 2 clusters [6], [9], [11], [14]. This
shows consistency in the results of all the considered and our
method on the fats and oils data.

It can also be noticed from Table V that the results obtained
on Microcomputer data through all the 6 approaches are
entirely different except the results of the methods [9], [11]
and [14]. In the work [6], it is stated that no consistency can
be expected on Microcomputer data. However, our method

has resulted with 2 clusters, which are same as that of the
methods [9], [11] and [14] encouraging their results.

VI CONCLUSIONS

In this paper, a new similarity measure useful for clustering
shapes described by fuzzy-symbolic features is proposed. The
concept of k-mutually nearest neighbours used for clustering
shapes provides a realistic insight into the closeness among
the shapes in a cluster. One can accept the idea that two set of
shapes are grouped together to form a single cluster only
when all the shapes in both the clusters are k-mutually nearest
neighbours and this fact can be revealed by the results of the
proposed methodology on the shape database and also on the
standard data sets. The efficacy of the proposed methodology
is experimentally established and its validity is tested by
comparing with the well-known methodologies.
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