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Abstract—“A General Reflex Fuzzy Min-Max Neural 

Network” (GRFMN) is presented.  GRFMN is capable to 
extract the underlying structure of the data by means of 
supervised, unsupervised and partially supervised 
learning. Learning under partial supervision is of high 
importance for the practical implementation of pattern 
recognition systems, as it may not be always feasible to get a 
fully labeled dataset for training or cost of labeling all 
samples is not affordable. GRFMN applies the acquired 
knowledge to learn a mixture of labeled and unlabeled 
data. It uses aggregation of hyperbox fuzzy sets to 
represent a class or cluster. A novel reflex mechanism 
inspired from human brain is used to solve the problem of 
class overlaps. The reflex mechanism consists of 
compensatory neurons which become active if the test data 
belongs to an overlap region of two or more hyperboxes 
representing different classes. These neurons help to 
approximate the complex topology of data in a better way. 
The proposed new learning approach to deal with partially 
labeled data and inclusion of compensatory neurons, has 
improved the performance of GRFMN significantly. The 
advantages of GRFMN are its ability to learn the data in a 
single pass through and no requirement of retraining while 
adding a new class or deleting an existing class.  The 
performance of GRFMN is compared with “General Fuzzy 
Min-Max Neural Network” proposed by Gabrys and 
Bargiela. The experimental results on real datasets show a 
better performance of GRFMN.  

 
Index Terms—Fuzzy Min Max Neural Network, Reflex 

Mechanism, Compensatory Neurons.  

I. INTRODUCTION 
Pattern recognition deals with the problem of identifying the 
underlying structure in the data or in other words, it is “a search 
for the structure in the data” [1]. Pattern recognition has gained 
significant importance due to number of reasons such as the 
need to add intelligence to machines so as to automate work 
with flavor of human skills, heavy demand of data processing, 
searching and the need of easy interfaces to communicate with 
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computing machines. In 1965, Fuzzy set theory proposed by 
Zadeh [2] revolutionized the field of pattern recognition due to 
its capability to handle the imprecision. Interpretation of the 
data structure using fuzzy techniques is an efficient and natural 
choice where precise data partitions are not known. Since fuzzy 
logic and neural network are complimentary rather than 
competitive [3], lots of neuro-fuzzy approaches have been 
developed. The evolution of neuro-fuzzy approach and its need 
for pattern recognition is adequately elaborated in [4]. A novel 
approach called as “Fuzzy Min-Max Neural Network” 
(FMNN) using aggregation of hyperbox fuzzy sets was 
proposed by Simpson [5], [6]. A hyperbox [7] is a simple 
geometrical structure, shown in Figures 1(a),(b). An 
n-dimensional hyperbox can be formed by just defining its min 
point and max point.  

 
Fig.1 (a) Two Dimensional (b) Three Dimensional Hyperbox 

 
 

FMNN algorithm is an example of merge of fuzzy logic and 
ART1 neural network [8] for pattern clustering, similar to the 
method proposed by Carpenter et al in [9]. This is a powerful 
method to classify linearly non-separable multidimensional 
data (e.g. Figure 2), in a single pass through. A recursive 
algorithm called as “General Fuzzy Min-Max Neural Network” 
(GFMN) [10] proposed by Gabrys and Bargiela is a fusion of 
FMNN classification [5] and FMNN clustering [6] algorithms. 
The main advantage of GFMN is that the hybrid approach 
enabled handling of labeled and unlabeled data simultaneously 
(i.e. partial supervision). Learning with partial supervision is an 
important issue in the practical implementation of pattern 
recognition systems. Sometimes it is not feasible to get a fully 
labeled dataset for training, or the cost of labeling all the data is 
not affordable. In such situations efficient learning with partial 
supervision is essential. The use of additional unlabelled data 
has been shown to offer improvements in comparison to the 
classifiers generated only on the basis of limited labeled dataset 
[11]. The approach of partial supervision or semi-supervised 
learning is found to be very useful in many practical 
applications [12]-[14].  

The present work proposes “A General Reflex Fuzzy 
Min-max Neural network” (GRFMN) which deals with 
supervised, unsupervised and semi-supervised pattern 
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recognition problems.  

  
Fig.2 A Two dimensional example of classification of linearly 
non-separable data using Hyperboxes. 

 
FMNN and GFMN learn the data by creation and expansion 

of hyperboxes. It contracts the hyperboxes belonging to 
different classes, facing the problem of overlap (Figure 3(a)) or 
containment (Figure 4(a), 5(a)). The contraction process avoids 
membership ambiguity in the overlapped region. The error 
analysis for FMNN and GFMN algorithms on labeled data 
show that contraction process causes classification errors in the 
learning phase [15][16]. In hybrid learning mode (partial 
supervision), knowledge acquired from labeled samples is 
applied to label the unlabeled data. Thus, a better approach to 
deal with labeled data is needed to improve the performance in 
hybrid mode. Moreover, performance of FMNN and GFMN 
are highly dependant on the choice of expansion coefficient i.e. 
maximum hyperbox expansion allowed. There are many 
approaches reported in the literature to optimize the 
performance of FMNN classifier such as [10],[18]-[21]. 
However, the optimization in these methods is achieved at the 
cost of recursive nature of the algorithms i.e. single pass 
through learning capability is lost.  

