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Neural Network Based Controller for Visual
Servoing of Robotic Hand Eye System

Vikas Panwar and N. Sukavanam

Abstract— In this paper a neural network based controller for
robot positioning and tracking using direct monocular visual
feedback is proposed. The visual information is provided using a
camera mounted on the end-effector of the manipulator. A PI
kinematic controller is proposed to achieve motion control
objective in the image plane. A Feedforward Neural Network
(FFNN) is used to compensate for the robot dynamics. The FFNN
computes the required torques to drive the robot manipulator to
achieve desired tracking. The stability of combined Pl kinematic
and FFNN computed torque is proved by Lyapunov theory.
Simulation results are carried out for 3 DOF articulated robot
manipulator to evaluate the controller performance.

Index Terms— Visual Servoing, Non-linear control systems,
Feedforward Neural Networks, Perspective Projection.

1. INTRODUCTION

This paper considers the problem of tracking moving
objects with a robot end-effector, using visual information
acquired with a camera mounted on the end-effector itself.
Generally, these vision techniques that provide dynamically
closed loop motion control for a robotic manipulator are
termed as Visual Servoing [1]. The visual servoing techniques
present an attractive solution to motion control of autonomous
manipulators evolving in unstructured environments. The
robot motion control uses direct visual sensory information to
achieve a desired relative position between the robot and a
possibly moving object in the robot environment. While
accomplishing visual servoing, the camera may either be
statically located in the environment (fixed camera
configuration) or it may be mounted on the end-effector of the
manipulator (known as eye-in-hand configuration). With the
former, camera fixed in the environment captures the images
of both the robot and target object and the robot is moved in
such a way that its end-effector reaches the desired target
[2,3]. With the eye-in-hand configuration, the manipulator
move in such a way that the projection of a static or moving
object will be at a desired location in the image as captured by
the camera [4,5,6,7]. The visual servoing systems are also
classified as Position Based Visual Servoing (PBVS) and
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Image Based Visual Servoing (IBVS) [1]. In this paper we
develop an IBVS system with eye-in-hand configuration.
IBVS depends on the selection of features from the image of
the object and uses features directly in the visual sensory
output without computing the object position and orientation.
Feature based approach was proposed by Weiss et al. in [8].
Feddema et al. [9] proposed a scheme to generate a trajectory
in the image feature space. Papanikolopoulos et al. in [10]
introduced sum of squared errors (SSD) optical flow and
presented many control algorithms e.g. proportional-integral
(PI), pole assignment and linear quadratic Gaussian (LQG).
Papanikolopoulos and Khosla also considered an adaptive
controller based on online estimation of the relative distance
of the target and the camera obviating the need of off-line
camera calibration [11]. Other adaptive controllers are
addressed in [12,13,14]. In most of the above-cited works, the
nonlinear robot dynamics is not taken in account in the
controller design and very few authors have considered the
issue of dynamic control. Nasisi and Carelli [15] considered
the linearly parameterized model of robotic manipulator and
presented an adaptive controller to compensate for full robot
dynamics. Zergeroglu et al. [16] considered the nonlinear
tracking controllers with uncertain robot-camera parameters
for planar robot manipulators. Bascetta and Rocco considered
the dynamic effects of both rigid and flexible motion of
manipulators and presented a task space oriented control law
with eye-in-hand configuration [17]. Recently, there has been
increasing interest in the use of intelligent control techniques
e.g. artificial neural networks. Due to their learning
capabilities and inherent adaptiveness, ANN finds a good
application in control design. Yet the use of neural network
technologies with visual feedback in less addressed in
literature e.g. [18]. The uses of application of neural networks
learning robot dynamics are seen in [19,20,21]. Other works
relating to visual servoing are reported in [22,23,24,25,26]. In
this paper we use a feedforward neural network to compensate
for the full robot dynamics that learns the robot dynamics
online and requires no preliminary off line learning. The
controller is designed as a combination of a PI kinematic
controller and feedforward neural network (FFNN) controller
that computes the required torque signals to achieve the
tracking. The visual information is provided using the camera
mounted on the end-effector and the defined error between the
actual image and desired image positions is fed to the PI
controller that computes the joint velocity inputs needed to
drive errors in the image plane to zero. Then the FFNN
controller is designed such that the robot’s joint velocities
converges to the given velocity inputs. The FFNN controller
assumes no knowledge linearly parameterized robot model



like other adaptive schemes. The stability analysis of
combined PI kinematic and FFNN computed torque controller
is carried out using Lyapunov theory.

