
 

 

   
Abstract— In this paper, a new method of representing two-

dimensional shapes using fuzzy-symbolic features and a 
similarity measure defined over fuzzy-symbolic features useful 
for clustering shapes is proposed. A k-mutual nearest 
neighborhood approach for clustering two-dimensional shapes is 
presented. The proposed shape representation scheme is 
invariant to similarity transformations and the clustering method 
exploits the mutual closeness among shapes for clustering. The 
feasibility of the proposed methodology is demonstrated by 
conducting experiments on a considerably large database of 
shapes and also, its validity is tested by comparing with the well 
known clustering methodologies. 

Index Terms—Fuzzy-Symbolic features, k-mutual nearest 
neighbour, Symbolic data analysis, Shape representation, Shape 
clustering.  

I. INTRODUCTION 

Clustering plays a significant role in several exploratory 
pattern analysis, grouping, decision-making, machine learning 
situations, including data mining, document retrieval, image 
segmentation and pattern classification. In general, cluster 
analysis is of great importance in classifying a heap of 
information, which is in the form of data patterns. Clustering 
of planar objects or images of objects, according to the shapes 
of their boundaries along with the inner shape details can 
significantly improve database searches in systems with 
shape-based queries. For instance, testing a query against 
prototypes of different clusters to select a cluster and then 
testing against shapes only in that cluster is much more 
efficient than testing exhaustively. In order to cluster shapes, 
we need to characterize shapes in terms of features, which 
best captures the shape information. The concept of symbolic 
data sets provides a natural way of capturing shape 
information and the concept of fuzzy sets efficiently handles 
the uncertainty in the data. Many clustering algorithms have 
been proposed for clustering conventional [12], [14], [15], 
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[16] as well as symbolic data [5], [6],  [8], [9], [10], [11], [14] 
and shown that the approaches based on fuzzy-symbolic data 
outperforms conventional approaches. The reason is that the 
fuzzy-symbolic data provides a natural and realistic analysis 
to problems as symbolic data are more unified by means of 
relationships [2] and the fuzzy theory handles efficiently the 
impreciseness. Even though the concept of fuzzy-symbolic 
approach is much explored in data analysis and clustering, its 
inherent capabilities in preserving shape properties of an 
object have not yet been explored. To the best of our 
knowledge, there has been no attempt in proposing an 
approach based on fuzzy-symbolic data for shape analysis. 
This motivated us to think of clustering two dimensional 
shapes effectively by describing shapes in terms of fuzzy-
symbolic features. However, there are several approaches for 
shape analysis based on conventional data types. Moment 
based features [13], signature based centroidal profile [3], 
Fourier Descriptors [19], Curvature Scale Space (CSS) [18], 
Editing shock graphs [21], polar representation of the contour 
points about the geometric centre of the shape [1] have been 
proposed. A detailed survey on shape analysis can be found in 
[4], [17]. 

It has been observed from the literature survey that most of 
the conventional agglomerative clustering techniques use 
similarity proximity matrix for clustering patterns. The 
agglomerative clustering merges two patterns, which possess 
high similarity value at each level and continue the merging 
process until the desired number of clusters are obtained or all 
the patterns are put into one cluster. However, it has been 
shown that about 62% of the total numbers of individuals in 
random artificial and natural populations are in mutual pairs. 
The concept of “Mutual Nearest Neighbourhood” has been 
introduced [7] and successfully used for agglomerative and 
disaggregate clustering. Thus, it is very appropriate to cluster 
patterns by looking at their mutual nearness than just by 
looking at their proximity matrix. In the proposed 
methodology, the concept of mutual nearest neighbourhood 
has been extended such that k patterns are clustered into one 
class if they are k-mutually nearest neighbours. 

With this backdrop, in this paper, we propose a method of 
representing two-dimensional shapes using fuzzy-symbolic 
(multi interval membership values) features. Unlike other 
existing shape representation schemes, the proposed scheme is 
capable of utilizing both contour as well as region 
information. A similarity measure defined over the fuzzy-
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symbolic features for clustering shapes is also described. The 
concept of mutual nearest neighbourhood is extended for 
realistic and effective clustering of shapes. The proposed 
shape representation scheme is shown to be invariant to 
similarity transformations (rotation, translation, scale and 
reflection) and the clustering methodology is effective. 
Several experimentations have been conducted to demonstrate 
the success of the proposed methodology. Moreover, the 
proposed methodology is validated by comparing with the 
well known clustering methodologies in literature. 

