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Abstract— This paper presents a new intelligent agent 

supervisory loop based approach for dynamic system control. The 
scheme consists of three software agents that work in an 
autonomous manner for the precision control of a system that 
shows multiple modes and drastic parametric ‘jumps’. The first 
two agents are based on artificial intelligent techniques (fuzzy 
systems and Radial Basis Function Neural Network (RBFNN)) 
that monitor a closed loop system using a supervisory loop 
concept. The third agent acts as a traditional Model Reference 
Adaptive Controller (MRAC) which controls the system dynamics 
and helps to keep the error inbound. The scheme efficiently 
alleviates the burden on soft computing techniques due to the 
strength of the MRAC and at the same time intelligently controls 
system when nonlinear and functional changes occur. Theoretical 
analysis and implementation results show that this approach has 
immense potential in modular agent based controller design. 
 

Index Terms— Multi-Agent Controller, Supervisory Loop 
Principle, Dynamic System Control.  

I. INTRODUCTION 

Controlling multimodal and ‘jump’ systems are extremely 
difficult due to drastic change in the plant dynamics. Several 
research works have their focus on controlling such systems 
and multiple model adaptive control has become one of the 
effective solutions [1], [2]. Research in MMAC to multi modal 
systems branches into two main directions. One deals with 
mathematical MMAC of deterministic and stochastic systems 
and the second one addresses newly emerging heuristic based 
MMAC using fuzzy systems and neural networks.  

Fuzzy logic [3] based adaptive controller is shown to be 
effective for controlling dynamic systems [4]. A multiple 
modal method attempted in [5] developed a fuzzy model based 
adaptive control algorithm for a class of continuous-time 
nonlinear dynamic system that combines a set of linear fuzzy 
local model corresponding to the system operating points. 
Recently an important consideration of using fuzzy systems on 
an MMAC context is shown in [6].  In this, a set of models 
representing a nonlinear system during faults and in a fault free 
regime has been developed using a fuzzified system identifier.  

Neural network based controllers are also shown to be really 
useful and efficient in nonlinear adaptive control. One such 

controller using neural networks and multiple models is 
proposed in [7]. A direct adaptive output feedback control 
design procedure for highly uncertain nonlinear systems that 
does not rely on state estimation is suggested in [8] and in [9] a 
multilayer perceptrons with long and short-term memories 
(LASTMs) for adaptive processing is discussed. Reference 
[10] studies the use of RBF neural networks as key components 
of adaptive controllers aimed at controlling flexible robotic 
arms.  
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It has been widely recognized that these soft computing 
topologies plays an important role in modern control 
techniques. However, implementation and issues related to 
tuning, controlling while switching and computational 
complexities are the critical factors in such control. Importance 
and design of intelligent agents in controlling sophisticated 
systems has been discussed in several works [11]-[13]. These 
techniques not only allow for modular design but will make the 
schemes suitable for practical implementation.  

In this paper a novel concept of three intelligent agents to 
control complex and sophisticated systems is proposed. The 
first agent is a heuristic based multiple fuzzy reference model 
generator which moves the reference model, mapping the 
system auxiliary state when it shows multi modality. This agent 
is autonomous in nature as it works within its own domain 
taking auxiliary inputs and generating suitable reference model 
structure at every time instant. Compared to mathematical 
MMAC and controller reconfigurable systems [10], [14] - [16], 
this switching process doesn’t show computational intensity. 
The second agent is a RBFNN based neural network controller 
that is used to augment the traditional MRAC in the presence of 
system functional uncertainty. Main consideration here is to 
use neural network to approximate inverse dynamics of the 
plant working in parallel with a linear adaptive control law. The 
advantage of such a feature when compared to a feedback error 
learning scheme is its ability for coordinated control, which 
provides a stable law during parameter and functional 
uncertainties. The third agent is the traditional MRAC which 
adaptively control the system, linearizes the parameters over a 
specific domain and forces the output or other plant variables to 
a suitable reference model structure. For validating the scheme, 
the controller is used for position tracking of a single link 
flexible manipulator at various conditions and the simulations 
are compared with dual agent schemes.  

The rest of the paper is organized as follows. In section 2, the 
concept and mathematical preliminaries are addressed. Section 
3 illustrates an application based on the proposed technique for 
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the position control of a robotic manipulator and section 4 
discusses the simulation results. Section 5 concludes the paper.  

