
Similarity-based Heterogeneous Neural Networks

Llúıs A. Belanche Muñoz ∗ Julio José Valdés Ramos†

Abstract

This research introduces a general class of functions
serving as generalized neuron models to be used in
artificial neural networks. They are cast in the com-
mon framework of computing a similarity function, a
flexible definition of a neuron as a pattern recognizer.
The similarity endows the model with a clear concep-
tual view and leads naturally to handle heterogeneous
information, in the form of mixtures of continuous
numbers (crisp or fuzzy), linguistic information and
discrete quantities (ordinal, nominal and finite sets).
Missing data are also explicitly considered. The ab-
sence of coding schemes and the precise computation
attributed to the neurons makes the networks highly
interpretable. The resulting heterogeneous neural net-
works are trained by means of a special-purpose ge-
netic algorithm. The cooperative integration of differ-
ent soft computing techniques (neural networks, evo-
lutionary algorithms and fuzzy sets) makes these net-
works capable of learning from non-trivial data sets
with a remarkable effectiveness, comparable or supe-
rior to that of classical models. This claim is demons-
trated by a set of experiments on benchmarking real-
world data sets.

Keywords: soft computing; neural networks; simila-
rity measures; data heterogeneity; evolutionary algo-
rithms

1 Introduction

Artificial Neural Networks (ANN) [6] are informa-
tion processing structures evolved as an abstraction of
known or assumed principles of how the brain might
work. The network is said to learn when, as a result
of exposure to examples, the parameters of the units
are adapted to represent the information present in
the examples in an optimal sense to be precised. The
network relies upon the neuron model representation

∗Dept. de Llenguatges i Sistemes Informàtics. Universi-
tat Politècnica de Catalunya. Barcelona, Spain. e-mail: be-
lanche@lsi.upc.edu

†National Research Council Institute for Information Tech-
nology, Ottawa, Canada. e-mail: Julio.Valdes@nrc-cnrc.gc.ca

capacity as the cornerstone for a good approximation.

The strong points of ANNs are their appealing ca-
pacity to learn from examples, their distributed com-
putation —which helps them tolerate partial failures
to a certain extent— and the possibility, so often
exploited, to use them as black-box models. This
last characteristic is paradoxically one of the major
weaknesses, given that in practice this autonomy of
functioning involves no transfer of knowledge from or
to the designer. With the exception of very specific
architectures, the networks are forced to learn from
scratch most of the times. The network works (in
the sense that solves a problem to a certain satis-
faction), but the weights convey information as high-
dimensional real vectors whose meaning about the so-
lution can be intricate. A significant part of the task is
devoted to find structure in the data and transform it
to a new hidden space (or space spanned by the hidden
units) in such a way that the problem becomes eas-
ier (almost linearly separable in the case of the output
layer). The internal workings of a neuron are thus ob-
scure, because the weights have not been set to shape
a previously defined (and considered adequate) simi-
larity measure, but rather to adapt a general physical
measure (like scalar product or Euclidean distance) to
the problem at hand.

In practice the network has to discover the relations
in the structure induced by the chosen coding scheme
and find ways to accommodate the underlying simila-
rity relationship (inherent in the training examples)
to a fixed similarity computation. During the learn-
ing process, patterns seen as physically similar may
have to be told apart and vice versa. In consequence,
several layers may be needed for complex transforma-
tions, or a large amount of neurons per layer if we
restrict the number of hidden layers to one or two, as
is common proceeding. An increase in neurons leads
to a corresponding growth in the number of free pa-
rameters, and these are less likely to be properly con-
strained by a limited size data set [6].

Besides all that, real-world data come from many dif-
ferent sources (continuous or discrete numerical pro-

Engineering Letters, 14:2, EL_14_2_13 (Advance online publication: 16 May 2007)
__

cesses, symbolic information, etc.) and have their
own peculiarities (vagueness, imprecision, incomplete-
ness), and thus may require different treatments. For
example, in the well-known UCI repository [24] over
half of the problems contain explicitly declared nomi-
nal attributes, let alone other discrete types or fuzzy
information, usually unreported. This heterogeneity
is traditionally coped with by preparing the data us-
ing a number of methods. This preprocessing is not
part of the original task and may involve an abrupt
change in input dimension and distribution. The ob-
tained high-dimensional patterns entail a lower data
density, requiring stronger constraints on the problem
solution [8].

