
  

 

Abstract--An uncertainty model for an expensive function greatly 
improves the effectiveness of a design decision based on the use of 
a less accurate function. In this paper, we propose a method that 
exploits the concept of rank transformation to aggregate high 
fidelity information in a cost effective manner. This information 
is used to develop an empirical cumulative probability 
distribution function for residue such that it models the 
uncertainty with greater precision in the regions where the 
expensive function is potentially attractive as compared to other 
regions in the design space. The performance and robustness of 
the algorithm are demonstrated for univariate synthetic 
functions.  
 
Index Terms---- model fidelity, sequential sampling, attractive 
zone  
 

I. INTRODUCTION 
 

    Design of any system involves trade-off among various 
options and selecting one that meets the requirements best. In 
general, it may be desirable to assess the various options using 
a model that accurately evaluates the performance metrics of 
the system. In a computer based design framework these 
models are generally, computationally expensive functions or 
High Fidelity (HF) models. 

 

However, such functions have been usually used to examine 
or analyze a particular design in great detail rather than to 
evaluate large number of designs. This is mainly due to 
practical difficulties like unrealistic cycle time and issues 
related to integration of several HF models as may be needed 
in the design of a complex multidisciplinary system. 
Hence the designer is confronted with the challenge of taking 
decisions in an environment wherein uncertainty is ever 
present. Development of strategies to model the expensive 
function in order to reduce the risk in the design decisions is 
the topic of many current researches. Design of experiments 
theory has been combined with regression techniques to create 
response surface models (RSM). These models approximate 
the behavior of the expensive function and have been used in 
Multidisciplinary Design Optimization of complex systems 
like aerospace vehicles [1]. However, the curse of 
dimensionality hinders the use of RSM for problems of large 
dimensions. Approximate/model management optimization [2] 
is another approach that uses approximations to alleviate the 
expense of relying exclusively on high fidelity models. In this 
method, at a current design point the values of the function 
and its derivative obtained using the approximate model is 
corrected to match the values obtained using the high fidelity 
model. This ensures that first order consistency conditions are 
satisfied. The correction is updated once the design point is 
outside the trust region. Soft computing methods like rough 
sets [3] have been applied to address the problem from a 
slightly different perspective. Rough set based approach seek 
to identify multiple, sub-regions in a design space, within 
which all of the design points are expected to have a 
performance value equal or less than a given level and is 
applied iteratively on a growing sample set. Optimization of 
the computationally intensive function is then carried out in 
the smaller sub-regions of the original design space. Yet 
another approach that has been widely adopted in engineering 
design is the use of Medium/Low fidelity (LF) models that are 
globally valid over the design space and are computationally 
light, albeit with less accuracy. Complementing such tools 
with an uncertainty model for expensive functions can greatly 
enhance the effectiveness of design decisions. Several 
probabilistic approaches have been suggested towards this. It 
is important here to distinguish between variability and 
uncertainty. Variability [4,5] is inherent randomness in the 
system. The use of probability theory to represent variability is 
well-established. Uncertainty is defined as “a potential 
deficiency in any phase or activity of the modeling process 
that is due to lack of knowledge” [4, 5]. Uncertainty may also 
arise when there is a scarcity of high fidelity information. This 
is true when new classes of systems are being developed and 

J. Umakant , K. Sudhakar, P.M. Mujumdar, and C. Raghavendra Rao 

J. Umakant is with  CASDE, Department of Aerospace Engineering,
IIT Bombay, Mumbai-400076, India. & Directorate of
Aerodynamics, DRDL, Kanchanbagh, Hyderabad-500058, India.
(Email: umakantj@yahoo.com) 
K. Sudhakar and P.M. Mujumdar- are with  CASDE, Department of
Aerospace Engineering, IIT Bombay, Mumbai-400076,
India.(Email: sudhakar@aero.iitb.ac.in, mujumdar@aero.iitb.ac.in 
C. Raghavendra Raoc is with  cDepartment of Mathematics and
Statistics, University of Hyderabad, Hyderabad-500047, India
(Email: crrsm@uohyd.ernet.in) 

Uncertainty Modeling for Expensive Functions: 
A Rank Transformation Approach 

Engineering Letters, 14:1, EL_14_1_25 (Advance online publication: 12 February 2007)
______________________________________________________________________________________