II. MATHEMATICAL PRELIMINARIES 
Fig. 1 shows a functional block diagram of the overall 

scheme. It consists of three agent based algorithms which are 
used to control systems showing multi-modality and sudden 
‘Jumps” and at the same time susceptible to un-modeled 
dynamics. In the presence of un-modeled dynamics and modal 
swings, the parallel controller with RBFNN augments the 
stable direct model reference adaptive controller and controls 
the system effectively. However when the system mode 
switches and the plant shows sudden ‘Jumps’ [17], the 
reference model structure needs to be changed. If these modal 
changes are known, a priori fuzzy inference engine can 
generate a multiple reference model structure.  
 
 
 
 
 
 
 
 
 

 

 

 

 

 

There are two intelligent agents based supervisory loops; the 
first one generates a changing reference model structure, and 
the second one augments the stable direct model reference 
adaptive controller. The third agent is the traditional MRAC 
algorithm itself. If the operation of a system under 
consideration can be modeled using one reference model, then 
the adaptive controller can be utilized for controlling the 
system to track the desired reference model output. 

A. The Design Concept 
The parallel controller structure is based on the fact that a 

neural network can be used to learn from the feedback error of 
the plant controller closed loop. The plant is controlled by an 
adaptive controller, which tracks the reference model output. 
This works in an autonomous domain by itself, looks at the 
output and provides required control action. In the event of 
output distortion, the RBFNN controller learns the system 
dynamics and augments the MRAC looking at system 
movements. This is in fact carried out continuously such that 
the output error is zero and precision tracking is achieved. 
When system mode ‘jumps’, the adaptive controller fails to 
perform with a single reference model as it is often stressed to 
its limit with only one reference model. Therefore, there is a 
need to generate reference model structures which is the 
process performed by the fuzzy agent.  

  
  
 

 

 

 

 

 

 

Fig. 2 shows the agent interactions and design method for the 
overall scheme. The first agent is in a hierarchical form 
indirectly monitoring the performance of the system through 
agent 3. In the event of drastic changes due to the system 
parameters sensed by the fuzzy system inputs, the inference 
engine selects the appropriate rules which in turn change the 
reference model structure. This enables for a smooth change in 
the reference model output that allows agent 3 to work 
effectively. Agent 2 which monitors the system output and 
auxiliary parameters augments agent 3 when there is a 
functional change in system output. In this context this 
architecture is a hybrid approach with hierarchal structure 
between agents 1 vs agent 3 and heterarchical arrangement 
agent 2 vs agent 3. 

B. Mathematical Formulation 
The nonlinear system to be controlled with input U and output 
yi can be represented as  

)()(

)()( )(mod)(mod

Xhty

UXgbXfAx

i

teitei

=

+=
•                                                 (1-2) 

Where 
yi(t) is the plant output at a specific mode,  
U is the control input ,  
X is the state vector where [X1(t)………Xn(t)]T Є Rn

Ai(t)=[a1i,a2i,……….,ani]T Є Rnxn   
f (*), g(*) and h(*) are nonlinear functions and  
bi takes values from the set of H constant elements as 

indexed by subscripts i Є {1,2,……,H}.  
Further, based on the change in values, let f(*) and g(*) be two 
nonlinear functions such that they are continuous in nature. 
First, assume that the system is operated at one mode without 
any mode switching. Under such a condition, (1) and (2) can be 
written as 
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Assuming SISO control and a second order system, the above 
generic equation will be 
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Assuming the function F is invertible, then 
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Fig.1. Functional Block Diagram with Intelligent Loops. 

 

Fig.2. Functional Block Diagram with Intelligent Loops. 
 



 
 

 

Let Ud be the desired value of the control, then  
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If x1=y,                 (10) ],,[ dddd yyyFU
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=
This means in the presence of a control Ud, the system can be 

effectively controlled through learning if it is invertible. An 
RBFNN controller is used for controlling the nonlinear system 
with unmodeled dynamics, which learns the system dynamics 
online and then generates the value of Ud. As it can be seen 
from (10), the inputs to RBFNN controller are the output of 
plant y and other desired states. The output and trajectory error 
e1 is reduced by a gradient learning technique asymptotically 
and the system learns during the course of time, generating the 
value Ud.  
The error dynamics during system learning can be written as 
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Applying the Taylor series expansion and collecting the first 
order terms 
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Where  