The whole paper is organized as follows. In Section II, the
robot and camera models are considered. A review of
feedforward neural networks is given in Section III. The NN
controller design is presented in Section IV. Numerical
simulation results are included in Section V. Section VI gives
concluding remarks.

II. MODELING OF A ROBOTIC HAND EYE MANIPULATOR

A. Dynamic Model

Based on the Euler-Lagrangian formulation, in the absence
of friction, the motion equation of an n-link rigid, non-
redundant robotic manipulator can be expressed in joint space
as

M(@§+C,, (A, 4G4 +G(@) =7 (D
wherege R"is the joint displacement vector, M(q)e R™"is
the inertia matrix,C,(g,q) e R"is the vector characterizing
Coriolis and Centrifugal forces, G(q) e R" is the gravitational
force, 7€ R" is the joint space torque. The model (1) has
some fundamental properties that can be exploited in the
controller design.

Property A.1: M(q) is a symmetric positive definite matrix

and bounded above and below i.e. there exits positive
constants «,, and f,, such that

ayl, <M(@) < pyl,

Property A.2: The matrix M(q)-2C,(q,q) is skew-
symmetric.

B. Differential Kinematics

The differential kinematics of a manipulator gives the
relationship between joint velocities  and the corresponding
end-effector linear velocity v and angular velocity " .
This mapping is described by a (6xn) matrix, termed as
geometric Jacobian J,(q) , which depends on the manipulator

configuration.

VI =3, @ 2
o =0, a=J,(a)q 2

where J, is the (3xn) matrix relative to the contribution of

the joint velocities § to the end-effector linear velocity "v

and Jg is the (3xn) matrix relative to the contribution of the

joint velocities ¢ to the end-effector angular velocity " e . If

the end-effector position and orientation is expressed by
regarding a minimal representation in the operational space, it
is possible to compute the geometric Jacobian matrix through
differentiation of the direct kinematics with respect to joint
variables. The resulting Jacobian, termed analytical Jacobian

JA(q) is related to the geometric Jacobian through [28]:

10
Jg(q){0 T(q)}JA(q) ©)

where T(Q)is a transformation matrix that depends on the

minimal parameters of the end-effector orientation.

C. Image plane Modeling

Let a pinhole camera be mounted at the robot end-effector.
The image of a 3D object, captured by the camera consists of a
two-dimensional brightness pattern in the image plane that
moves in the image plane as the object moves in the 3D space.
Let the origin of the camera coordinate frame (end-effector
frame) with respect to the robot coordinate frame be

¥ pe="p. (@) € R’. The orientation of the camera frame with

respect to the robot frame is denoted as “ R.="R. (q) € SO(3).

The presented control strategy is based on the selection of the
feature points of the object’s image. It is assumed here that the
image features are the projection onto the 2D image plane of
3D points in the scene space and the images are assumed to be
noise-free. A perspective projection with a focal length A is
also assumed, as depicted in Fig. 1. An object feature point

®powith coordinates [°p, °p, °p,| eR’ in the camera

frame projects onto a point in the image plane with image
coordinates [uv] eR?. The position &=[uv] eR?of an
object feature point in the image will be referred to as an
image feature point [27]. In this paper, it is assumed that the
object can be characterized by a set of feature points. Some
preliminaries concerning feature points with stationary and
moving objects are recalled below [15].