The paper is organized as follows: Section 2 presents the 
proposed symbolic shape representation scheme and the 
proposed similarity measure. Section 3 describes a novel 
shape clustering procedure based on the concept of k-mutually 
nearest neighbours. Experimental results are presented in 
section 4. A comparative study of the proposed methodology 
with the well known clustering techniques is given in section 
5 followed by conclusions in section 6. 

II. PROPOSED METHODOLOGY 
This section explains in detail the proposed method of 

representing shapes and a similarity measure for estimating 
the degree of similarity between two shapes useful for 
clustering.  

A.  Shape representation 
The proposed shape representation scheme extracts fuzzy-

symbolic features from a shape with reference to the axis of 
least inertia, which is unique to the shape. The axis of least 
inertia of a shape is defined as the line for which the integral 
of the square of the distances to points on the shape boundary 
is a minimum. It serves as a unique reference line to preserve 
the orientation of the shape. Preserving the orientation of a 
shape is essential for extracting features, which are invariant 
to similarity transformations. However, for symmetrical 
shapes (star like shapes) more than one axis of least inertia 
can be expected. Because of shape symmetry, in spite of 
multiple axis of least inertia, the extracted features from a 
shape will not change drastically. In addition, variation in 
feature values due to rotation and limitations of finite 
precision arithmetic is recorded in our feature extraction 
methodology. But if the shape is major deformed or occluded 
then the axis of least inertia may change its orientation and 
hence the extracted feature vector may not agree with the 
feature vector of the original shape. Therefore, the proposed 
method of shape representation is not intended to handle 
major occlusions or deformations. However, the method copes 
well with minor occlusions and deformations. 

In order to extract fuzzy-symbolic features from a shape, 
first, the slope angle θ of the axis of least inertia of a shape 
curve is estimated as described in [22]. Once the slope angle θ  
is calculated, each point on the shape curve is projected on to 
the axis of least inertia.  

Let { }LssssS ,...,,, 321=  represent L points on the shape 
curve and ( )ii yx ,  denote the Cartesian co-ordinates of the 
point is  for i = 1, 2, 3,…, L,  Let ( )yx CCC ,=  denote the 

centroid of  S. Given a point ( )ii yx ,  on a shape curve, the co-
ordinates of its projected point ( )// , ii yx  on the axis of least 
inertia can be found as follows:  
Since, the points ( )yx CC , and ( )// , ii yx  are lying on the axis of 

least inertia, we have    
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 Similarly, as the point ( )// , ii yx  is the projection of the 

point ( )ii yx , , we have 
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By combining equations (1) and (2), we get 
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Fig. 1.  Shape of an object with its axis of least inertia and 

extreme points 

The two farthest projected points say E1 and E2 on the axis of 
least inertia are chosen as extreme points as shown in Fig. 1. 
The Euclidean distance between these two extreme points 
defines the length of the axis of least inertia. 

Once the axis of least inertia of a shape is obtained, keeping 
it as a unique reference line, fuzzy-symbolic features are 
extracted from the shape. A fixed number say n, of equidistant 
points called feature points on the axis of least inertia are 
found (Fig. 1). The number of feature points defines the 
dimension of the feature vector associated with a shape. At 
every feature point chosen, an imaginary line perpendicular to 
the axis of least inertia is drawn. It is interesting to note that 
this perpendicular line intersects the shape curve at several 
points. Generally, the number of such intersecting points is 
even when the drawn perpendicular line is not tangential to a 
shape curve at any point. The number of such intersecting 
points is exactly two if the shape is fully convex without 
having holes inside. In the case of shapes with holes or with 
concave parts, the perpendicular line intersects the shape 
curve at more than two points and the number of such 
intersecting points is always even.  