  N(t) is the network variable andε  is the network       
  approximation error. 
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When the RBFNN controller is able to learn the system 
characteristics successfully, then U=Ud and the error dynamics 
will be 

ε)()( tNetAe +≅
•

                                                            (15) 
Consideringε is zero (perfect learning)  

etAe )(≅
•

                                                                  (16) 
It can be seen from (16) that the error derivative is dependent 
on A(t) which is a function of the states and control value.  An 
adaptive control law is used to reduce this error asymptotically 
to zero.  
The total control law is 
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are radius and weights of each node respectively. 
The neural network weights are adjusted in order to reduce 

the gradient of the output error so that nonlinear dynamics are 

kept bounded. The model reference adaptive controller 
identifies the plant parametric value online and effectively 
controls even in case of parameter drift. Moreover, the MRAC 
will stabilize the output trajectory with the desired value 
especially at initial stages, which allows the NN to learn the 
plant dynamics online. Added to all that, static gain designs 
(such as in linear controllers) are not needed if MRAC is used 
as a base line controller which is of great advantage especially 
when there are changing operating conditions. 

In the presence of mode switching, the parameter vector can 
be represented by the triple {(Ai,bi,ci),…,(AH,bH,cH)}, which 
changes its values depending on the modes of operation. Let the 
above set denote scheduled jump parameters for each mode 
specified by the parameter index i. The mode variable mode (t) 
takes the form mapped into any of the values in the domain i Є 
{1,2,…,H} and correspondingly Amode(t) and bmode(t) are time 
varying. The mapping of mode (t) is denoted by mode (t) = γ[X 
(t-d)] where d represents the time delay. The above-mentioned 
system is a spatial multimodal type because the dynamics are 
scheduled through a nonlinear mapping γ. As the system mode 
changes, system parameters ‘jump’ or move drastically, which 
in turn may cause unstable performance if a conventional 
adaptive controller is used. A structural change in the reference 
model is required if there is no explicit identification procedure 
available for the plant. This is accomplished through the fuzzy 
logic multiple reference model generation as described in 
intelligent agent #1, which in turn allows the direct model 
reference control law to operate effectively under different 
plant operating conditions. The design concepts of these agents 
are as follows. 
 

Intelligent Agent #1: The theoretical basis of the fuzzy 
multiple reference model generator is as follows. Consider a 
fuzzy system output denoted by a function )(Ωf  and 
represented as 
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The above mentioned fuzzy system has r rules and iμ is the 
membership function of the antecedent of ith rule given by the 
input Ω. 
Where   

mℜ∈Ω  is a vector containing the relevant auxiliary 
states 

Assume that  for all relevant auxiliary states and the 

parameter r

0
1
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i is the consequent of ith rule. Then the 
above-mentioned function can be written in the parameterized 
form as follows 
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Thus the function approximation by fuzzy scheme is equal to 
the product of a parameter vector Φ and the weight matrixϑ . 
Considering the reference model in state space as: 
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Where  

ymi(t) is the reference model output and 
S(t) is the command signal. 

The transfer function equivalent will then be    

mimimiimim RZKtStytW /*)(/)()( ==   (23) 
Where  

Kmi is the gain, Zmi is the zero polynomial and Rmi is the 
poles. 

From (23), it can be seen that the numerator and the 
denominator is a function of state variables X and the location 
of these poles and zeros are further influenced by the modes of 
operation of the plant. In order to include these modal 
transitions, (23) has to be combined with (21). This can be 
rewritten as  

)/*(*)()( mimimiim RZKfsW Ω=   (24) 
Oscillations in the system dynamics can thus be mapped 

through auxiliary states to the changes in system polynomial 
roots or the poles/zero combinations. Considering the above 
facts reference model transfer function can be a function of the 
fuzzy logic output   
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For a constant command signal (25) can be rewritten as  
),,()( imiiim Wty ϑν Φ=    (26) 

Where  
)(ty im  is the reference model output for the ith mode 

iΦ is the parameter vector developed by the fuzzy 
system depending on the system operating points  

iϑ is the membership function weights, ν  is the 
coefficient index and Wmi is the corresponding reference 
model transfer function.  