The proposed GRFMN classifier is a merge of FMNN 
classification [5], clustering [6] and concept of reflex 
mechanism [16][17]. It handles labeled, unlabeled and partly 
labeled dataset more efficiently. GRFMN avoids the use of 
contraction process for the labeled data and hence errors due to 
it. It uses a reflex mechanism to overcome the hyperbox 
overlap and containment problems. This mechanism is inspired 
from the reflex system of human brain which takes over the 
control in hazardous conditions unconsciously [22]. The reflex 
mechanism consists of compensatory neurons which are 
helpful to approximate the complex topology of the data in a 
better way. Compensatory neurons are added dynamically to 
the reflex section of the network during training. These neurons 
maintain the hyperbox dimensions and control the membership 
in the overlapped region. The paper also proposes a modified 
learning algorithm for labeling the unlabeled data during 
training. A comparison of FMNN, GFMN and GRFMN in 
different modes is shown in section II. The main advantage of 
GRFMN over GFMN is its better capability to identify 
underlying structure in the data. Moreover, the training of 
GRFMN is on-line, single pass through compared to the 
recursive training of GFMN. Results show a significant 
improvement with a reduced classification error for GRFMN.   

Rest of the paper is organized as follows. Section II describes 
error analysis of FMNN and GFMN learning algorithms and 

modifications proposed in GRFMN learning algorithm. The 
architecture details of GRFMN are given in section III. Section 
IV elaborates the learning mechanism of GRFMN. GRFMN is 
tested on several real datasets and results are compared with 
GFMN. The experimental details are given in section V. The 
final section concludes with summery. 

II. ANALYSIS OF FMNN, GFMN LEARNING ALGORITHMS  
The analysis of FMNN and GFMN learning is done for the 

three learning modes i.e. i) classification, ii) hybrid and iii) 
clustering mode.  FMNN and GFMN learning algorithms 
constitute three steps,  

1) Hyperbox Expansion, 
2) Overlap Test and  
3) Hyperbox Contraction.  
When a training sample is presented to the network, it tries 

to accommodate the sample in one of the existing hyperboxes 
of that class, provided the hyperbox size is not exceeding a 
specified maximum limit. Otherwise, a new hyperbox is added 
to the network. To avoid an ambiguity in the classes, overlap 
test is carried out. If overlap exists then it is removed by 
contraction process.  

A. Classification Mode 
Here we discuss the problems faced by FMNN and GFMN 

while dealing with labeled training data. Figure 3 depicts one 
such situation. When the data shown in Figure 3(a) is used for 
training FMNN or GFMN, two hyperboxes are created with an 
overlap. To remove overlap, the hyperboxes are contracted. 
Figure 3(b) shows the result after the contraction process. Note 
that the data points B and C are contained in the hyperboxes of 
class1 and class2 respectively, after contraction. Thus, point C 
gets full membership of class 2 and partial membership of 
class1 i.e.  }{and}{ 1 < ≤  1 = )C(0)C( 12 μμ . However, point C 
actually belongs to class1 and its membership grade should 
be }{and}{ 1 < ≤  1 = )C(0)C( 21 μμ . Instead, it is classified with 
less membership grade in class 1. Similar is the case for the data 
point B, instead of membership grades }{ 1 = )B(2μ  

}{and 1 < ≤  )B(0 1μ , contraction process causes membership to 
be μ1(B)=1 }{and 1 < ≤ )B(0 2μ and leads to training error. In 
general, information about the non-ambiguous area (such as 
gray area in Figure 3(b)) is also tampered by this contraction 
process.   

This is handled more accurately in proposed GRFMN by 
adding overlap compensation neurons (OCNs) to the network. 
OCNs are added to the network whenever such overlap occurs 
during training.  
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Fig. 3. Overlap removing process in FMNN and GFMN. 

  
Fig.4 Full Containment Problem. 

 
Figure 4(a) depicts a problem of hyperbox containment. Here 

a hyperbox of class 2 is completely contained by the hyperbox 
of class 1. FMNN and GFMN solve this problem by hyperbox 
contraction as shown in the Figure 4(b). It is clear that after 
contraction the membership of point D for class1 becomes 

 1 < ≤ })({ D0 1μ even though actual membership is  1 = })({ D1μ .  
Therefore, this causes a gradation error due to contraction 

(here, gradation error for a sample means the difference 
between desired and actual grade for certain class). If 
μ2(D)>μ1(D) (after contraction) then it causes a classification 
error as well. Moreover, information about the non-ambiguous 
area (gray area in Figure 4(b)) is tampered as well. 

Figure 5 depicts a partial containment problem and the way it 
is eliminated by FMNN and GFMN. The max point of a 
hyperbox partially containing other class hyperbox is changed 
from D to D’ and will not get a full membership in its original 
class. Moreover, membership grade of the point B remains 
ambiguous and learned non-ambiguous information (gray area 
Figure 5(b)) is also tampered. The problems shown in Figures 
4(b), 5(b) are solved in GRFMN by adding containment 
compensation neuron (CCN) to the network. 

 

 
Fig. 5 Partial Containment Problem. 