  

no historical database exists. Probabilistic approaches to 
handle uncertainty in lieu of replacing the expensive functions 
with low/medium tools and their application in design 
scenarios have been demonstrated [6,7].  In most of these 
studies, an uncertainty model for the expensive function was 
assumed and the focus was to propagate its effect in a multi-
disciplinary design scenario and take design decisions. 
Alternate frameworks like Evidence theory [8], Possibility 
theory [9], Info-Gap theory [10] seek to address the 
fundamental issue of developing uncertainty model. 
Applications to design scenarios are, at present, however, few 
[11]. Thus the process of building the uncertainty model itself 
to bridge the gap between HF model and LF model continues 
to be a challenge in uncertainty modeling.  
In this paper we present a novel approach that utilizes the 
concept of ranks for the purpose of uncertainty modeling. 
Ranking refers to the process of ordering a sample (say of size 
‘N’) with respect to a system performance metric. For 
minimization problems, the best observation receives the 
highest rank (rank N) while the worst observation is given the 
lowest rank (rank 1). Ranking procedures are one approach in 
multiple decision theory [12] where a simple loss function 
(zero-one) is used and the risk is an incorrect decision. Dell 
and Clutter [13]show that using relative cheap methods, like 
“judgment ordering”, where it is difficult or expensive to 
obtain the characteristic of interest, may still increase the 
efficiency of using the sample mean as an estimator for the 
population mean. Cronan et.al.,[14] report that for small 
sample sizes, the rank regression technique produces a model 
with better estimates of residential property value as compared 
to the model based on multiple regression analysis technique.  
However to the best of the author’s knowledge there has been 
no study in the area of uncertainty modeling based on rank 
transformation approach. Rather than trying to create an 
uncertainty model of the expensive function for the entire 
design space, we propose a novel method, which exploits the 
concept of ranks, to sequentially aggregate a high fidelity 
sample from the regions where the expensive function is 
potentially attractive. A stopping criterion is used to limit the 
sample size to a reasonable number.  Based on this 
information, we estimate the residues as the difference 
between the high fidelity response value and the 
corresponding low fidelity response value. A probabilistic 
model for the residues is then constructed. Uncertainty model 
for the expensive function is now defined as the low fidelity 
model complemented with probabilistic model of the residue. 
It may be noted that in the context of optimization (for 
minimization), the inaccuracy of the model in the regions 
where the function is relatively higher is not of much interest. 
Rank transformation of the response enables to introduce the 
preferential characteristics in the uncertainty model.  
The rest of the paper is arranged as follows: in section II, the 
notations used are described. Details of the rank 
transformation approach are presented in section III. Some 
limitations of the approach with suggested means to 
circumvent are discussed in section IV. Residue analysis and 
uncertainty modeling are described in section V. Criteria for 
verifying the robustness of the algorithm is specified in section 
VI. Results for univariate synthetic functions are presented in 

section VII. Section VIII concludes with a summary of the 
work. 
 

II. NOTATIONS 
 

In this article we will denote Z = F(X), to represent the high 
fidelity model and z = f(X) to represent the low fidelity model 
that describe the system behavior. X ∈  D ⊆ Rn, denotes the 
input vector for both the models. D is the design space in n 
dimensional real space Rn.  F(.) is the high fidelity or 
expensive function and Z is the high fidelity response.  F(.) is 
the low fidelity function and z is the low fidelity response. X 
typically describes the parameterization of the system while Z 
or z describes a performance metric of the system.  
Then for one dimensional space R we use the following 
notations 
D=[a  b]  for  design space 
X1,……XN,…… for design points in  D               
Z1,……ZN,…….  for high fidelity responses corresponding to 
the design points 
z1,……zN ,……..  for low fidelity responses corresponding to 
the design points 
SX[N,M] =  {X1,………XN, XN+1,………XM} for  set of 
design points 
SR[N,M] = {Z1,… ZN, zN+1,………zM } for set of high fidelity 
and low fidelity responses corresponding to the points at 
SX[N,M] 
ri  for  rank of the ith response in SR[N,M]   
Pi  for empirical probability at X =  Xi in SX[N,M] 
Ci  for empirical cumulative probability at X =  Xi in SX[N,M] 
ei  for residue  Zi – zi at the point X =  Xi  
X0 =a < X1 < ….<Xp-1 < Xp = b for partition of D with size p 
f(D) = [fL  fU]  for low fidelity response space for D 
fL =z0  < z1 < ….<zp-1 < zp=  fU for partition of f(D) with size p 
SL = { (X,z) | X ∈  D , z = f(X) } for low fidelity system state 
descriptor 
SH = { (X,Z) | X ∈  D , Z = f(X) }for high fidelity system state 
descriptor 
SA = { (X,Z) | (X,Z) ∈  SH  and  Z ≤ z1 }for system state 
descriptor in attractive zone 
nA  for cardinality of SA  indicating number of hits in attractive 
zone 
We wish to construct a model such that Z ~ z + U(Z), where 
U(Z) is a probability distribution that represents  the 
uncertainty in the estimation of  Z.   
 