Clearly, the membership function weights act as a 
performance index function in modifying the reference model 
output. Based on each system modal transition, the parameter 
vector ϑ*Φ , which is the fuzzy system output, changes. 
Subsequently the reference model output moves such that the 
closed loop system is stable with its roots in the left half s plane. 
This movement in the reference model secures the system from 
becoming unstable. 

Intelligent Agent #2: The RBFNN structure is used along with a 
MRAC to capture the functional non-linearity through online 
learning. Steps involved in the RBFNN design are as follows. 

A. Selection of the Number of Nodes and Centers  
The proposed growing RBFNN will start with three nodes. 

The centers for these nodes will be initialized to zeros except 
for the last one, which will be set to 0.1 in order to effectively 
calculate the radii with these centers. Thus the RBFNN is 
novice about the system that is being approximated or 
controlled. Further each time when a new input is passed on by 
the input layer, the distance and the outputs are calculated as   

)/)(exp( 2
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Where  
  j=1: number of nodes  
    k=1: number of input vector elements. 

B. Distance Measurement 
The distance measurement is Euclidean in nature based on the 
norm. At first the distance between each input vector element is 
calculated with all the centers and finally the norm is found to 
get the distance with respect to each node for all the developed 
nodes. This can be represented as 
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Where  
  Ni is number of input vector elements. 

C. Calculation of the Radius 
The radius is calculated from each center using  
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Where 
    n is the number of nodes.      

D.  Selection of Basis Function 
Most commonly used basis function is the Gaussian 

function expressed as 
)/exp( 22
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Where 
    O is the network output. 

This function has been chosen due to the fact that it gives most 
weight to points that are close to the nodal center and 
exponentially less weight to the points, which move, farther 
from the node centers.  

E. Weight Selection and Online Adjustment 
In order to sufficiently capture any non-linear function, the 

weights must be chosen correctly. To get the correct weights, 
the neural networks are ‘trained’ to learn the function, which is 
being approximated. However to train the weights, data 
regarding the inputs and the outputs need to be collected. The 
weights are initially adjusted to zeros. This means at the first 
instant the output obtained from the neural network will be a 
random value. At each instant when a new value of the 
input/output vector is formulated, the weights are updated. The 
updated law is based on a gradient descent technique, 
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Where  

Wj* is the new value of the weights  
Wj the old value 
Up is an update rate which is pre-defined number and  
et is the output error 

Intelligent Agent #3: The third agent will be a mathematical 
based algorithm on the MRAC. Details of the MRAC 
derivations are described in the appendix.  

III. APPLICATION TO ROBOTIC MANIPULATOR POSITION 
TRACKING  

The developed scheme (viz., NNPFAC) is tested for the control 
of position tracking on a single link manipulator dynamic 
nonlinear model. Several cases have been used for testing the 
ability of the controller. In the following analysis, two 
important cases are demonstrated. In the first case, the scheme 
is compared with two intelligent agents acting on the system 
without the neural network agent termed as FMRMAC. In the 
second case, the scheme is compared with two agents without 
the fuzzy logic agent termed as NNPAC.  

A.  Single Link Flexible Robotic Manipulator Dynamic Model 
The robotic arm has the position zero x and y axes denoted as 

x0 and y0 as shown in fig. 3. Depending on the angular 
movement based on the required trajectory, there will be 
deflection, and the arm settles to new axes denoted as x1 and y1 
at every time instant. This angular deflection is represented by 
the angle θ. The movement of the arm basically depends on the 
mass and the weight of the link, and the respective dynamic 
model shows the equations along with the parameter values. 
Further, the arm tip will have the effect of the tip load which is 
varied at time instant denoted as the Load Torque. Due to this, 
physically the arm tip may not track the trajectory, which is 
denoted by the angle α. In order to create this effect in the 
robotic manipulator dynamic model, the load torque is changed 
at different time instants online while the controller value in the 
form of the input voltage to the manipulator changes at each 
instant based on the output error.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The important physical parameter, which relates the mass 

and the weight of the manipulator, is its angular position θ and 

the angular velocity. This along with the vibration mode 
constitutes the basic mathematical equations.  However, the 
velocity and vibration mode in turn depend on the physical 
properties of the link such as mass, gravity, moment of inertia, 
elasticity and the length of the link. One of the sub-models is 
the DC motor model, which is used to drive the link with its 
torque and speed. The physical parameters involved in this 
modeling are the DC motor torque, resistance, inductance, gear 
ratio and efficiency. Thus, the complete model consists of five 
first order differential equations.  