 

 

Once the intersecting points on the shape curve are 
identified, we extract fuzzy-symbolic features by using the 
concept of fuzzy equilateral triangle membership function. In 
this work, we have considered equilateral triangle membership 
function formed by any three non-collinear points. Let 

21,θθ and 3θ  be the inner angles of a triangle, in the 
order 321 θθθ ≥≥ , and let U be the universe of triangles; i.e.,  

{ }oU 180;0/),,( 321321321 =++≥≥≥= θθθθθθθθθ     (3) 
We can define an approximate equilateral triangle for any 
triplet of angles fulfilling the constraints given in equation (3) 
using the following membership function [20] 

                    )(1),,( 31180
1

321 θθθθθμ −−=                     (4) 

Thus the membership function ),,( 321 θθθμ assigns a value 

between 0 and 1 to a fuzzy set of equilateral triangles. For 
instance, the line drawn perpendicular to the axis of least 
inertia at the feature point fp intersects the shape curve at four 
points P1, P2, P3 and P4 as shown in Fig. 1. A triangle is 
formed by considering the first two farthest intersecting points 
P1, P4 and the feature point (fp+1),  then it is approximated to 
an equilateral triangle and its membership value ( 1μ ) is 
calculated using Eq. (4). Similarly, we form a triangle by 
considering the next two farthest intersecting points P2, P3 and 
the feature point (fp+1). The equilateral triangle membership 
value ( 2μ ) associated with this triangle is also calculated. 
Thus { }21, μμ  is considered to be the feature value at the 
feature point fp. The reason behind considering the farthest 
intersecting points while forming a triangle is that it measures 
the span length of the intersecting points and also the problem 
of sequencing feature values in case of multiple values at any 
particular feature point can be avoided. Notice that the feature 
value is not necessarily a singleton (crisp) but multivalued 

The set of all extracted multivalued type features (because 
of n feature points chosen on the axis of least inertia) forms 
the feature vector of dimension n to represent the shape. In 
our work the value for n is set to 15 and is empirically chosen. 
Unlike conventional shape representation schemes, where a 
shape feature vector is a collection of single valued data, the 
proposed shape feature vector is a collection of multivalued 
type data. The proposed representation scheme is capable of 
capturing the internal details of shapes in addition to capturing 
the external boundary details.  

Let S be the shape to be represented and n is the number of 
feature points chosen on its axis of least inertia. Then the 
feature vector F representing the shape S, is in general of the 
form [ ]nffffF ,...,,, 321= , where },...,,,{

321 klllllf μμμμ=  for 

some lk ≥ 1. It shall be observed that as the feature extraction 
process is based on the axis of least inertia and fuzzy 
equilateral triangle membership value, the feature vector F 
representing the shape S is invariant to shape similarity 
transformations. The angles of the triangle formed by the 
intersecting points at a feature point fp with respect to feature 
point (fp+1) on the axis of least inertia are scaling invariant. 
Thus the membership value does not change even if the shape 
is scaled up or scaled down uniformly. The rotational 
invariance is automatically achieved, as the axis of least 

inertia is invariant to rotation. However, due to rotation the 
sequence in which the features are extracted may be different. 
A way of alleviating this problem is to sequence the features 
such that the first feature corresponds to the extreme point, 
which is nearer to the centroid of the shape. An added 
advantage of the proposed scheme is that unlike other contour 
traversal technique based approaches, the proposed method is 
also invariant to flipping transformation. Generally, flipping 
invariance is difficult to achieve in shape analysis if a method 
is sensitive to the direction of contour traversal because the 
direction of contour traversal changes when an object/shape is 
flipped over. Since the axis of least inertia of a shape flips 
along with the shape about the same line by preserving the 
starting point, the proposed representation method is invariant 
to flipping.  

In practice, however, feature values defined at a feature 
point on the axis of least inertia are not exactly same but they 
lie within certain range due to finite precision arithmetic. 
Thus, each component of the feature value defined at a feature 
point is approximated by interval data type as  

]}...[,...,]...[,]...{[
2211

+−+−+−=
kk lllllllf μμμμμμ , where −μ  and 

+μ  represent, respectively, the minimum and the maximum 
variations of the respective component. These minimum and 
maximum values shall be computed by examining a shape in 
all possible orientations and with different scaling factors. 
Thus, in a more general format, the symbolic feature vector F 
associated with a shape S is a collection of n multi-interval-
valued data type against the crisp data type in case of 
conventional shape analysis techniques. In practice, for the 
purpose of creating a shape database, we generated a large 
number of samples for each shape with different orientations 
and scaling factors. However, only one representative vector, 
which is an aggregation of all, is stored in the database. 