 

III. Rank Transformation Approach 
 

   In this section we present a novel approach that utilizes the 
concept of ranks to collect high fidelity information for the 
purpose of constructing an uncertainty model. 
  
A. Selection of Initial Sample  

 
   We assume that to begin with there are ‘K’ (K≥2) high 
fidelity responses available. These responses correspond to 
arbitrarily selected points in the design space. Alternately 
expert opinion can be solicited as to where to perform the 



  

initial expensive function evaluations.  A typical table 
consisting of three initial points is shown in table1a. 
 
 
B. Augmentation of the sample with low fidelity responses 
 
   Low fidelity responses are now used to augment the sample. 
These responses are evaluated at design points resulting from 
uniform gridding of the design space.  Augmenting is done to 
encourage global representation of the function and the design 
space, while ranking. In case of multimodal functions this 
helps to avoid gathering high fidelity information that is 
restricted to a local valley. However, caution must be 
exercised such that at any point of time, the number of low 
fidelity observations is not very significantly higher as 
compared to the number of high fidelity observations. 
Otherwise the trend of the high fidelity information, as 
predicted from the sample will be dominated by the low 
fidelity model. Table1b shows the data after addition of six 
low fidelity observations. It may be argued that low fidelity 
responses may be added sequentially. However, adding one 
low fidelity observation at a time may not encourage global 
representation in the sample, especially in the initial stages 
when the available number of observations is small.   

S.No. X Z 
1 
2 
3 

1.21 
6.92 
9.07 

46.09 
55.69 
88.22 

Tab 1a: Typical Sample of High Fidelity Responses 
 

S.No. X Z 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.21 
6.92 
9.07 
0.50 
2.50 
4.50 
6.50 
8.50 
10.50 

46.09 
55.69 
88.22 
65.20 
22.96 
39.60 
72.58 
119.41 
179.49 

Tab1b. Typical Augmented data 
 

S.No. X Z Rank Probability 
Density 

Cumulative 
Probability 

 
4 
1 
5 
6 
7 
2 
8 
3 
9 

 
0.50 
1.21 
2.50 
4.50 
6.50 
6.92 
8.50 
9.07 

10.50 

 
65.20 
46.09 
22.96 
39.60 
72.58 
55.69 

119.41 
88.22 

179.49 

 
5 
7 
9 
8 
4 
6 
2 
3 
1 

 
0.11 
0.16 
0.20 
0.18 
0.09 
0.13 
0.04 
0.07 
0.02 

 
0.10 
0.26 
0.46 
0.63 
0.72 
0.86 
0.90 
0.97 
0.99 

Tab1c. Typical data showing rank transformation of responses 
and cumulative probabilities of design points 

 
 

 

C. Rank Transformation of responses 
 
    The high fidelity responses and low fidelity responses are 
combined to form the dataset SR and the elements of the set are 
sorted in a descending order. Rank transformation is now 
applied to the responses by assigning ranks to them in a 
serially increasing manner, starting from one to the value of 
the maximum rank.  The maximum rank has a value equal to 
M, the total number of high fidelity and low fidelity responses. 
Thus the response with the minimum value receives the 
maximum rank while the response with maximum value 
receives a rank of one. If a response value occurs more than 
once, then same rank is assigned to all its occurrences. Typical 
rank transformation of the responses is given in the fourth 
column of table1c. 
 
D. Mapping of the ranks onto design support  
 
   The ranks for the responses are now mapped to their 
corresponding design points in SX. Thus the design points are 
now given an additional attribute, namely rank that defines its 
preference for selection.   
 