B. Hybrid Mode 
This mode is used if training dataset consists of mixture of 

labeled and unlabeled samples. This mode does not exist in 
FMNN algorithm. In hybrid mode of learning, GFMN tries to 
label the unlabeled data with the help of acquired knowledge 
from the labeled training data. The above error analysis is 
equally valid for the labeled training samples in hybrid mode. 
Thus, contraction process in GFMN introduces training errors 
for the labeled data, which in turn hampers its performance in 
hybrid mode. We introduce the use of compensatory neurons in 
GRFMN to handle labeled data efficiently so as to improve the 

performance in hybrid mode.  
GFMN learning algorithm assigns a label to an unlabeled 

hyperbox when a single labeled sample falls in it, but on the 
other hand the overlap between labeled and unlabeled 
hyperboxes is not allowed. Rather, it removes the overlap of 
unlabeled hyperboxes with all other hyperboxes. Here we 
introduce a change in GRFMN and allows the unlabeled 
hyperbox to overlap with a labeled hyperboxes. Moreover, we 
assign its class label to the unlabeled hyperbox. GRFMN 
undergoes a hyperbox contraction process if there is an overlap 
between two unlabeled hyperboxes.  

C. Clustering Mode 
In clustering mode, all training samples are unlabeled. There 

exists a difference in the contraction process of FMNN 
clustering algorithm [6] and GFMN algorithms. FMNN 
contracts the hyperboxes along all the dimensions if two 
hyperboxes are found to be overlapping. Whereas, GFMN 
contracts overlapped hyperboxes along a dimension with 
minimal overlap. Gabrys and Bargiela have reported in [10] 
that using this approach GFMN works better than FMNN with 
creation of less number of hyperboxes. Hence, GRFMN uses 
same contraction approach for the overlap amongst unlabeled 
hyperboxes. 

There is a change in the hyperbox expansion policy in 
GRFMN compared to GFMN. GRFMN allows expansion of a 
hyperbox to accommodate a training point, if its membership to 
the hyperbox is greater than zero and average expansion is less 
than a user specified maximum limit. Whereas, GFMN expands 
the hyperbox if expansion is not crossing a user specified limit 
along any dimension of the hyperbox. Experimental results 
show that the approach used in GRFMN gives more correct 
results with less number of hyperboxes. Note that 
compensatory neurons are not created for GRFMN in pure 
clustering mode.  

III. A GENERAL REFLEX FUZZY MIN-MAX NEURAL NETWORK  
General Reflex Fuzzy Min-Max Neural Network (GRFMN) 

is a hyperbox fuzzy set based algorithm for supervised, 
unsupervised and semi-supervised learning. The learning is of 
incremental type i.e. data samples are applied in a sequence. 
The network tries to learn the applied labeled samples by 
accommodating them in one of the existing hyperboxes of same 
class or label. This process is called as hyperbox expansion. If 
hyperbox expansion is not possible, a new hyperbox is added to 
the network. The aggregation of such hyperboxes (subsets) 
belonging to a class forms a complete class.  

When an unlabeled sample is applied for the training, 
network tries to accommodate it in one of the existing labeled 
or unlabeled hyperboxes otherwise creates a hyperbox without 
label. An attempt is always made during training to label the 
unlabeled hyperboxes or samples, using the acquired 
knowledge. The details of learning algorithm are discussed 
section IV.  
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Fig. 6 GRFMN Architecture. 

 
where     ah1-ahn: Input data sample. 

a1-an : Input nodes.   
b1-bj : Classification hyperbox nodes. 
C0-Ck : Class nodes.  
d1-dp : Overlap compensation hyperbox nodes. 
e1-eq : Containment compensation hyperbox nodes.   
o0-ok : Overall compensation nodes. 

 
During the training process hyperbox overlaps or 

containments (Figures 3(a), 4(a), 5(a)) do occur and this creates 
an ambiguity to decide the class for a test sample belonging to 
overlap region. FMNN [5] and GMNN [10] use a hyperbox 
contraction process to solve this problem. As discussed in 
section II this contraction causes the training errors for FMNN 
and GFMN algorithms. Here we deal with this problem using a 
novel concept of reflex mechanism which consists of overlap 
compensation and containment compensation neurons [16], 
[17].  As a result, the underlying data structure is captured more 
correctly.  

A.  GRFMN Architecture Overview 
The proposed architecture of GRFMN is shown in Figure 6. 
Three different types of neurons are used in the architecture of 
GRFMN. The classifying neurons (CLNs) are the backbone of 
GRFMN. It helps to classify the data into number of classes 
learned. The reflex section consists of overlap compensation 
neurons (OCNs) and containment compensation neurons 
(CCNs). These are membership compensation neurons, used to 
decide the membership in the overlap zone of classifying 
neurons. The topology of network grows to meet the need of 
the problem during the training phase. All the input features are 
scaled between [0-1] for simplicity. The input layer receives a 
vector representing an input sample I n∈ha , where nI is an 

n-dimensional unit cubic space. The number of nodes in the 
input layer is equal to the dimension of applied data sample. 
The middle layer neurons and output layer nodes are 
partitioned into two sections- Classifying Neuron (CLN) 
section, and Reflex section. The reflex section is subdivided 
into Overlap Compensation Neuron (OCN) section and 
Containment Compensation Neuron (CCN) section.  

A neuron in the middle layer represents an n-dimensional 
hyperbox fuzzy set. A connection between an input and a 
hyperbox node in the middle layer represent min and max 
points (V & W) respectively.  The transfer functions of neurons 
in the middle layer are elaborated in section (III.2). Hyperbox 
nodes in the reflex section represent overlaps and containments 
occurring in CLN section. All middle layer neurons are created 
dynamically during the training process.  