B. Physical Details and Mathematical Equations 
 

Given the system dynamics [18], the robotic link’s dynamics 
can be represented as below 

)()4(),()3(),()2(),()1( tytytyty
••

==== φφββ          (32-35) 
The variables y(1)- y(4)  are robotic link’s angular position, 
link’s angular velocity, link’s vibration mode, link’s vibration 
mode first derivative respectively. Differentiating we get 
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Emerging from above the complete model of a single link 

manipulator is as follows. 
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Fig. 3.  Single Link Flexible Robotic Manipulator Model. 
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The values of the parameters are given in Table I and the 
corresponding nomenclature is shown below. 
 

TABLE I 
PARAMETRIC VALUES OF A SINGLE LINK MANIPULATOR 

Ra=8.33 n=65.5 ρ=0.1658 
La=0.00617 η=0.66 ζ1=0.4661541842 
Kb=0.039534088 E=68.9e9 ζ2=0.3835861510 

 
 
 

aR and : D.C motor resistance and inductance respectively. aL



 
 

 

mK : D.C motor torque constant. 

bK : Back e.m.f. constant. 

fT and : Torque friction and Damping coefficient respectively. dK
n  andη : Gear ratio and gear efficiency respectively. 

E : Young’s modulus of elasticity. 

I : Link’s area moment of inertia with respect to its neutral axis. 

L : Length of the link. 
g : Earth’s gravity. 

ρ : Mass per unit length of the link. 

321 ,, ζζζ and 4ζ : Link’s area moment of inertia w. r. to all other axes.  

IV. SIMULATION RESULTS AND DISCUSSION 
In each of these cases, tables below show variations in the 

load torque. Further, the output angular position for the desired 
time span is plotted and combinations of one intelligent agent 
with MRAC along with the reference models output. Relevant 
graphs for each of the cases are also shown.  The fuzzy 
switching scheme in this example consists of two inputs, one 
output and twenty-five rules. Initially, a rule base has been 
developed based on the performance of the system under study. 
The rule base for this case study as shown in Table II consists of 
five input linguistic term membership function in the form of 
Very Small (VS), Small (S), Medium (M), Large (L) and Very 
Large (VL).  

TABLE II  
RULE BASE 

 
 

ωn VS S M L VL 
VS S S M L S 
S S S M L S 
M L S M L S 
L S S M L VL 

VL S S M L VL 
 
The inputs are auxiliary parameters such as the tip load and 

a1. The output values are the changes needed in the natural 
frequency of the second order reference model 
structure nω which is generated by the rule base. The rules have 
been developed analyzing the simulated response of the 
system. Implication method used is based on ‘min’ operation 
and centroid defuzzification method has been employed to 
generate crisp values. The reference model representation has 
the following specific form, 

22

2

2
)(

nn

n
m s

sW
ωςω

ω
++

=                                  (45) 

In this example, the value of ς is set to 0.7. The value of 

nω will be evaluated at every time instant depending on the 
two auxiliary inputs mentioned above. By simulating and 
studying the process it was found that for the range of load 
torque [0, 24], the closed loop system response was best by 
keeping the range of nω [0, 24]. Considering the approach for 

following manipulator tip load, the fuzzy mapping is therefore, 
used for generating multiple reference models.  

A. Case 1: Tip Load Pattern 1 
In this test, the tip load of the manipulator is changed at 

different time instants as in Table III. Demonstration of this 
example is to show the ability of the design in the presence of 
unmodeled dynamics. The comparison is with a technique viz., 
FMRMAC in which only two agents (agents#1 and agent #3) 
has been used. At the load torque variation, as shown in Table 
III, the FMRMAC went unstable and the proposed scheme 
successfully controlled the plant. The position output 
comparison is shown in fig. 4. The effectiveness of the 
controller to track the position output in presence of 
un-modeled dynamics and the failure of FMRMAC is notable 
from the figure. 

TABLE   III 
TIP LOAD VARIATION (CASE 2) 

Time Range (sec) 0-1 1-3 3-5 5-7 7-8 
Load Torque (Nm) 0 14 0 22 12 

 

Fig.4. Output pattern comparison Case 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Case 2: Tip Load Pattern 2 
In Case 2, the tip load of this manipulator is changed at 

different time instants as in Table IV. Moreover, between 6 to 
6.5 seconds, the frictional load torque is augmented with a 
value of 0.03. This case is to demonstrate the ability of the 
algorithm and the ineffectiveness of a technique (viz., NNPAC 
algorithm in which agent#2 and agent #3 has been used) when 
the reference model structure is not the suitable one. Here, the 
wn values for a suitable second order reference model structure 
when used with the NNPAC algorithm is kept as three.  