B.  A Similarity measure 
Similarity is the fundamental notion in clustering shapes, 

which defines the closeness or farness of two shapes. A 
measure of similarity between two shapes drawn from the 
same feature space is essential to most of the clustering 
techniques. In this subsection, we present a similarity measure 
for estimating the degree of similarity between two shapes 
described by multi interval valued features, which is used for 
clustering of shapes.  

Let 
⎭
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 be the 

kth feature component of two shapes A and B described by n 
multi interval valued feature vectors 

[ ]AnAAAA ffffF ,...,,, 321=   [ ]BnBBBB ffffF ,...,,, 321=  

respectively. Here −μ  is the lower limit and +μ is the upper 
limit of the interval. 

Since we use the concept of mutual similarity between 
shapes for clustering, we first estimate the degree of similarity 
( )BAS →  from the shape A to the shape and B the degree of 



 

 

similarity ( )ABS →  from the shape B to the shape A. Then the 
mutual similarity value (MSV) between the shapes A and B is 
defined to be the average of BAS →  and ABS → .  

Since the kth feature component in a feature vector is of type 
multi interval valued, the degree of similarity from A to B with 
respect to their lth interval is estimated based on degree of 
overlapping between their lower and upper limits of their 

intervals. If the interval ⎥⎦
⎤

⎢⎣
⎡ +−

ll AkAk
μμ ,  describing the lth 

interval of the kth  feature of A is contained in the interval 

⎥⎦
⎤

⎢⎣
⎡ +−

ll BkBk μμ ,  describing the lth interval of the kth  feature of B 

then the degree of similarity from A to B is taken as 1, 
otherwise it is given by the average degree of similarity 
between their respective lower and upper limits. 
Thus, the degree of similarity from A to B with respect to the 
lth  interval of their kth  feature is given by              
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Similarly, degree of similarity from B to A with respect to the 
lth  interval of their kth  feature is given by   
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where 
βμμ

η
*1

1
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−
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=

ll BkAk

,  and 

β is the normalizing factor, which is set to 10. 
The mutual similarity value (MSV) between A and B with 
respect to lth interval is given by 

                             (7) 

It shall be noticed that if the intervals are one and the same 
then the MSV between them is 1 (maximum); otherwise the 
similarity value depends on the extent to which the intervals 
are separated. More the extent to which they are separated less 
shall be the degree of similarity. 

It may so happen that in some cases, the number of intervals 
(l) in the kth

 feature of A  and B are not the same. Let the 
number of intervals present in the kth

 feature of A be p and the 
number of feature values present in the kth feature of B be q 
and p<q. In such situations we choose the first p components 
out of q from B for the computation of similarity; for the 
remaining (p-q) components of B, (for which there are no 
corresponding components in A for the computation of 
similarity), we assume the degree of similarity to be zero. 
Thus the overall degree of similarity between the shape A and 
the shape B with respect to their kth feature component is 
given by    

             (8) 

Thus the total degree of similarity between the shape A and B 
with respect to all the n features is given by                                                

                       (9) 

where n is the number of feature points chosen on the axis of 
least inertia. In our approach, feature values describing the 
shape are in the range 0 and 1. Since, the kth feature 
component similarity between shape A and B is in the range 0 
and 1, the total degree of similarity between the shape A and 
the shape B is also in the range 0 and 1.  

III. CLUSTERING OF SHAPES 
In order to cluster shapes described by multi interval-valued 

features, we first compute the degree of mutual similarity 
among all the shapes using the proposed similarity measure as 
explained in section IIB and a similarity matrix is obtained. A 
similarity position matrix of size (r x r) for all r shapes is 
created based on the descending order of their similarities. 
The position matrix gives the nearness position of shapes in 
terms of their similarity rank. The concept of k-mutual nearest 
neighbor, based on their position in the position matrix, is 
employed to cluster shapes. In a position matrix, if the shape 
Si is the kth nearest neighbor of the shape Sj , and the shape Sj is 
also the kth nearest neighbor of the shape Si , then  Si and Sj  are 
said to be k-mutually nearest neighbors. This idea of k-
mutually nearest neighbors is successfully applied in our 
clustering procedure. According to this idea, if m shapes are 
put into one cluster then all those m shapes must be k-mutually 
nearest neighbors. The value of k is set to 2 initially and 
incremented by 1 each time until we get the desired number of 
clusters or all shapes are put into a single cluster. Thus the 
proposed method of clustering shapes can be algorithmically 
expressed as follows. 