E. Computation of the empirical PDF and CDF of the design 

support 
 
   We sort the design points of the information table in an 
ascending order with respect to their respective values 
together with their associated ranks and define the empirical 
probability density of the ith point as the ratio of its rank to the 
summation of ranks of all the points, shown as below:  

∑
=
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i
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i
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For the lower bound and upper bound of the design support we 
assign respectively zero and one as their empirical probability 
densities. Since the points are sorted in ascending order, the 
empirical cumulative density of the ith point in the table is the 
ratio of sum of ranks of all the points above it to the total 
summation of ranks and is denoted as below: 
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The factor 0.5 is used for continuity correction to encompass 
the entire design support.  Piece-wise linear interpolation 
yields the cumulative density at any other point in the design 
space. Thus we have constructed an empirical probability 
distribution function (PDF) and cumulative distribution 
function (CDF) for the design support.  The fifth and sixth 
columns of table 1c depict the probability and cumulative 
probability of the design points. 
 
F. Selection of new point for HF evaluation 
 



  

   The CDF of the design support can now be used to choose a 
new point where the expensive function can be evaluated. This 
is accomplished by applying a random inverse transformation 
on the CDF. Points where the response is likely to be 
relatively lower have greater probability of getting selected 
than the points where the function responses are likely to be 
higher. However, allowing some chance for unfavorable 
points to also get selected enables the algorithm to scan the 
whole design support. This feature is useful when the 
expensive function exhibits multimodal characteristics. We 
have now K+1 high fidelity responses.  An updated table is 
shown at table1d. 
 

S.No. X Z 
1 
2 
3 
4 

1.21 
6.92 
9.07 
5.10 

46.09 
55.69 
88.22 
36.61 

Tab1d. Typical High Fidelity sample after selecting one point 
from CDF of design space 

 
   The steps of augmenting the sample with low fidelity 
observations, ranking the collection of the responses, mapping 
the responses onto the design support are repeated to update 
the CDF of the design support. The updated distribution is 
used for selection of the next design point for high fidelity 
evaluation. This process is repeated till we have the desired 
number of high fidelity responses. Alternatively a heuristic 
stopping criteria described in the next section can be used. 

 
G.  Stopping Criterion 
 
 A heuristic criterion is used to decide when to stop the 
process of collecting high fidelity information.  We monitor 
the trajectory of high fidelity responses and the design points 
with respect to the number of trials and stop the process when 
the trajectory shows repetitions in the path.   
   Thus at the end of this process we have accumulated ‘N+K’ 
high fidelity responses, where ‘N’ is the number of trials 
performed. 
 
IV. LIMITATIONS OF THE RANK TRANSFORMATION 

AND MEANS TO CIRCUMVENT THEM 
 

 The rank transformation procedure described in the previous 
section has the following limitations: 
i) The procedure may be sensitive to the initial sample and 
consequently influence the selection of subsequent high 
fidelity responses  
ii) Since the inverse transformation for selecting new design 
point is random, there is a possibility of clustering of the 
design points. 
The first limitation can be largely circumvented by starting 
with an initial sample that spans the entire design support and 
the range of the response. We propose a strategy based on 
stratification to implement this. The second limitation is 
addressed by defining a minimum distance criterion. 
 
A. Stratification Algorithm 

 
 Stratification refers to classifying or coding the design space 
D and f(D) into ‘p’ number of levels or strata with the 
following property: 
Xs = i , iff  Xi-1 < X ≤ Xi  and 
zs = i , iff  zi-1 < z ≤ zi  ;  i= 1, 2,….p 
A typical system state descriptor SL = (X, z) is coded as  
(Xs, zs).  
Each level can be interpreted as an isocontour. Our purpose is 
to choose the initial points such that there is a representation 
of all the strata in X and z, at least once. In other words, p 
points are chosen such that each point is representative of one 
strata of X and z. This problem can be formulated as an 
assignment problem (or an integer programming problem), in 
Boolean space. However, for the purposes of our 
requirements, we have chosen to implement the same as 
described below. 

 
     

 
   We uniformly grid the entire support space into large 
number of points and use the low fidelity tool  for evaluating 
the response at each of the grid points. Typical representation 
for 15 grid points is shown at table 2a.The grid points and the 

  S.No.     z             X 
---------------------------  
   1  17.60   0.00 
   2 11.76   0.35 
   3          9.86         0.71 
   4        10.16       1.07 
   5        11.29       1.42 
   6        12.29       1.78 
   7        12.56       2.14 
   8        11.94       2.50 
   9        10.61        2.85 
  10         9.16          3.21 
  11        8.58          3.57 
  12       10.25       3.92 
  13       15.92       4.28 
  14       27.75       4.64 
  15       48.28       5.00 
 