This work deals with the development of new neuron
models to be used as the basic computing elements in
ANNs, where the notion of similarity between exam-
ples and parameters plays a central role. Conditions
for the aggregation and composition of similarity mea-
sures are introduced, in which semantic information
and missing data are explicitly considered. A number
of measures to compute the similarity between non-
standard data types are listed. The notion of a hete-
rogeneous space is then defined as a cartesian product
of single spaces of mixed variables. An heterogeneous
neuron or H-neuron is then defined as a mapping from
elements in a heterogeneous (input) space to an hete-
rogeneous (output) space. An S-neuron is defined as
an H-neuron whose mapping is a similarity measure.
This leads to the development of general neuron mod-
els working in heterogeneous spaces.

The framework is flexible, offering means for the de-
sign of neuron models having certain desirable prop-
erties. The definition of these neuron models, whose
computation as a pattern recognizer is explicitly de-
fined as a similarity measure, and where different data
sources are directly and specifically treated, permits
a natural extension of existing approaches. In par-
ticular, one of the most widely used neuron model,
that of Radial Basis Function (RBF) networks, can
be easily cast as a form of similarity measure. Most
important, it opens a way for devising new ones. A
particularly useful class of S-neurons of the real kind
(models for which the codomain is a subset of the re-
als) is created based on Gower’s similarity index [17].
The resulting network is then tested experimentally,
showing a remarkable performance in the presence of
heterogeneity and missing values in the data.

This paper is organized as follows. In (§2) we re-
view relevant related work. In (§3) we summarize ba-

sic material on similarity measures, their definition
and construction, out of which we develop a general
framework for designing neuron models of the kind de-
scribed in this work. In (§4) we present performance
results on a set of experiments to illustrate the use
and validity of the approach. The paper ends with
some conclusions on the knowledge gained.

2 Related work

In classical artificial intelligence (AI) systems, the no-
tion of similarity appears mainly in case-based reason-
ing (CBR), where learning by analogy and instance-
based learning fuse. The popularity of CBR systems
has boosted its use and signaled its key role in cogni-
tive tasks [1]. As a matter of fact, some form of si-
milarity is inherent in the majority of AI approaches.
There is an agreement in that it is easier to respond
intelligently to a stimulus if previous responses made
under similar circumstances can be recalled. Simila-
rity coefficients have had a long and successful history
in the literature of cluster analysis and data clustering
algorithms [7].

The origins of learning by similarity in artificial neural
systems can be traced back to the pioneering works
of Hebb and his now classic book [19]. He postulated
that the functionality of ANNs had to be determined
by the strengths of the neural connections. This func-
tionality should be adjusted to increase the likeliness
of getting a similar response to similar inputs in the
future, provided the elicited response is the desired
one. In the opposite situation, the weights should be
adjusted to decrease this likeliness. However, this in-
spiring idea has not been fully exploited in the preva-
lent neuron models.

There have been few attempts to incorporate hete-
rogeneous information into the workings of an arti-
ficial neuron in a principled way. The main contri-
bution is perhaps encountered in heterogeneous dis-
tance proposals, where separate distance calculations
are used for nominal and continuous variables [31],
where the authors present an extension of the RBF
model to nominal quantities and missing values. The
RBF network is used in its original interpolative defi-
nition (i.e., there is one hidden node for each example
in the training set). The extension consists in the use
of the Value Difference Metric [28] for nominal dis-
tance computation. An Euclidean metric is used to
account for the partial distances. Missing values are
handled with a pessimistic semantics, defining the dis-
tance involving a missing value to be the maximum

possible distance (actually a value of one). The results
point to an increase in performance w.r.t. standard
Euclidean distance when the amount of nominal infor-
mation is significant, giving support to a deeper and
more precise formulation of neuron models as simila-
rity computing devices.

We briefly review now traditional ways of representing
non-standard information in ANNs [27, 6, 14].

Nominal variables are coded using a 1-out-of-k rep-
resentation, being k the number of values. This intro-
duces the rows of the Ik×k identity matrix in the train-
ing set, leading to an structured increase of model in-
put variables, which translates in a notable increment
in the number of parameters. Part of the network
task is to discover that all these inputs are strongly
related and, as a matter of fact, that they represent a
single one.