Algorithm: Clustering-of-Shapes 
  Input  : Shapes described by fuzzy-symbolic features  (S1,S2, 

S3, …, Sr).   
  Output : Clusters of shapes (C1, C2,…,Cm). 
  Method:   

1. Obtain similarity matrix of size r x r using the 
proposed similarity measure. 

2. Create a similarity position matrix of size (r x r) for 
all the shapes based on the descending order of their 
similarities. 

3. Let C={C1, C2, …,Cr}, initially contain r number of 
clusters each with an individual shape. 

4. Set the number of clusters (noc) to r.  
5. Set k to 2.   
6. Merge two clusters Cu and Cv, if all the shapes in Cu 

and Cv are k-mutual nearest neighbors.  
7. Decrement the number of clusters noc by 1. 
8. Increment k by 1. 
9. Repeat steps 6 to 8 until the desired number of 

clusters is obtained or all the shapes are put into 
single a cluster. 

Algorithm Ends 



 

 

IV.  EXPERIMENTAL RESULTS 
We have conducted several experiments on variety of data 

sets to validate the feasibility of the proposed methodology. In 
this section we present the clustering results on a considerably 
large database of shapes.  

Experiment 1: In order to illustrate the proposed method of 
shape clustering, we first consider a sample database of shapes 
consisting 9 shapes of 3 classes. The shapes to be clustered are 
first subjected to feature extraction process as described in 
section IIA and then the similarity measure described in 
section IIB is applied on the extracted features to obtain a 
similarity matrix. Based on the similarity matrix, a similarity 
position matrix is obtained. The similarity position matrix 
gives the closeness of the shapes in terms of their position. 
The proposed k-mutual nearest neighbor approach is then 
applied on the similarity position matrix to obtain clusters as 
explained in the algorithm Clustering-of-Shapes. Fig. 2 shows 
the shapes and their similarity values, Table I shows the 
similarity position matrix and Fig. 3 shows various stages of 
clustering for different values of k.  

 
Fig. 2 Similarity matrix 

TABLE I 
 SIMILARITY POSITION MATRIX 

 
In the example, we have considered 3 categories of shapes 

viz., Dog, Hand and Man. One can observe a significant 
variation among shapes belonging to the same category. The 
similarity matrix (Fig. 2) shows that the shapes belong to the 
same category possess more similarity value than the shapes 
belong to the outside category. Similar observation can be 
made from the similarity position matrix (Table 1) that the 

shapes belong to the same category are very near and are 
mutual nearest neighbors. 

 
        Fig. 3. Various stages of clustering 

 From Fig. 3, we can observe that the shapes Dog-1 and Dog-
2, the shapes Hand-1 and Hand-3 and the shapes Man-1 and 
Man-3 are 2-mutually nearest neighbors (k = 2), hence, they 
are clustered in the first level itself. We can also observe that 
they are visually more similar than the other shapes. In the 
second level, the shapes Dog-1, Dog-2 and Dog-3 are put into 
cluster 1, the shapes Hand-1, Hand-2 and Hand-3 are put into 
cluster 2 and the shapes Man-1, Man-2 and Man-3 are put into 
cluster 3 as they are 3-mutually nearest neighbors (k = 3). No 
clusters are formed for k = 4, 5, 6 and 7, this shows the clear 
margin between shapes belonging to same category and 
shapes belonging to outside the category. Shapes Dog-1, Dog-
2, Dog-3, Man-1, Man-2 and Man-3 are clustered into one 
group when k = 8 and finally all the shapes are put into one 
cluster when k = 9. 