Tab.2a.  Typical data in 
physical domain for 

stratification 
 

S.No.  z      Xs 
-------------------------
    1      2     1 
    2      1     1 
    3      1     1 
    4      1     1 
    5      1     1 
    6      1     2 
    7      1     2 
    8      1     2 
    9      1     2 
    10    1     2 
    11    1     3 
    12    1     3 
    13    2     3 
    14    3     3 
    15    3     3 
 

Tab. 2b Typical 
Coded data in after 

stratification 

S.No.   z    Xs 
----------------   
    1      1    1 
    2      1    2 
    3      1    3 
    4      2    1 
    5      2    3  
    6      3    3 
Tab.2c  Typical 

Coded data 
after deleting 

duplicate points

             z    Xs 
----------------- 
Level 1    3  2 
Level 2    2  1 
Level 3    1  3 

 
Tab..2d  

Frequency 
table of coded 

data 
 

S.No.  z     Xs
-----------------
    1      1    1 
    2      1    2 
    3      2    1 

 
Tab.2e  
Typical  

Coded data 
after selecting 

first point 



  

corresponding response values are then coded or stratified 
according to the definition above. We have thus set up 
stratification table of coded values for the design points and 
their respective response values. Table2b illustrates this 
process for three stratification levels. A consequence of the 
stratification is that the points falling in the same strata lose 
their distinct identity, resulting in duplicate points that do not 
possess any additional information. For further analysis, such 
points are not retained in the stratification table. Table2c 
highlights such data. A frequency table indicating the number 
of occurrences of Xs and zs is then set up and a typical result is 
shown in table 2d. Strata level corresponding to the maximum 
number of occurrences either in Xs or zs is identified and a 
point from the set of coded values corresponding to this strata 
level is selected as highlighted with an arrow in table 2c. Any 
tie that occurs is resolved randomly. Other points having the 
same stratification identity either in support space or in the 
response space are then removed and the stratification table is 
updated as illustrated in table 2e.  The process is repeated for 
the specified number of strata levels, resulting in ‘p’ distinct 
coded points with their corresponding response codes also 
being distinct. An illustration of the updated table is shown in 
table 2f. Table 2g summarizes the selected strata levels for the 
support points and the corresponding response. The selected 
stratified levels are then mapped to the physical domain and 
the points are randomly selected from the respective strata. At 
these initial points we perform the expensive function 
evaluations. For example, the entry at serial number 3 in table 
2g corresponds to a design point in strata level 2 with its 
response in strata level 1. In the physical domain, the entries at 
serial number 6 through 10 of table 2a correspond to these 
strata levels and we randomly select any one of these points. 

 
B. Minimum Distance Criterion 
 
   Random inverse transformation of the cumulative 
distribution function to select the new design points can 
sometimes result in the new point to lie within the 
neighborhood of existing points. To avoid this, we calculate 
the L1 distance of the new point with respect to the existing 
points and retain the point only if the norm is greater than a 
specified tolerance bound; otherwise we sample another point 
from the distribution. It may be noted that we perform this 
check before the expensive function is evaluated. 
 
 

 
 
 

V. UNCERTAINTY MODELING 
 

   We now construct an empirical cumulative distribution 
function for the residue. Residue, defined as the difference 
between the high fidelity response and the corresponding low 
fidelity response, is used to characterize the uncertainty in the 
estimation of the expensive function. Diagnosis of the 
trajectory of the residues with respect to the low fidelity 
response enables to infer whether or not the residues are 
correlated with low fidelity response.  In case the trajectory 
exhibits a random path, then we infer that the differences are 
random.  However, if a systematic variation is observed then 
we may infer that the low fidelity responses are correlated 
with the high fidelity responses. 
 
A. CDF for the Residue 

 
   The residues, denoted by ‘e’, for the N+K high fidelity 
responses available are sorted in ascending order. We assume 
homogenous distribution for the residues. 
The cumulative density for the ith residue is defined as  

( ) ( ) KNi
KN

ieCi +=
+
−

= ,,2,15.0 …  

The lower bound of the residues is defined as the minimum 
value of the observed residues decremented by one unit. 
Similarly the upper bound of residue is defined as the 
maximum value of the observed residue incremented by one 
unit. Cumulative densities of zero and one are assigned 
respectively to the lower and upper bounds. We have now 
defined empirical cumulative densities for the residues at 
discrete points. A fit for this data will give a smooth 
representation. Linear interpolation may also be used to 
estimate the cumulative density of for any intermediate values 
of residue. This type of distribution is also referred to as non-
parametric distribution.  
 