Fig.1 Perspective Projection

C.1. Stationary Object

Let " P, € R*be the position of an object feature point

expressed in robotic manipulator coordinate frame. Therefore,
the relative position of this object feature located in the robot
workspace, with respect to camera coordinate frame

is|°p, “p, sz]T . According to the perspective projection the
image feature point depends uniquely on the object feature

position” p, and camera position and orientation, and is



expressed as

i3]
v P.| Py

where « is the scaling factor in pixels/m due to camera

sampling and © p, < 0 .The time derivative yields

C
o ~Puep
f=-2 e <P )
pz 0 1 - y sz
P,

On the other hand, the position of the object feature point
with respect to the camera frame is given by
C
Px
“py [F°Ru @[V po - "Pe(@)] (6)

C

P,

Using general formula for velocity of a moving point in a
moving frame with respect to a fixed frame [28] and
considering a fixed object point, the time derivative of (6) can
be expressed in terms of the camera linear and angular
velocities as [29]

“p
Py :CRW " @c x(" Po - Pc (@)-" Vel (7
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After performing these operations, we have
¢ px -1 0 0 0 =° P, ¢ py

C

C

“py|=| 0 -1 0 p, 0 -p,
“p, 0 0 -1 -°p, “p, O (8)
B
0  °R, | "o
where v, and “@. denotes the camera’s linear and

angular velocities with respect to robot frame respectively.
The motion of the image feature point as a function of the
camera velocity is obtained by substituting (8) into (5):
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Instead of using coordinates“p, and ©p, of the object

y
feature described in camera coordinate frame, which are a
priori unknown, it is usual to replace them by coordinates
uand v of the projection of such a feature point onto the
image frame. Therefore, by using (5)

. e JRy 0 [ Mg
‘f_‘]image(‘fﬂ pz)|: 0 CRW ch (10)

where J (&,° p, ) is the so-called image Jacobian defined

by [29]:

image
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Finally, by using (2) and (3) we can express § in terms of
robot joint velocity ( as

. R 0 .
§=Jimage(§fpz>{ w(@ }Jg(qm
0 Ry (@)
(12)
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C.2. Moving Object

When the object moves in the robot manipulator
framework, the derivative of (6) can be expressed as

C .
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where “v. and " @, are the linear and angular velocity of the

camera with respect to the robot frame. The movement of the
feature point into the image plane as a function of the object
velocity and camera velocity is expressed by substituting (13)
into (5):

§:
Lo S SREey o Cpietpl
05/1 p Cp Cp py
e c ’ C 2 Zc 2 [« cZ
P, 0 -1 Py P +7P, P Py cp
c c c X
pz pz pz
c
c w 10 _cpx
|: Rw 0 }{ Vc}_ ar P, CR W p
c w Po
O CRW Wa)C CpZ 0 1 _ py
C
P,
(14)

Finally, by using (2) and (3) we can express & in terms of
robot joint velocity ( as



E=3(0,£.°p,)d+ 30 (.°po)" Po (15)
where
C
o .
Q.
3o(0,°Po) = ¢ PeloR, (16)
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C
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III. FEEDFORWARD NEURAL NETWORKS

A two-layer feedforward neural network with n input units,
m output units and N units in the hidden layer, is shown in
the Fig. 2.

INPUTS
HIDDEN
LAYER

Fig. 2 Feedforward Neural Network

The output vector y is determined in terms of the input
vector X by the formula

N n
Yi = :E:{VVUCT(:ZE:\IR Xk *_é?ﬂ ] +_éami} ji=1-m

j=1 k=1

(17)

where o(.) are the activation functions of the neurons of the
hidden-layer. The inputs-to-hidden-layer interconnection
weights are denoted by v, and the hidden-layer-to-outputs

interconnection weights by w;;. The bias weights are denoted
by 6,6,

i> Qi - There are many classes of activation functions e.g.

sigmoid, hyperbolic tangent and Gaussian. The sigmoid
activation function used in our work, is given by

o(Xx)= 18
() e (18)
By collecting all the NN weights Vv ,w; into matrices of

WeightsVT,WT , we can write the NN equation in terms of

vectors as
y=WTa(V x) (19)
with the vector of activation functions defined by

o(z) =[o(z,)-0(z,)]" for a vector zeR". The bias weights

are included as the first column of the weight matrices. To
accommodate bias weights the vectors x and o(.) need to be

augmented by replacing 1 as their first element e.g.
X=[1% X%,

B. Function Approximation Property

Let f(x)be a smooth function from R" toR™. Let

U, c R"then for X eU, there exists some number of hidden
layer neurons N and weights W and V such that [30]
fX)=W'o(V X)+¢& (20)
The value of ¢ is called the NN functional approximation
error. In fact, for any choice of a positive number ¢, one can
find a NN such that ¢ < &y inU, . For a specified value of &
the ideal approximating NN weights exist. The, an estimate of
f (x) can be given by
f(x)=WT oV x) 1)
whereW and V are estimates of the ideal NN weights that
are provided by some on-line weight tuning algorithms.
B. Error Backpropagation Algorithm