Experiment 2: In order to demonstrate the success of the 
proposed shape clustering methodology, we have conducted 
an experiment on a considerably large database of shapes. Fig. 
4 shows the 350 shapes categorized into 35 classes, each class 
with 10 example shapes. So it is expected to obtain 35 clusters 
from the proposed clustering methodology.  

Figure 5 (a-d) shows the clusters obtained for the shapes 
shown in Fig. 4. We have shown only the last 4 levels of the 
clusters obtained by the proposed methodology. An ideal 
system is the one, which produces all the 35 true clusters for 
k=10 as there are 10 shapes in each category. But because of 
large intra class variation among shapes, we cannot expect all 
the true clusters for k=10. We can observe from Fig. 5(a) that 
26 true clusters are formed for k=73. APPLE and HEAD, 
FISH and LEAF are merged together at this level to produce 2 



 

 

clusters instead of 4 clusters. This is because the shapes in 
these categories are visually very similar to each other. That is 
APPLE shapes are similar to HEAD shapes and FISH 
category shapes are similar to LEAF category shapes. This can 
be observed in Fig. 4. Shapes in the categories PLANE, 
HAND, HUMAN, MOMENTO and DOG are not completely 
formed their clusters at this level because shapes in these 
categories possess large intra class variations as observed in 
Fig. 4. Totally, we obtained 38 clusters at this level. In the 
next level, we have obtained 37 clusters for k=82. Shape 
categories BELL and BUTTERFLY are merged at this level 
and formed single group as shown in Fig. 5(b). No changes 
were observed in the clusters belongs to PLANE, HAND, 
HUMAN, MOMENTO and DOG categories. In the next level, 
for k=84, 36 clusters are realized. At this level CHOPPER and 
RABBIT are merged together to form a single cluster as they 
appear to be similar and they are all mutually nearest 
neighbors for k=84 as shown in Fig. 5(c). Finally, we obtained 
34 clusters for k=88 as shown in Fig. 5(d). Shape categories 
HAND and DOG, respectively, formed their true clear 
clusters. However, shape categories PLANE, HUMAN and 
MOMENTO still could not form their complete clusters. 
PLANE category results with 2 clusters with shapes {101, 
102, 103, 108, 109} and {104, 105, 106, 107, 110}. HUMAN 
category results with 2 clusters with shapes {141, 142, 143, 
144, 145, 146, 147, 148} and {149, 150}. Shapes {149, 150} 
are quite more deformed with widespread legs. Since our 
method of feature extraction measures such span information, 
these shapes are not merged with all the other shapes in its 
category. However, these shapes are not merged with any 
other shape categories. This shows that the proposed method 
of clustering is effective and realistic in nature. Similarly, 
shapes in the category MOMENTO formed 2 clusters with 
shapes {281, 282, 283, 284, 289, 290} and {285, 286, 287, 
288}. Similar argument is true for this category also. 

 We have not encountered any miss grouping at any level. 
This is because all the shapes to be clustered into one group 
must be mutually nearest neighbors. So only those shapes, 
which belong to the same category, agree in their structure 
and they only can be mutually nearest neighbors. Thus the 
proposed mutually nearest neighbor clustering technique 
avoids possible miss grouping, which might arise in case of 
simple agglomerative clustering technique. In simple 
agglomerative clustering technique, we could not get clear 
clusters for APPLE, HEAD, GREEBLE, BELT1, BELT2, 
FISH, LEAF and MOMENTO categories. 

 Since the proposed method of shape description is based on 
the axis of least inertia, which depends on the global structure 
of the shape, more shape deformation or occlusion might 
change the orientation of the axis of least inertia yielding 
feature vectors, which are entirely different. Therefore the 
proposed method of shape clustering is not intended to 
consider major shape deformations or occlusions.  But one of 
the strength of the proposed shape description is that it takes 
care of internal details of shapes such as holes, which plays a 
significant role in most of the shape analysis applications.  

 
Fig. 4. Set of 35 categories of shapes each with 10 examples 
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(d) 

 
Fig. 5 Last four levels of clusters obtained by the proposed methodology for shapes shown in Fig. 4 



 

 

V.   DISCUSSIONS AND COMPARATIVE STUDY  
In order to show the feasibility of the proposed similarity 

measure for symbolic patterns and the proposed mutually 
nearest neighbourhood clustering technique, we have 
conducted several experiments on variety of data sets. In this 
section we present the clustering results on a few well-known 
data sets. 