B. Restricted CDF of residue for attractive zone    
 
   It may be recalled that we had stratified the range of the 
response into three contour levels.  We denote the zone 
defined by the first contour level as the attractive zone, since 
the response value corresponding to the first level is smaller as 
compared to that for the second and third levels. In the context 
of minimization, we are interested only in those high fidelity 
observations that are contained in the first contour level. 
Hence we filter the N+K responses and retain only those 
responses that are within the attractive zone. We can now 
construct the cumulative distribution function of the residue 
for the attractive zone in a similar manner as described in the 
previous section.  It may be noted that the uncertainty bounds 
of the residue will now be typically lower than that obtained in 
the previous section and hence the estimate of the expensive 
function is not unnecessarily conservative. This is consistent 
with our philosophy that we wish to create an uncertainty 
model for the expensive function that is more appropriate in 
the regions of interest, rather than trying to characterize the 
uncertainty for the entire design support. 
 
 

S.No.      z     Xs 
------------------- 
     1  1     2 
 
Tab.2f  Typical 

Coded data 
after selecting 
second point 

S.No.   z    Xs 
--------------------   
    1      3    3 
    2      2    1 
    3      1    2 
Tab. 2g Summary 

of  Coded data 
selected for three 

levels 



  

VI. VALIDATION OF ALGORITHM 
 

   In the above procedure, the new design point for high 
fidelity estimation has been chosen randomly using inverse 
transformation of the cumulative distribution function of the 
design support. Hence the repeatability or robustness of the 
algorithm is verified by conducting large number of 
simulations and examining the results. Verification is carried 
out in the following ways: 
i) The probability of number of observations in the attractive 
zone should be non-trivial with at least 95% confidence. 
ii) The empirical cumulative distribution of the design support 
and residue are examined to check if the same type of 
distribution is obtained in most of the simulations. 
iii) Coefficient of variation, defined as the percentage ratio of 
standard deviation to mean, is examined for the lower and 
upper bounds of the residue. The algorithm can be considered 
to be stable [15] if the coefficient of variation is less than 33%.  
 
 

VII. RESULTS FOR SYNTHETIC EXAMPLES 
 

   For the purpose of illustrating the performance of above 
algorithm, we present results for two synthetic examples. The 
expensive function is represented by a univariate function. In 
the first example the function has unimodal variation while in 
the second example the function exhibits a bimodal variation. 
The low fidelity representation of the unimodal function is 
achieved through perturbations in the coefficients of the 
function, while, for the bimodal function the low fidelity 
model is represented by a quadratic function. Three levels of 
stratification were adopted for both the cases. Low fidelity 
tool was used to partition the expected range of the response 
into three contour levels. The first level has the lowest contour 
value. Attractive zone for the response then corresponds to 
first contour level. The details regarding the functions are 
given in tables 3a and 3b.  

 Function Design Space Attractive 
Zone 

High 
Fidelity X

XZ 542 +=  [ ]5.105.0=D  51≤Z  

Low 
Fidelity X

Xz 54*6.0*6.1 2 +=

 

 
[ ]5.105.0=D   

 
Tab 3a. Univariate Unimodal Function 

  

 
A. Univariate Unimodal Function 

 
   Figure1 depicts the high fidelity and low fidelity contours of 
the function. The effect of number of trials on the trajectory of 
the design variable in the design support and on the high 
fidelity response values is shown respectively in figures 2a 
and 2b. Each trial augments the sample size by one. Ignoring 
the three initial samples, we can observe that the ten trials are 
sufficient to ensure that the design support is well represented.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Function Design 
Space 

Attracti
ve 

Zone 
High 

Fidelity 
 

( )( )( )( ) 1025.3425.0 +−−−−= XXXXZ
 

 
[ ]50=D  

 
3.8≤Z  

Low 
Fidelity 

 
731.15*8888.7*8785.1 2 ++= XXz

 

 
[ ]50=D  

 

Tab 3b. Univariate Bimodal Function 
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When the number of trials exceeds ten clustering in the 
trajectory of the design variable is noticed.  Similarly the 
trajectory of high fidelity responses gets repeated for more 
than ten trials. The cumulative distribution of the residue for 
various numbers of trials is shown in figure 3. The CDF for 
the first trial corresponds to that based on the initial three 
points selected by stratification. It can be noticed that nearly 
the same cumulative distributions is obtained when the 
number of trials is ten or more. Based on this empirical 
evidence, we restrict the number of trials to ten. In practical 
scenarios, a budgetary constraint on the number of high 
fidelity evaluations may also restrict the sample size. 
 