Ordinal variables correspond to discrete and usu-
ally finite sets of values wherein an ordering has been
defined. They are more than often treated as real-
valued, mapped equidistantly on an arbitrary real in-
terval. This imposes a continuum where there is not
(e.g., stating that there are infinite possibilities be-
tween having two or three children). Further, since
these variables need not represent numerical entities,
this coding is assuring that “Wednesday” is three
times “Monday”, or that “D” plus “E” is “J”.

A second possibility is to code them using a ther-
mometer: being k the number of ordered values, k new
binary inputs are then created. To represent value i,
for 1 ≤ i ≤ k, the leftmost 1, . . . , i units are on, and
the remaining i + 1, . . . , k off. This representation is
probably a worse choice. If the number of possibilities
to be represented is not small the increase in variables
may be simply not affordable. Further, since the “or-
der” imposed by this coding is only apparent: an ar-
bitrary permutation of the inputs and training data
columns will result in an identical training set for the
network.

Missing information is an old issue in statistical
analysis [20], and very common in Engineering and
Medicine, where many variables come from on-line
sensors or device measurements. There are many
causes for the absence of a value: technical limita-
tions, temporal malfunctioning, costly measurements,
invalid measurements, data lost during transcription,
transmission or storage, reluctance to supply a value,
different time intervals in measurements, etc. Missing
information is difficult to handle, specially when the

lost parts are of significant size. There are basically
two ways of dealing with missing data: completing
the item description in a hopefully optimal way, to be
defined (i.e., “fill in the holes”) or extend the meth-
ods to be able to work with incomplete descriptions.
Simply discarding the involved data can not be con-
sidered as a “method” and is also frustrating because
of the lost effort in collecting the information. It be
also dangerous if the missing pieces are related with
the non-missing ones (e.g. in time series). The vast
majority of methods in the literature of ANNs belong
to the first kind, including:

• Fill in by a constant (e.g. 0 or a random value).
A fixed constant value can only harm the distri-
bution and is rarely considered, while using the
mean, median or nearest-neighbour value is in
general not a good idea. It may well result in a
significant alteration of the distribution, since it
ignores the covariance in the observed data and
the likely multimodality of the distribution.

• Set up a regression model for any variable hav-
ing missing values over the present variables and
use the obtained regression function to fill in the
holes. This tends to underestimate the covari-
ance in the data, as the filled-in points will fall
along the regression line [6].

• Create a variable which is zero if the involved
variable is present, and is one otherwise. This
method is intuitive but not completely satisfac-
tory, because the problem of inputting a value
still remains and the new input does not repre-
sent any specific entity.

• Use the values obtained from a maximum-
likelihood method, such as the Expectation-
Maximization (EM) algorithm [13]. This algo-
rithm can estimate the parameters of a mixture
model (e.g. of Gaussians) by maximizing their
likelihood, even in presence of missing data [16].
This involves modeling the input distribution it-
self, which can be a difficult and time-consuming
task.

The problem with missing data is that we never know
if all the efforts devoted to their estimation revert, in
practice, in better-behaved data. The reviewed meth-
ods preprocess the data to make it acceptable by mod-
els that otherwise would not accept them. In the case
of missing values, the data are completed since the
available neural methods only admit complete data

sets. An alternative solution is simply to ignore what
is not known (and nothing more), in such a way that
it does not affect the treatment of the known pieces
of information.

Vagueness, imprecision and other sources of uncer-
tainty are considerations usually put aside in the
ANN paradigm. However, many variables in learn-
ing processes are likely to bear some form of uncer-
tainty. In Engineering, for example, on-line sensors
get old with time and continuous use. It is likely that
a continuous variable taking on a value (say, 5.1) ex-
presses reasonable approximation for a precise value
that is unavailable. Sometimes the known value takes
an interval form: “between 5.0 and 5.5”, so that any
transformation to a real value will result in a loss of in-
formation. A more common situation is the absence of
numerical knowledge. For example, consider the value
fairly tall for the variable height. Fuzzy Systems
are comfortable with this, but for ANNs this is real
trouble.

To sum up, in general the reviewed methods are prone
to cause a distorsion (e.g., by introducing a significant
amount of zero input values), result in loss of infor-
mation or increment the number of parameters to be
estimated, among others.

3 Similarity measures

3.1 The definition of similarity

Let us represent objects belonging to a space X 6= ∅
(about which the only assumption is the existence of
an equality relation) as vectors xi of n elements, where
each element xij represents the value of a particular
feature (descriptive variable) aj for object i, from a
predefined set A of features. A similarity measure
is a unique number expressing how “like” two given
objects are, given only the features in A. Let us de-
note by sij the similarity between xi and xj , that is,
s : X × X → R

+ ∪ {0} and sij = s(xi,xj). The
meaning of sij > sik is that object i is more similar
to object j than is to object k.