A. Experiment 1  
The first experiment is conducted on Ichino’s fat oil data, 

which has been used by several researchers as a typical 
example of a data set involving interval-valued features. It is 
composed of eight patterns described by four interval-valued 
features [14]. The proposed similarity measure is employed 
on the data set to estimate the degree of similarity and the 
similarity matrix is obtained (see Table II). Based on the 
similarity matrix, a position matrix, which gives the relative 
nearness of patterns in the descending order of similarity, is 
created (see Table III). The concept of k-mutual nearest 
neighborhood is employed on the position matrix and the 
dendrogram representation of the cluster formed is shown in 
the Fig. 6. A dendrogram is a special type of tree structure 
that provides a convenient picture of a hierarchical clustering 

[15]. It consists of layers of nodes, each representing a cluster 
and lines connecting nodes to represent clusters which are 
nested into one another. Cutting dendrogram horizontally 
creates a clustering.  

From Fig. 6, we can observe that the patterns {1, 2}, {3, 4}, 
{5, 6} and {7, 8} are 2-mutually nearest neighbors (k=2). 
That means, the pattern 2 is in the second position according 
to similarity rank for the pattern 1. Similarly, the pattern 1 is 
in the second position according to similarity rank for the 
pattern 2. One can notice this fact from the similarity matrix 
shown in Table II and the position matrix shown in Table III. 
Thus the patterns {1, 2} are clustered in the first level itself 
(dendrogram). The above argument is true for the patterns {3, 
4}, {5, 6} and {7, 8}.  The Patterns {3, 4} and {5, 6} are 5-
mutually nearest neighbors (See Table III) and hence they are 
clustered in the second level (for k=5) as shown in the 
dendrogram (Fig. 6). As there are no patterns, which are 
mutually nearest neighbors for k=3 and k=4, no patterns are 
merged for k=3 and k=4. The patterns {3, 4, 5, 6} and {1, 2} 
are 6-mutually nearest neighbors and are clustered at the level 
3. No clusters are formed for (k=7) and finally we get a single 
cluster at the level 4 for k=8. We can cut the dendrogram at 
any level and realize the clusters depending on the desired 
number of clusters.  

 

                              

TABLE III  
 POSITION MATRIX OBTAINED BASED ON THE SIMILARITY RANK 

Similarity Positions Pattern 
Number 1 2 3 4 5 6 7 8 

P1 P1 P2 P5 P4 P6 P3 P7 P8 
P2 P2 P1 P4 P3 P6 P5 P7 P8 
P3 P3 P4 P6 P5 P2 P1 P7 P8 
P4 P4 P3 P6 P2 P5 P1 P8 P7 
P5 P5 P6 P3 P1 P4 P2 P8 P7 
P6 P6 P5 P3 P4 P2 P1 P8 P7 
P7 P7 P8 P3 P6 P5 P2 P4 P1 
P8 P8 P7 P6 P5 P3 P2 P4 P1 

 

 

TABLE II 
SIMILARITY MATRIX FOR FAT OIL 

 Fig. 6.Dendrogram representation of the clusters
formation at various levels for Fat-Oil data 
by the proposed methodology 



 

 

B   Experiment 2 

We have also conducted an experiment on the data set 
given in [14] on microcomputers. The data set describes a 
group of microcomputers consisting of 12 patterns. Each 
pattern has five features. Two of the features are qualitative 
(Display and Microprocessor) and the rest are quantitative 
(RAM, ROM and Keys). The similarity proximity matrix for 
this data set is given in the Table IV. The dendrogram 
representation of the clusters formed at various levels is 
shown in Fig. 7. The proposed algorithm resulted in two 
clusters {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12} and {7}. 

In order to validate the correctness, we have compared the 
results of the proposed method with that of other available 
methodologies. For this purpose we have considered six 
methodologies which are listed in Table V. 
Table V summarizes the results obtained through the 

applications of all the seven methodologies including the 
proposed methodology on two different data sets viz., Fats 
and Oils data and Microcomputer data, as the results on these 
two data sets are studied by all the six methodologies.  