A hyperbox node in the CLN section is created if training 
sample belongs to a class which has not been encountered so far 
or existing hyperboxes belonging to that class can not be 
expanded further to accommodate it. The connections between 
hyperbox and class nodes in CLN section are represented by 
matrix U. A connection between a hyperbox node bj to a class 
node Ci is given by, 

               
⎩
⎨
⎧

∉
∈

= }{if0
}{if1

ij

ij
ij Cb

Cb
u                       (1) 

Note that all unlabeled hyperboxes created during training 
are connected to node C0.  Here onwards terminology “class 
nodes” is specifically used for labeled hyperboxes.  

A hyperbox node in the middle layer of reflex section is 
created whenever the network faces the problem of hyperbox 
set overlap or containment. OCN section takes care of the 
overlap problem illustrated in Figures 3(a),8(b). The 
connections between hyperbox nodes and class nodes in the 



 
 

 

 

5

OCN section are represented by matrix Y. The connection 
weights from a neuron dp (representing overlap between ith and 
jth class hyperboxes) to ith and jth class nodes in OCN 
sub-section are given by, 

⎩
⎨
⎧ >≠∩∈

=
otherwise0

0}and{if1and ji,ji,jCiCpd
jpyipy       (2) 

Similarly, a hyperbox node in CCN section is created 
whenever a hyperbox of one class is contained fully or partially 
within a hyperbox of another class, as depicted in Figures 4(a), 
5(a), 10(b). The connections between the hyperbox nodes and 
class nodes in the CCN section are represented by Z matrix. 
The connection weights from a neuron eq to a class node Ci in 
CCN section are given by, 

        

⎪
⎪
⎩

⎪⎪
⎨

⎧
>≠=

otherwise0

0andbypartially     
or fully  containedisif1
ji,ji,iC

C

iqz
j

                 (3) 

Note that the overlap or containment between a labeled 
hyperbox 0)( >∀∈ i,CB ij  and unlabeled hyperbox 

0)( =∀∈ i,CB ik  does not create any OCN or CCN in reflex 
section as this overlap is allowed and is used to label the 
unlabeled hyperboxes. 

The output layer consists of (k+1) nodes, if k classes are 
learned along with unlabeled data. One extra node (C0 in Figure 
6) represents the unlabeled hyperboxes created during training. 
The number of output layer nodes in CLN section is same as the 
number of classes learned. The number of class nodes in CCN, 
OCN sections depends on the nature of overlap the network 
encountered during the training process. The final membership 
for ith class node is given by, 

      iOiCi +=μ                             (4) 
where Ci is the membership of ith class in CLN section given by, 

)(
..

miumbmaxiC
.j1m =

=                                  (5) 

          Oi  is the compensation for the ith class given by, 
                ))()(( jijjiji zemin,ydminminO

1,..qj1,..pj ==
=                (6) 

Equation 4 is designed to handle the multiple class overlaps. 
Equation 5 finds a class membership by finding the maximum 
value amongst all the membership grades offered by different 
hyperboxes belonging to that class and Equation 6 finds 
compensation for a class. Thus, μi gives a maximum grade to a 
class from the available grades considering its compensation.  

B.  Classifying Neurons and Reflex Mechanism 
The details of classifying neurons and reflex mechanism are as 
follows: 

1)  Classifying Neuron (CLN) 
A neuron bj in CLN section represents a hyperbox fuzzy 

set Bj, as defined in [5] , 
   n

hjjhjjhj IAW,V,AfW,V,AB ∈∀= )}(,{              (7)  

where ),.....,,(),,.....,,( 2121 jnjjjj wwwWvvvV jnjj ==  are min and max 

points of the hyperbox.   
Gabrys and Bargiela [10], have discussed the disadvantages 

of activation function used in FMNN [5],[6] and proposed a 
new activation function for a neuron bj. Hence, the activation 

function used for the neuron bj is given by [10], 

 
Fig. 7 Classifying Neuron. 
 

)))((1
))((1

(),( ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
= γ,aVf

,γ,Waf
W,Vab

hiji

jihi
1..nι

jjhj minmin      (8) 

where  V, W  are min-max point of hyperbox Bj, ),( γxf  is a two 
parameter ramp threshold function  

⎪⎩

⎪
⎨
⎧

≤≤
>

=
0 < if      0 

1   0 if   
1 if      1 

)(
xγ

xγxγ
xγ

γx,f                    (9) 

γ : Fuzziness control parameter. 
This activation function assigns membership value one if the 

test sample falls within the hyperbox. If it is outside hyperbox, 
membership value is calculated based on its distance from the 
min-max points. Figure 7 shows detailed diagram of a 
hyperbox node. 
2)  Overlap Compensation Neuron (OCN) 

Figure 8(a) shows an overlap compensating neuron. Figure 
8(b) depicts a general situation where two hyperboxes 
belonging to different classes are overlapping each other. OCN 
represents a hyperbox of size equal to the overlapped region 
between two hyperboxes belonging to different classes. OCN 
produces two compensation outputs, one each for the two 
overlapping classes. The OCN is active only when the test data 
is within the overlap region. The activation function is given by 
Equation 10. The activation function of this neuron protects the 
class of the min-max points of overlapping hyperboxes and 
offers a graded membership within the overlapped region.  