 
TABLE   IV 

TIP LOAD VARIATION (CASE 2) 
Time Range (sec) 0-3 3-3.5 3.5-6 6-6.8 6.8-8.0 
Load Torque (Nm) 0 15 0 22 0 

The output performance when compared to the NNPAC 
algorithm is as shown in fig. 5.  As it can be seen the NNPAC 
becomes no longer stable when a different reference model is 
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chosen. Thus it is apparent that the issue of reference model 
selection is critical for performance of the controller. 

C. Case3: Tip Load Pattern 3 
In Case 3 the manipulator tip load is changed at different 

time instant as in Table V. The ability of proposed controller 
with changes in the reference model to control this case when 
compared to the NNPAC algorithm is shown in fig. 6. Both the 
controllers perform well and the proposed scheme showing 
better tracking ability when compared to the NNPAC 
algorithm. The position error pattern is as shown in fig. 7, 
which clearly indicates this effect. The main factor that 
contributes to this effect is due to the reference model structure 
modification using fuzzy generator as opposed to a static one. It 
is worth noting that the value of the wn for suitable second order 
reference model structure when used with NNPAC algorithm is 
kept as seven. 

 
TABLE   V 

TIP LOAD VARIATION (CASE 3) 
Time Range (sec) 0-3 3-3.5 3.5-6 6-6.8 6.8-8.0 
Load Torque (Nm) 0 15 0 20 0 

V. CONCLUSION 
In this paper, a novel concept of intelligent agent supervisory 

loop controller is proposed for dynamic systems. The proposed 
scheme consists of three autonomous agents of which two are 
based on artificial intelligent techniques. These agents are 
autonomous and modular in nature and perform the control 
action effectively. The importance of the proposed scheme is its 
uniqueness in design and effectiveness in controlling complex 
and dynamic systems. Moreover, due to the hybrid design 
approach, the scheme is feasible and can be implemented using 
network and embedded control. Technically, it reduces the 
burden in traditional control and performs while the system is 
drastically changing or swings within uncertain modes.  The 
simulation results conducted on several practical system 
models shows that this approach has immense potential in 
modular agent based practical control design. The scheme 
performed better than only one intelligent agent working in 
tandem with the traditional MRAC. It also holds the strength of 
an online RBFNN structure which reduces the size and offline 
training requirements for NN control.  

APPENDIX 
Any certainty equivalent adaptive control law can be used as 

a base control in this case. We use a direct MRAC approach as 
descried in [19]. Consider an unknown linear SISO plant 
described by, 

p
T
pppppp xhyubxAx =+= ,                                                   (46-47) 

Where  
     u is the input, is the plant output, is the nth-order   py px
      state vector, is an n x n matrix pA

Let us consider a reference model represented as  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.6. Output pattern comparison Case 3. 

Fig.5 Output pattern comparison Case 2. 
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mmm xhybrAxx =+= ,                                              (48-49) 

 

Fig. 7. Error comparison Case 3. 

The aim is to find such that the output error u
 



 
 

 

mp yye −=                       (50) 

tends to zero asymptotically for arbitrary initial conditions. 
The control structure for such a scheme is  

ωTu Θ=                         (51) 
Where    

[ TTTk 210 θθθ=Θ ] is the control parameter vector and 

 is the regressor vector.  ][ TTT
pyr 21 ωωω =

The regression vectors are updated online based on the 
following equation  

Lu+Λ= 11 ωω  

pLy+Λ= 22 ωω (52-53) 

Where  
Λ  is   a stable matrix of order )1()1( −×− nn such 
that the determinant )(sZsI m=Λ−  and the vector 

is defined as LL t = [0 …..0 1].   
Further, the control signal is structured as u

erKk p )sgn(−=  , 
pp eyK )sgn(−=θ               (54-55) 

T
p

T eK 11 )sgn( ωθ −=               (56-57) T
p

T eK 22 )sgn( ωθ −=

The above equations (51 - 57) are used in the control process. 
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