The design points selected based on the algorithm for high 
fidelity evaluations are shown in figure 4a. The symbols 
shown in this figure represent the selected points. The initial 
points selected by stratification are distinguished by the 
symbol ‘*’. The value of first response level based on the 
stratification is 51, i.e., the attractive zone corresponds to the 
design space where response of the expensive function is less 
than 51. The cumulative distribution function for X is shown 
in figure 4b. Two distinctive features can be noticed in this 
distribution.  One, there is a rather steep increase in the 
cumulative probability between X=1 and X=4, indicating a 
preference for selection of points from this region. Referring 
back to figure4a, it can be observed that the high fidelity 
function is minimum at X=3. Two, the CDF exhibits a large 
tail for X greater than 6.8. In our experiment, we notice that 
eight of the ten points selected based on rank transformation 
are from the attractive zone. Considering the stratification 
points also yields a total of nine points out of thirteen in the 
attractive zone. If we had naively chosen K+N grid points, in 
this case thirteen, only seven points would have been in this 
region. Further, only three of the selected points were from the 
region X greater than 6.8, whereas grid points would have 
resulted in five high fidelity evaluations in this region. This 
justifies that rank transformation encourages selection of new 
design points from the region where the function is likely to be 
relatively lower. Thus we can state that, in the context of 
optimization, aggregation of the points selected based on rank 
transformation have superior attributes than simple grid 
selected points.  
   The CDF of residue considering all the thirteen high fidelity 
responses is shown in figure 4c. It can be observed that the 
lower bound of the residue is -49 while upper bound of the 
residue is +45. The effectiveness of the low fidelity model 
when used in conjunction the uncertainty model is 
demonstrated in figure 4d. The upper and lower bounds in the 
estimation of the expensive function are denoted by the dashed 
lines, while the solid line represents the expensive function. It 
can be observed that the uncertainty model has successfully 
characterized the uncertainty in the estimation of the 
expensive function for almost the entire design support.  
    Figure 4e highlights the CDF of residue constructed by 
restricting the sample to only those observations that are 
within the attractive zone. The width between the lower and 
upper bound is now considerably reduced. The effectiveness 
of the low fidelity model when used in conjunction with 
restricted CDF is shown in figure 4f. It can be observed that 
the estimation of the expensive function is considerably less 

conservative in the attractive zone. Thus the model 
characterizes the uncertainty in the expensive function with 
better accuracy in the attractive zone than in the other regions. 
   Histogram of the number of high fidelity responses that are 
in the attractive zone for 100 Monte-Carlo simulations is 
shown in figure 5a. The total number of samples was 13. It is 
observed that 97 out of the 100 simulations record at least 6 
samples within the attractive zone. Thus the non-trivial 
probability is 0.46 with 97% confidence. Figure 5b shows that 
CDF of the design support exhibit similar characteristics in all 
the simulations. The simulation results for CDF of the residue 
and restricted CDF are shown in fig. 5c and fig. 5d 
respectively. The coefficient of variation of the bounds is 
given in table 4a. It can be seen that the coefficient of 
variation of the bounds is less than 33%. 
 

Residue Restricted Residue  

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper  
Bound 

Mean -50.30 37.90 -16.70 17.00 
Standard 
Deviation 

6.03 8.30 4.16 0.23 

Coefficient 
of 

Variation , % 

12.00 21.90 25.70 1.00 

 
Tab. 4a. Metrics from Monte-Carlo Simulations of Univariate 

Unimodal Function 
 

Residue Restricted Residue  

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper  
Bound 

Mean -3.70 5.70 -3.11 -0.59 

Standard 
Deviation 

0.49 2.35 0.50 0.36 

Coefficient 
of 

Variation , % 

13.20 41.20 16.00 60.00 

 
Tab. 4b. Metrics from Monte-Carlo Simulations of Univariate 

Bimodal Function 
 
 
B. Univariate Bimodal function 
 
   Typical results for a bimodal function are presented in this 
section. Figure 6a shows the high fidelity and low fidelity 
function contours. It may be noted that the function has a 
global minima at X=1.05 and another local minima at X=3.75. 
The design points selected based on the ranking algorithm are 
represented in the figure by the symbols. It can be observed 
that the algorithm has selected design points near both the 
valleys present in the high fidelity function and three points 
out of the sample size of thirteen are in the attractive zone. 
However, only two points would have been in the attractive 
zone if we had based the selection on simple grid of the design 
support. It may be noted that the algorithm has successfully  