 

 
Fig. 8 Overlap Compensation Neuron  

 
The activation function is as follows: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+−×=

=

n

i hi

jip

jip

hi,,hj a

v
,

w
amax

n
abTd jjpj

1

111-)( WV   (10) 

where pjd : p=1 and 2, outputs for class 1 and class 2 

respectively.     
ah     : input data. 
Vj,Wj  :are min-max point of OCN.  
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V1,W1,V2,W2 : are min-max point of the overlapping 
hyperboxes.  
T(x) :  A Threshold function  

⎩
⎨
⎧

<
≥= 0if0

0if1)( x
xxT                              (11) 

The first bracket consisting of T(x), avoids neuron to be 
active if the test data is outside the overlapped region. This is 
possible because 

⎩
⎨
⎧ =

=−
Otherwise0

withinContainedi.e.1if11))(( phj
j

da,bxbT         (12) 

The second bracket calculates the class membership with 
reference to the min-max points of overlapped hyperboxes. As 
a result, OCN takes over the control from CLN section and 
assign membership to the test sample if it falls in the overlapped 
region. This is very similar to the reflex action in human brain 
which takes over the control unconsciously in hazardous 
conditions. If the test sample ah belongs to the overlapped 
region i.e. { }jiCCa jih ≠∩∈ , the classifier section will 
allocate membership grade ‘1’ for both the classes. In such a 
case, the activation function of compensatory neuron 
compensates the dispute and adds the respective membership 
grade. 

Figure 9 shows the membership plot after adding the 
compensation output to the class 1 for the overlap region as 
depicted in Figure 3(a), 8(b). Note that the membership grade 
for class1 gradually decreases from point C to B and 
membership grade for class 2 is exactly opposite. It protects the 
class membership of min and max points of the overlapping 
hyperboxes, thus protecting the learned samples 
accommodated as min point and max points while expanding 
the hyperboxes. As no contraction is done, non-ambiguous 
region (as shown in Figure 3(a)) are also protected by OCN. 

 

 
Fig.  9 Membership for class 1, after adding the compensating output 
O1. 

 
3)  Containment Compensation Neuron (CCN) 

The containment compensating neuron is shown in Figure 
10. CCN is trained to handle the partial and full containment 
problems. CCN represents a hyperbox of size equal to the 
overlapping region between two classes as shown in the Figure 
10(b). This neuron is also active only when the test sample falls 
inside the overlapped region. The output of this neuron is 
connected to the class that contains the hyperbox of other class. 

Referring to the Figure 10(b), for the point P, both neurons 
representing the hyperboxes for the class1 and class 2 will  

 
Fig.10 (a) Containment Compensation Neuron (b) The hyperbox 
represented by CCN (Shaded area) 

 
produce membership grade ‘1’. Actually, the class 2, which is 
surrounded, by the class 1 contains the point P. Therefore, this 
compensating neuron subtracts 1 from the grade allocated to 
class 1 and hence compensates the output. For the point P1 
grade given by the neuron representing hyperbox of class1 is 
‘1’. The neuron representing the hyperbox of class 2 gives the 
membership grade depending on the distance of the point P1 
from its min-max points. The output of compensating neuron is 
zero as P1 falls outside the overlapping region. The activation 
function of CCN is given by, 

1))((1 −×−= WV,,bTe hjj a               (13) 

where     ej     : output of OCN. 
V,W : min-max point of CCN,  
ah       : input data  
T(x) : threshold function equation (12). 

Note that as no hyperbox contraction is done, non-ambiguous 
regions as depicted in Figures 4(b), 5(b) are also protected. 

IV. LEARNING AND RECALL ALGORITHMS  
GRFMN learning algorithm creates and expands hyperboxes 

depending on the need of the problem. It tries to label the 
unlabeled data using currently learned structure. If there is any 
overlap, containment created (between hyperboxes of different 
classes) during expansion of labeled hyperboxes; respective 
compensatory neuron is added to the network. Contraction 
procedure [5] is executed if there is any overlap between 
unlabeled hyperboxes. Following learning algorithm can train 
GRFMN in three different modes i.e. classification, clustering 
and Hybrid modes (Partial Supervision).  

A.  Learning Algorithm 
Learning algorithm consists of mainly two steps namely 

Data Adaptation and Overlap Test.  
Assume that {ah, Ci} is a training data sample, {bj, Cj} a 
hyperbox for class Cj and Θmax is a maximum hyperbox size 
allowed during expansion. Initialize the network with b1 having 
V1=W1=ah and class label as Ci for an ordered pair of data 
{ah,Ci}. Unlabeled data or hyperboxes are represented by a 
label C0 for simplicity.  
Repeat the following steps 1 and 2 for the all-training samples.  
 
STEP 1:  Data Adaptation 

Take a new training data point {ah, Ci} 
a) Find a hyperbox {bj, Cj} such that Cj=Ci or Cj= C0 offering 
largest membership and satisfying the conditions, 
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(1) ∑ −≥
=

n

i
hijihijimax a,vmina,wmax

n
Θ

1
))()((1 ,          (14) 

(2) bj is not associated with any OCN or CCN, and 
(3) If Ci= C0 or Cj= C0 then μj>0, where μj is membership with 
hyperbox bj. 
Adjust min-max points of hyperbox bj as,  

Vji
new= min (Vji 

old, ahi)  
Wji

new= max (Wji
 old, ahi) where i =1,2…n             (15) 

   and If Cj=C0 and Ci≠C0 then Cj=Ci.                
b) If no suitable bj is found create a new hyperbox with 
Vj=Wj=ah and class Ci . Go to step 1 
 
STEP 2: Overlap Test 
  Assume that hyperbox bj, expanded in previous step is 
compared with all other hyperboxes bk.  
 If Cj and Ck=C0 then do the overlap and contraction test as 
explained in Test 2 [5].  
Else do the following Test 1. 
 