This is a common weight-tuning algorithm that is based on
gradient descent algorithm. If the NN is training off-line to
match specified exemplar pairs (Xy,Yy), with X, the ideal
NN input that yields the desired NN outputy,, then the
continuous-time version of the backpropagation algorithm for
the two-layer NN is given by

\/ 7T T
VY =Fo(V di)E 22)

V =Gx, (6" "WE)"
where F,G are positive definite design learning parameter
matrices. The backpropagated error E is selected as the
desired NN output minus the actual NN outputE=y, —y.
For the scalar sigmoid activation function (18) the hidden-

layer output gradient &' is

&' = diag{o(V " x)}[I - diag{oc(V " x,)}] (23)
where I denotes the identity matrix, and diag{z} means a

diagonal matrix whose diagonal elements are the components
of the vector z . In the next section design of NN controller is
presented.

IV. NN CONTROLLER DESIGN

In this section we consider the design of an image based
control algorithm for tracking of an object moving along an
unknown curve. It is assumed that the object moves along a

smooth trajectory with bounded velocity ¥ p, (t)="v,(t) and
accelerationd ™ p, (t)/dt="a,(t). It establishes a practical

restriction on the object trajectory. Also, there exists a
trajectory in the joint space (,(t) such that the vector of

desired fixed features &, is achievable, ensuring that the
control problem is solvable. &, is taken to be a constant

feature vector in the image plane. The depth “p, i.e. the

distance from the camera to the object is available to be used
by the controller.



Now the control problem can be formulated. The control
problem is to find out a control law so that control error in the

image plane E (t) =&, —&(t) is ultimately bounded in the
small ball B, . An auxiliary velocity control input that achieves
tracking for (15) is given by

u® =37 (K, EM + K, [EDdt)-373," g
and K;

(24)
where K, are design matrices, termed as
proportional gain and integral gain matrices and J* =J " if
Jis invertible else J*is the pseudo-inverse defined as
Jr=37Q"H™".
substituting u(t) for g in (15) we get

Assuming perfect velocity tracking and

ED+KEM+K [Edt=0 25)
Taking the first derivatives of (25) yields
E+K,E+K,E=0 (26)

To analyze the stability of (26), the following Lyapunov
function is chosen:

e @7
From (26) and (27), we have
V, =-ETK,E (28)

Therefore, from Lyapunov stability and LaSalle’s Theorem,

we conclude that E (t) >0 ast—>oo. This implies that
HUEZTE

Given the desired velocity ue R™', define the auxiliary
velocity tracking error ase(t) =u(t)—v(t). Differentiating e(t)
and using (1), the robot dynamics may be written in terms of
the velocity tracking error as

M (@)et) = -C,,(g,det) —z(t) + f(y) 29)
where f(y)=M(Qu(t)+C,(0,q)u(t)+G(q) is called
robot nonlinear function. The vector Yy is given

byy=[v' u" i"]". The function f(y)contains all the robot
parameters such as masses, moments of inertia, gravity,
friction etc. This function is partially known or unknown.
Therefore, a suitable control input for velocity following is
given by
() = f + K e(t) (30)
with K, a diagonal positive definite gain matrix, and

f (y) an estimate of the robot function that is provided by a

feedforward neural network (FFNN). Now, with this control
the closed-loop error system becomes.

M(@¢ =~(K, +C,(a,)e+ T 31)

where f = f —fis the functional estimation error. The
functional approximation of f(y) with a FFNN may be given
as

f(y)=WTo(VTy) (32)

Using this FFNN functional approximation the velocity
error dynamics becomes

M(@&(t) = (K, +C, (6. D)) +W oV y) + e -WTo(VTy)) (33)
In order to proceed further we need the following
definitions [20].