  

0 2 4 6 8 10 12
0

50

100

150

200

Design Variable, X 

R
es

po
ns

e 

Fig.4a High fidelity and Low fidelity 
contours with selected design points   

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 

Residue 
Fig.4c. Cumulative Distribution Function of 

Residue 

0 2 4 6 8 10 12
-50

0

50

100

150

200

250

R
es

po
ns

e 

Design Variable, X 

Fig.4d. Uncertainty in estimation of 
Expensive Function 

___expensive function 
_ _ _ lower and upper bounds

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 

Residue 
Fig.4e. Restricted Cumulative Distribution 

Function of Residue 

0 2 4 6 8 10 12
0

50

100

150

200
___expensive function 
_ _ _ lower and upper bounds

R
es

po
ns

e 

Design Variable, X 

Fig.4f. Uncertainty in estimation of 
Expensive Function using restricted CDF 

Fig.4b. Cumulative Distribution Function of 
Design Support 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
selected points in the favorable regions even though the low 
fidelity model is unimodal whereas the expensive function is 
bimodal. The CDF for the design support is shown in figure 
6b.  It can be noticed that the probability of selecting a point 
from the unfavorable region ie., X greater than 4 is less than 
0.02 while it is only 0.2 for the other unfavorable region ie.,X 
less than 1. The CDF of the residue based on the total sample 
of high fidelity information is given in figure 6c and the 
corresponding prediction of the expensive function using this 
model is shown in figure 6d.  Again it can be seen that the 
uncertainty has been characterized over most of the design 
support.  Figure 6e shows the restricted CDF based on 
restricting the sample to the observations within the attractive 
zone. This enabled better characterization of uncertainty in the 
expensive function in favorable regions than in other regions 
and the result is visualized in figure 6f.  Results of Monte-
Carlo simulations are shown in figures 7a-7d.  In this case the 
non-trivial probability of number of observations in the 
attractive zone is 7.7% with 97% confidence. The CDF for the 
design support and residue exhibits similar characteristics in 

most of the simulations. The coefficient of variation for the 
bounds is tabulated in table 4b. It can be noticed that the upper 
bounds of the residue have coefficient of variation greater than 
33%. This is mainly due to the fact that the low fidelity model 
is unimodal whereas the high fidelity is bimodal.  Still, the 
algorithm has characterized the uncertainty better in the 
attractive zone.  
 
 

VIII. SUMMARY 
 

    In this paper, we have showcased the utility of ranks to 
develop a method for modeling uncertainty of an expensive 
function. This has been accomplished in two stages. Instead of 
aggregating high fidelity information based on a naive 
uniform grid of the design support, we exploited the concept 
of ranks. The high fidelity responses, augmented with limited 
number of low fidelity observations, were assigned ranks 
based on their value and these were mapped onto the design  
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support. A cumulative distribution function for the design 
support was constructed. This distribution was randomly 
sampled to select the new design point where the expensive 
function was evaluated to build the high fidelity sample. The 
design points with lower response values had greater 
probability of getting selected as compared to those points 
with higher response values. In the second stage, we 
performed residual analysis and constructed an empirical 
cumulative distribution function for the residues. This model 
was subsequently tailored to be more appropriate in the 
attractive zones rather than in other regions where the 
response values were higher. It may be noted that the 
algorithm was tried for problems in higher dimensions. 
However, some improvements are needed in selecting the new 
point. In addition, the stratification implementation does not 
always guarantee assignment when stratification of more than 
three levels is required. Work is under progress to overcome 
these difficulties.   
   Results for both the synthetic univariate functions indicate 
that the probability of observations in the attractive zone is 
nontrivial and the uncertainty in the expensive function was 
characterized better in the attractive zone than in other 

regions. This demonstrates the performance of the algorithm is 
encouraging. Monte-Carlo simulation results also confirmed 
that the features of the empirical cumulative distribution for 
residue were consistently repeated in majority of the 
simulations. Coefficient of variation was also observed to be 
within the limits. This verifies the stability or robustness of the 
algorithm.  Hence the uncertainty model of an expensive 
function may complement the use of the medium or low 
fidelity tool in a design environment and enable the designer 
to make well informed decisions.  
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