Test 1: 
a) Isolation Test:  
  If (Vki<Wki<Vji<Wji) or (Vji<Wji<Vki<Wki) is true for any i, 

(i∈1... n) then (bk,,bj)  are isolated  Go to Step1. 
  Else go for Containment test. 
b) Containment Test:  
  If (Vki<Vji<Wji<Wki) or (Vji<Vki<Wki<Wji) is true for any i, 

(i∈1,2.. n) then 
  Case1: if Cj=C0 then assign Cj=Ck go to step 1. 
 Case2: if Ck=C0 then assign Ck=Cj go to step 1. 
  Case3: if Cj and Ck≠C0 create a CCN with hyperbox min-max 

co-ordinates given by 
 Vci= max (Vki, Vji) ,  Wci=min (Wki, Wji) for i=1,2…n      (16) 

  Go to Step 1 
     Else hyperboxes are not facing containment problem go to 

step (c) 
c) Overlap compensation neuron creation: 
 Case1: if Cj=C0 then assign Cj=Ck go to step 1. 
  Case2: if Ck=C0 then assign Ck=Cj go to step 1. 
  Case3: if Cj and Ck ≠C0 create a OCN with hyperbox 

min-max co-ordinates given by 
Voci= max (Vki, Vli) ,  Woci=min (Wki, Wli) for i=1,2…n    (17) 

  Go to Step 1 
 
Test 2: 
 This follows the principle of minimal disturbance[5]. It finds 
the dimension with minimum overlap and contracts it. Let d 
represents the overlap along a dimension. 
a) Overlap Test: 
 Assume that overlap is dold =1.  
 Check for the following cases for i=1, 2…n. 
  Case 1: (vji< vki< wji < wki ) 
   dnew= min(wji-vki, dold) 
  Case 2: (vki< vji< wki<wji) 
   dnew=min(wki-vji,dold) 
  Case3: )wwv(v or )wwv(v jikikijikijijiki <≤<<≤<  
   dnew=min( min(wki-vji,wji-vki) , dold ) 
If overlap exists (i.e. one of the above condition is true) and 

(dnew- dold )>0, then Δ=i  else Δ=-1.  
If no overlap found then Go to step 1. 
 
b) Contraction: 

If overlap exists and is minimum along Δ dimension, then 
contract the hyperboxes using the following conditions: 
Case 1: (vjΔ<vkΔ< wjΔ<wkΔ ) 

 
2

wv
wv

old
jΔ

old
kΔnew

jΔ
new
kΔ

+
==                      (18) 

Case 2: (vkΔ< vjΔ< wkΔ<wjΔ)  

2
wv

wv
old
kΔ

old
jΔnew

jΔ
new
kΔ

+
==                           (19) 

Case 3:  )( ΔΔΔΔ kjjk wwvv <≤<  

  old
k

new
j

old
k

new
jkjjk

vwelse
wv)v(w)v(w

ΔΔ

ΔΔΔΔΔΔ thenIf
=

=−<−    (20) 

Case 4:  )( ΔΔΔΔ jkkj wwvv <≤<  

  old
k

new
j

old
k

new
jkjjk

wvelse
vw)v(w)v(w

ΔΔ

ΔΔΔΔΔΔ thenIf
=

=−<−   (21) 

          Go to step 1. 
 

B.  Recall Procedure 
Recall procedure is very simple. Class nodes in the each 

section calculate the class memberships and respective 
compensations. The summing node in the classifying neuron 
does the final grade calculation. The membership grade is 
computed according to equation 4. 

V. RESULTS 
GRFMN algorithm was tested on various datasets. GRFMN 

and GFMN algorithms can operate in three different modes that 
is classification, clustering and hybrid mode. The performance 
of GRFMN was compared with that of GFMN in all the three 
modes. Various experiments were carried out with different 
aims as follows. 

1. To verify the performance improvement of GRFMN by 
addition of compensatory neurons. 

2. To study the effect of variation of expansion coefficient 
(Θ) on the performance of GRFMN and compare it with 
FMNN and GFMN. 

3. To compare performance of GRFMN with GFMN in 
hybrid and clustering mode of learning 

Real dataset such as Iris, Wine, Ionosphere, Glass, Thyroid [23] 
and Breast Cancer [24] were used for the experiments.  

A.  Example to demonstrate the Overlap Compensation 
Neuron working 

 Referring to the problem discussed in Figure 2(a), after the 
contraction of hyperboxes, classification result for the training 
data is shown in the Table II. Table III shows the result for 
Crisp or Binary classification based on the maximum 
membership grade of a data point in a certain class. This 
problem is solved by GRFMN with creation of an OCN with 
min point as (0.3, 0.2) and max point (0.4, 0.4). The results 
shown in Tables II and III indicate that training data B and C 
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are misclassified by both FMNN and GFMN due to hyperbox 
contraction. However, by introducing overlap compensation, 
original classes of B and C are retained.  

TABLE I 
Expansion Coefficient θ =0.4, Sensitivity Parameter γ=4. 