Definition 1: The solution of a nonlinear system with state
y(t) e R"is uniformly ultimately bounded (UUB) if there

U, < R"such
yt,) =Yy, €U,, there exists a 6>0
T(3,Y,)such that |y(t)| <& forall t=t,+T .

exists a compact set that for all

and a number

Definition 2: We define the norm of a vector y e R" as

||y||:,lyf+y22+-~-+yﬁ and the norm of a matrix

AeR™ as |A] = /2, [ATA] where A,,[] and 4[] are

the largest and smallest eigenvalue of a matrix. To be specific
we denote the p-norm by |||| ) and the absolute value as || .

Definition 3: Given A=[a;],B € R™" the Frobenius norm

is defined by ||A||2F :tl’{AT A}: > a; with tr{} as the trace
i

operator. The associated inner product is (A,B)_ = tr{AT B}.
The Frobenius norm is compatible with 2-norm so that
[, <[Allvl.-

Definition 4: For notational convenience, define the matrix of
all NN weights as Z = diag{\N ,V} and the weight estimation
errors asW =W —W, V=V-VandZ=Z-Z. The ideal
NN weights bounded so that ||Z]|_ <Z, with knownZ,, .
Also define the hidden layer output error for a given y as
G=0c-6=0("y)-c(Vy).

Adding and subtracting W o(V "y) in (33), we get

M (@) = (K, +C, @ DRO+W (o Ty) -0V )

U (34)
WTioVTy)+e
The Taylor series expansion of o(V'y) about given V'y
gives us
oV y)=o(VTy)+o'VTyVTy+OV Ty)* (35)
with o'(2) :m the Jacobian matrix and O(z)’
z =1

denoting terms of second order. Denoting &' =o'(V'y) we

have & =6V y+0OV "y)?. Replacing for & in (34) we get

M (@)é(t) =—(K, +C,.(q.9) ) +W 6V Ty +W ™6 +w, (36)
where the disturbance terms are
W) =WTVTy+WTOVTy) +¢ 37)

Finally, adding and subtracting W™ 6V Ty (36) becomes



M (q)é(t) = —(K, +C,, (0, 0))e) +W TV Ty

- . (38)
+WT (&—&VT y)+w
where the disturbance terms are
W(t)=WTGVTy+WTONVTy)? +& (39)

A. NN Weights Update Law

With positive definite design parameters F,G and x>0,
the adaptive NN weight update law is given by

W =Fée' -F&V ye' —«F|eW o)
V = GylsWe) - xGJelV

Then the errors state vector € and W V are uniformly
ultimately bounded and the error state vector e can be made
arbitrary small by adjusting the weights.

Proof: Consider the following Lyapunov function candidate

:%eTM(q)e+%tr(VVTF’W)+%tr(\7TG’l\7) (a1)
The time derivative L of the Lyapunov function becomes
L=e"M(q)e+ % e'M (q)e+tr(vvT F “VV) +tr(\7TG ‘]\7) (41)

Evaluating (41) along (37) we get
L=—-e"Ke-e'C,e +%eT M (q)e
+eTV\7T&\7Ty+eTVVT(&—o‘-\7Ty)+eTw (42)
+ tr(VVT F ’Wj + tr(\7TG "\7)
From property A.2, the matrix M(q)—-2C, (q,q)is skew-
symmetric, hence

—eTCme+%eTl\/'l (@e :%eT (M(@)-2C, (q.q)=0. Also

with VV = —V\?,\? = —\; and adaptive learning rule (40), we have
L=——e"K,e+e™WT6V y+e"W' (&—&VT y)+eTw
W GeT +W TG0 T yeT + W [
+tr(—\7T ye'WT6' T +.V7 ||e|[\/)
=-e'Ke+te'w
WG ATV yeT T (&—&VTy)eT]
+ W el
(VT ye W T 1T Tye W6 T + 40T eV )
or L=—-e"Ke+e'w+ tr(KVVT ||e|[\l\7)+ tr(x\7T ||e||\/)

Taking norm of both sides, assuming w =0 (though w can
be shown to be bounded) we get

L <2 (K, el + clelliZ], 20 - 121 )
The following inequality is used in the derivation of (43)
w(Z72)=tr(z"z-2)

-(2.2), -[4],

(43)

Using Cauchy-Schwartz inequality, we

have<ZN ,z>F SHZNHFZM , and then the Eq. (4.21) is derived.
Completing the square term, we get

el o], 2] ]

The expression for L given by (43) remains negative as
long as the quantity in the bracket is positive i.e. either (45) or
(46) hold

el 2 ) ik =c, @
7). = ,/%Kzfﬂ +%ZM =C, (46)

where C,and C, are the convergence regions. According
to Lyapunov theory and LaSalle extension the UUB of e and
Z is proved [20].