It can be noticed in Table V that the fats and oils patterns 
are either grouped into 2 clusters or into 3 clusters. The 
methods [6], [9], [11], [14] have grouped the patterns into 2 
clusters ({1,2,3,4,5,6},{7,8}) and the methods [5], [8] have 
grouped the patterns into 3 clusters ({1,2}, {3,4,5,6}, {7,8}) 
based on their own cluster indicator function which acts as a 
stopping criterion. The entries not available in the Table V 
denote that the corresponding result has not been shown in 
the respective research work. We have not computed the same 
during experimentation as those methodologies require a prior 
knowledge of the number of samples in each pattern, which is 
indeed a real drawback of those approaches. Authors [14] 

TABLE IV 
SIMILARITY MATRIX FOR MICROCOMPUTER DATA 

Fig. 7. Dendrogram representation of the clusters formed at various levels for Microcomputer data by the proposed methodology 
 



 

 

have given the clustering of samples grouped into 2 clusters 
and as well as the samples grouped into 3 clusters. When our 
method is employed on the fats and oils data and the 
dendrogram (Fig. 6) is cut at the level of 3 clusters, the results 
are same as that of all the methods which yield 3 clusters [5], 
[8], [11], [14] and when agglomeration is allowed to continue 
up to 2 clusters then the result obtained is exactly same as that 
of the methods which yield 2 clusters [6], [9], [11], [14]. This 
shows consistency in the results of all the considered and our 
method on the fats and oils data. 

It can also be noticed from Table V that the results obtained 
on Microcomputer data through all the 6 approaches are 
entirely different except the results of the methods [9], [11] 
and [14]. In the work [6], it is stated that no consistency can 
be expected on Microcomputer data. However, our method 

has resulted with 2 clusters, which are same as that of the 
methods [9], [11] and [14] encouraging their results. 

VI    CONCLUSIONS 
In this paper, a new similarity measure useful for clustering 

shapes described by fuzzy-symbolic features is proposed. The 
concept of k-mutually nearest neighbours used for clustering 
shapes provides a realistic insight into the closeness among 
the shapes in a cluster. One can accept the idea that two set of 
shapes are grouped together to form a single cluster only 
when all the shapes in both the clusters are k-mutually nearest 
neighbours and this fact can be revealed by the results of the 
proposed methodology on the shape database and also on the 
standard data sets. The efficacy of the proposed methodology 
is experimentally established and its validity is tested by 
comparing with the well-known methodologies.  

 
TABLE V 

RESULTS BASED COMPARISION 

Fats and oils Microcomputer Methodology 

Description at 2 
Clusters level  

Description at 3 
Clusters level  

Description at 2 cluster 
level 

Description at level 
more than or equal to 3 

clusters 

Ichino and 
Yaguchi (1994) 

{1,2,3,4,5,6} {7,8} {1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,910,11,12} 
{7} 

{1,2,3,9,10} 
{4,5,6,8,11,12} {7} 

Gowda and Ravi 
(1995(a)) 

Not available {1,2} {3,4,5,6} 
{7,8} 

Not available {1,2,4,6,8,9,10,11,12} 
{3} {7} {5} 

Gowda and 
Diday (1991) 

Not available {1,2} { 3,4,5,6} 
{7,8} 

Not available { 1,2,4,10,11} {7} 
{3,9} {5,6,12} {8} 

Gowda and 
Diday (1992) 

{1,2,3,4,5,6} {7,8} Not available Not available {1,2,10,11} {7} {3,9} 
{4,5,6,8,12} 

Gowda and Ravi 
(1995(b)) 

{1,2,3,4,5,6} {7,8} Not available {1,2,3,4,5,6,8,9,10,11,12} 
{7} 

Not available 

Guru et al. 
(2004) 

{1,2,3,4,5,6} {7,8} {1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,9,10,11,12} 
{7} 

{1,2,3,4,9,10,11} 
{4,5,6,12} {7} {8} 

Proposed 
method 

{1,2,3,4,5,6} {7,8} {1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,910,11,12} 
{7} 

{1,2,3,4,8,9,10,11}  
{7} {5,6,12} 
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