Membership Grade 
FMNN GFMN GRFMN  

Sr 
 

Data 

 
Class 
(C) C1 C2 C1 C2 C1 C2 

1 A (0.1,0.1) C1 1 0.65 1 0.0 1 0.2 
2 B(0.3,0.2) C2 1 0.95 1 0.8 0.63 1 
3 C(0.4,0.4) C1 0.95 1 0.8 1 1 0.8 
4 D(0.5,0.5) C2 0.75 1 0.4 1 0.6 1 

 
TABLE II 

CRISP CLASSIFICATION OF THE TRAINING DATA. 
Crisp Classification  

FMNN GFMN GRFMN Sr Data Class 
(C) 

C1 C2 C1 C2 C1 C2 
1 A (0.1,0.1) C1 1 0 1 0 1 0 
2 B (0.3,0.2) C2 1 0 1 0 0 1 
3 C (0.4,0.4) C1 0 1 0 1 1 0 
4 D (0.5,0.5) C2 0 1 0 1 0 1 

 

B. Classification Mode 
In this mode of operation, all the training samples used are 

labeled. Results of GRFMN, GFMN and FMNN are compared 
with respect to the variations in expansion coefficient. 

1)  Complete data set for training and testing 
We tested GRFMN algorithm on widely used datasets such 

as Iris, Wine, Ionosphere and Thyroid. Table III shows a 
comparison of results for GRFMN on Iris, Wine and 
Ionosphere datasets with the results of GFMN and FMNN 
reported in [10]. All the samples are used for training and 
testing. Expansion coefficient is varied from 0 to 1 in step of 
0.01 and maximum and minimum errors are reported in Table 
III. Results on Thyroid dataset for GRFMN, GFMN and 
FMNN algorithms are also added in Table III.  The minimum 
correct classification on the Iris data with both FMNN and 
GFMN is 92%, where as GRFMN gives minimum correct 
classification of 98%. Similar improvement is also observed on 
Wine, Ionosphere and Thyroid datasets. 

2)  Fifty percent Iris data for training and testing 
Here GRFMN is trained with 50% randomly selected iris 

data and testing was carried out on remaining data. No training 
and testing error are observed for GRFMN with expansion 
coefficient 0.038. So appending the table of comparison in 
[5],[10] we can compare GRFMN performance with other 
conventional classifiers on the Iris data set as shown in Table 
IV. Note that GRFMN classifies all the data correctly.  

3)  Performance on Expansion coefficient variation 
In this experiment, the effect of expansion coefficient on 

performance of GRFMN, FMNN and GFMN is studied. Sixty 
percent data sample from each class of Iris dataset are selected 
randomly for the training purpose and entire Iris dataset is used 
for Testing. The expansion coefficient was varied from 1.0 to 
0.02 in steps of 0.02. The results obtained during training and 
testing are shown graphically in Figure 11, 12 respectively.  

TABLE III 
PERCENT RECOGNITION OF REAL DATA 

Iris Wine Ionosphere Thyroid 
Data 

Max Min Max Max Max Min Max Min 

FMNN 97.3 92 100 94.3 98.0 84.8 100 94.4 

GFMN 100 92 100 88.6 98.7 90.1 100 94.4 
GRFM
N 100 98 100 100 100 96.0 100 98.1 

 
TABLE IV 

COMPARISON WITH OTHER TRADITIONAL CLASSIFIERS 
Technique Misclassifications 

Bayes classifier 1 2 
K nearest neighborhood 1 4 
Fuzzy K-NN 2 4 
Fisher ratios 1 3 
Ho-Kashyap 1 2 
Perceptron 3 3 
Fuzzy Perceptron 3 2 
FMNN 1 2 
GFMN 1 1/0 
GFMN 3 0 
GRFMN 1 0 
GRFMN 3 0 

 
where 

1 Training set is of 75 data points (25 from each class) and 
Test set consists of remaining data points. 

2 Training data is of 36 data points (12 from each class) 
and test set consist of 36 data points results are then 
scaled up for 150 points. 

3. Training and testing data were same. 
 
In both the cases, performance of GRFMN is almost 

independent of the expansion coefficient and maximum error is 
less than 2% during training and less than 3.05% during testing. 
On the other hand, the errors for FMNN and GFMN are 
significantly higher.  

 

 
Fig. 11 Recognition of Iris Training Dataset 
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Fig. 12 Recognition for Iris Dataset 

 
To study performance dependence on expansion coefficient 

more rigorously, we tested GRFMN, GFMN and FMNN 
algorithms on other real datasets such as Thyroid, Glass [23] 
and Breast Cancer [24]. Training and test datasets are prepared 
by randomly dividing each class of a dataset into two parts with 
60-40% proportion. For Breast Cancer dataset, two equal parts 
were made for training and testing. Table V shows a 
performance comparison for these algorithms. Note that, 
GRFMN has the lowest minimum-learning (LEmin) and 
minimum-test errors (TEmin). Number of hyperboxes required 
to achieve this minimum learning and test error is also less 
compared to GFMN and FMNN. The number of hyperboxes 
for GRFMN is a sum of hyperboxes representing classification 
and compensatory neurons.  Similarly, average learning and 
test errors (LEavg, TEavg) are also lowest for GRFMN when 
expansion coefficient is varied from 1 to 0.05 in step of 0.05. 
Moreover, the error deviation (δ) indicates a reduced 
dependency on expansion coefficient. This indicates that 
GRFMN is capable to extract the underlying structure in the 
data more correctly, which in turn helps to perform in a better 
way while dealing with mixture of labeled and unlabeled 
dataset. This can be observed from GRFMN results in the 
hybrid mode. 

C. Hybrid Mode 
To verify the performance improvement of GRFMN in 

hybrid mode, two experiments are conducted. The details are as 
follows. 