V. SIMULATION RESULTS

The simulation has been performed for three-link articulated
robotic manipulators (Fig. 3) tracking an object point moving
on an elliptical path. The mathematical model of the robotic
manipulator is expressed as

m, 0 0 |4 ¢, 0 0jgq 0 a

O m22 m23 qZ + C21 C22 C23 q2 + g2 = T2

0 m32 m33 q3 C31 C32 C33 q} g3 7'.3

3

m
m, :[—2+ m3Ja22 cosz(q2)+T3a32 cos’(q, +0;)

W

+m,a,a, cos(q,)cos(d, +0;)

2
m2 2 m3a3
my, = (—3 + m3ja2 + 3 +m,a,a, cos(q;)

m,a m
my; =ms, = 333 + 23 a,a, cos(d;)
m,a;

Mo =
33 3

m, 2 m%azz :

—+m, |a; sin(2q,)+———sin(2q, +2
¢, = [ 3 3] , sin(2q,) 3 (29, +245) d

+m,a,a, sin(2q, +0;)

2
m3a3

sin(2q, +24;) g
3

+Mm,a,a, cos(d,)sin(d, +0;)

2

m, Myl ... m,a; .
—+—|a,; sin(2q, ) + sin(2q, +2
021:[6 zjz (20) + = sin(24, +20,) |

+m,a,a, sin(2q, +0,)

C,, =—M;a,a,sin(q; )},

1



N 1 m.a,a, sin(q, )4 rate in the weight-tuning algorithm is
n =77 M8, s )4 F=1,,G=1, and x =.0001. The simulation of the whole

m,al . m,a,a, ) ] system is shown for 1 second (transient response) and 15
Gy = 6 sin(24, +24;) +—2 cos(,)sin(q, +0d;) [0, seconds (steady state response).
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The parameter values for the model are taken as 44 1
m, =5m,=4,m;,=2,a, =25.a, =25,a, =2.5,9=9.8 : ot T Trapeciory
I —- Joint 2 Ti i E
The camera parameters are set to be « =1000, A =0.01. The : - Joint 3 Trectory
gain parameters are N i
100 0 10 0 1000 0 /
K, = , K = , K, = . N I
0 100 0 10 0 1000 j T
The point object is considered moving on the following 0 . .
elliptical path with @ = 0.1 ’ * ey N

Y pg =[cos(at) 2.5+1.5sin(at) O] .

The target point for image feature is taken to be the center
of the image plane. The initial values for joint angles and joint
velocities are  (,(0)=x/10, q,(0)=7/4,9,(0) =7 /10
§,(0)=0, ¢,(0)=0, g;(0) =0 . The architecture of the FFNN

is composed of 9 input units & 1 bias unit, 10 hidden
sigmoidal units & 1 bias unit and 3 output units. The learning
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VI. CONCLUSION

In this paper a stable control algorithm is presented for
visual tracking of moving objects with for robot manipulators
with camera-in-hand configuration using direct visual
feedback with unknown robot dynamics. The unknown robot
dynamics is fully compensated with a feedforward neural
network. The neural network learns the dynamics online and
requires no preliminary learning. The NN weights may be
simply initialized to zero and errors may be kept arbitrarily
small by increasing the gain K, . The stability of the overall

system is proved using Lyapunov function that is generated by
weighting matrices. Simulation of 3 DOF manipulator
tracking an object point feature, moving on an elliptical path is
carried out to illustrate the control methodology. The
simulation results show that the feedforward neural network
with the on-line updating law can compensate the full robot
dynamics efficiently.
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