1)  IRIS and Thyroid Datasets 
In this experiment, performance dependence on expansion 

coefficient is studied. Training data set is generated by 
randomly selecting 60% samples from each class of Iris and 
Thyroid datasets and 50% of the selected data was unlabeled 
for each class. Complete Iris and Thyroid datasets are used for 
testing so that we can evaluate the performance in hybrid mode. 
From Figures 13, 14 it is clear that GRFMN performance is 
better on training and test data even though Θ was varied from 
maximum to minimum value. Due to the inclusion of CNs and 
the new learning approach, the unlabeled data is handled more 
efficiently and is labeled more correctly. Similar results were 
obtained on Thyroid dataset (Figures 15, 16).  

TABLE V 
Effect of Expansion Coefficient  

(Θ= 0.05 TO 1.0 IN STEP OF 0.05, γ =3) 

Dataset Method LEmin TEmin HB LEavg δLE TEavg δTE 

GRFMN 0.00 0.00 42 1.94 0.7 4.58 1.06 

GFMN 0.00 1.33 45 6.83 3.12 8.42 2.39 IRIS 

FMNN 0.00 5.00 42 8.33 3.52 10.33 2.79 

GRFMN 0.00 2.32 29 0.03 0.17 2.96 1.27 

GFMN 0.00 3.49 34 3.06 2.03 4.76 0.64 Thyroid 

FMNN 0.00 3.49 88 3.57 1.95 5.17 1.33 

GRFMN 0.00 7.77 15 0.00 0.00 8.89 0.72 

GFMN 0.00 7.77 23 0.00 0.00 9.78 1.27 Glass 

FMNN 0.00 8.89 29 0.00 0.00 10.94 0.83 

GRFMN 0.00 2.05 45 0.27 0.26 4.92 3.65 

GFMN 0.00 2.64 65 1.53 1.80 7.89 4.66 Breast 
Cancer 

FMNN 0.00 3.22 97 2.16 2.58 6.61 3.05 

HB: Number of hyperboxes, LE : Learning Error, 
TE : Testing Error, δ : Standard deviation. 

 

  
Fig 13  Error for Iris Training Data. 

 
Fig. 14 Recognition for Iris dataset 
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Fig. 15 Error on Thyroid training Data 

 

 
Fig. 16 Recognition for Thyroid Dataset 

 
2) Performance on training dataset with variation in 
unlabeled samples 

 In this experiment, we fixed the value of expansion 
coefficient to 0.1 and varied the percentage of unlabeled 
training samples. Experiment is repeated 10 times for each 
value of percentage unlabeled data. Average of results on Iris 
dataset are reported in Figure 17. Training dataset is prepared 
by selecting and un-labeling the samples randomly from each 
class.  The proportion of label and unlabeled samples is same 
for the all classes. The proportion of unlabeled samples is 
varied from 30-90%.  The results shown in Figure 17 indicate 
that GRFMN performance is significantly improved compared 
to GFMN. Performance of GFMN is drastically affected when 
the number of unlabeled samples is increasing. As GRFMN can 
extract the data structure more correctly, its performance is 
better even though the number labeled samples are less in the 
training data set. 

D.   Cluster Mode: 
 In this experiment fully unlabeled Iris and Glass datasets 

were used for training. GRFMN and GFMN were trained with 
different expansion coefficient values. After training, the  

 

 
Fig. 17 Effect of variation in proportion of unlabeled data samples 

 
created hyperboxes were labeled considering majority class 
samples contained by them. Results on Iris dataset for GFMN 
with 0.030.060.12 ,,=Θ  are reported in [10]. We compared 
results for GRFMN keeping Θ same. A reading with 0.18=Θ  
is added in table VI. The results in Table VI show that GRFMN 
can cluster data with better performance and requires less 
hyperboxes compared to GFMN.  A similar result on Glass 
dataset is reported in Table VII. 

 
1)  Iris Dataset 

TABLE VI 
GRFMN GFMN 

Θ  Error 
(%) 

Hyper
boxes 

Error 
(%) 

Hyper
boxes 

0.03 0 74 0 87 
0.06 1.33 37 2.0 44 
0.12 4.00 11 4.67 13 
0.18 6.00 04 12.00 07 

 
2)  Glass Dataset 

TABLE VII 
GRFMN GFMN 

Θ  Error 
(%) 

Hyper 
boxes 

Error 
(%) 

Hyper 
boxes 

0.06 0.00 152 0.00 167 
0.1 2.34 99 2.80 122 

0.15 8.41 55 12.62 81 
 

VI. CONCLUSION 
A neural algorithm with reflex mechanism for classification 

and clustering called as “General Reflex Fuzzy Min-max 
Neural” has been presented here. Error analysis shows that 
contraction process in the learning algorithm causes 
classification errors for FMNN and GFMN. As far as possible 
GRFMN avoids the use of contraction process, and hence 
reduces errors caused due to it. The compensatory neurons can 
handle the overlaps and containments of the hyperboxes more 
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efficiently. Inclusion of these neurons helps GRFMN to 
approximate complex topology of data in a better way. As 
performance of GRFMN on labeled data is better than GFMN, 
its performance in hybrid mode (where mixture of labeled and 
unlabeled data used for training) is also better. From the 
experiments, we conclude that GRFMN can avoid the 
dependency of the network performance on Θ to a larger extent 
hence single pass through learning is possible. Moreover, due 
to its new learning policy to label unlabeled data and hyperbox 
expansion in hybrid and clustering mode; its performance is 
significantly improved in all three modes of operations, 
compared to GFMN 
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