Definition 3.1 A similarity measure in X fulfills the
following properties:

1. Non-negativity. sij ≥ 0 ∀xi,xj ∈ X

2. Symmetry. sij = sji ∀xi,xj ∈ X

3. Boundedness. There is a maximum attained si-
milarity: ∃smax ∈ R

+ : sij ≤ smax ∀xi,xj ∈ X.

4. Minimality (Reflexivity in the strong sense).
sij = smax ⇐⇒ xi = xj ∀xi,xj ∈ X

3.2 Similarity aggregation

The way different similarities should be combined to
give an overall score is an elusive topic [18]. The ag-
gregation step fulfills also a semantic role, which is
very important as a means to express functional or
psychological aspects of similarity. The following is
a definition of similarity aggregation through a com-
pilation of desirable properties. Note that it is made
easier by the fact that the aggregated values are, by
definition, bounded.

For z ∈ R, n ∈ N
+ and an operator T , let T n[z] =

z if n = 1
T (z, z, . . . , z
︸ ︷︷ ︸

n times

) if n > 1

Definition 3.2 (Θ aggregation) Consider a col-
lection of n0 ≥ 1 real quantities, grouped by con-
venience as a vector s0 = {s1, s2, . . . , sn0

}, where
si ∈ [0, smax]∪{X}, with smax > 0, where the symbol
X denotes a missing element, for which only equality
is defined. Let FX : ([0, smax]∪{X})n0 → ([0, smax])n,
with n ≤ n0 be a filter operator that returns a vector
without the missing elements, in the original order.
Let s = FX (s0). A similarity aggregation is a function
Θ : ([0, smax] ∪ {X})n0 → [0, smax] ∪ {X} fulfilling:

Consistency.

Θ(s) = 0 ⇒ ∀i : 1 ≤ i ≤ n : si = 0

and

Θ(s) = smax ⇒ ∀i : 1 ≤ i ≤ n : si = smax

Symmetry. Θ(τ(s)) = Θ(s) for any τ(s) permutation
of s.

Monotonicity. Let s′ be a second similarity judge-
ment, then the predicate

∃i : 1 ≤ i ≤ n : (si > s′i ∧ ∀j 6= i : sj ≥ s′j)

implies Θ(s) > Θ(s ′)

Idempotency. For an arbitrary si, Θn[si] = si,∀n ∈
N

+. Note this specifically includes the boundary
values Θn[smax] = smax and Θn[0] = 0, the op-
posite of Consistency.

Continuity. Θ should be continuous in all its argu-
ments so the reactions to small changes are not
“jumpy”. This property ensures that all possible
values of Θ(s) can in principle be generated.

A number of additional properties are easy conse-
quences of this definition:

Stability. sn+1
i [Θ] = sn

i [Θ],∀n ∈ N
+. This property

is directly implied by idempotency.

Cancellation. Denoting by (Θ)k(·; s) the operator
Θ(s) with all elements of s frozen except sk, let
s ′ be equal to s for all i 6= k. Then, (Θ)k(sk; s) =
(Θ)k(s′k; s ′) ⇒ s = s ′. This property is derived
from monotonicity (since (Θ)k(·; s) is inversible
for all k).

Compensativeness. mini si ≤ Θ(s) ≤ maxi si. This
property comes from monotonicity and idempo-
tency.

Notice that weighted aggregations could be conceiv-
able, provided they are compliant with the above con-
ditions. These defining properties or axioms are a way
of adopting a specific semantics, but others could be
possible. In particular, the above properties express
that:

1. Even small contributions can only add something
in favour for the overall measure;

2. The aggregation of a number n of equal values
yields that same value, regardless of n;

3. High values in specific features are balanced by
low values in other features (and vice versa);

4. The eventually missing pieces are regarded as
ignorance and do not contribute in favour nor
against the overall measure.

Proposition 3.1 Given s = {s1, . . . , sn} similarities
si for objects in Xi, a new measure obtained from any
such aggregation operator Θ(s) is a similarity measure
in X = X1 × X2 × . . . × Xn.

In order to make Definition (3.2) clearer, we provide
with a family of aggregators.

Proposition 3.2 The following is a valid family of
similarity aggregations:

Θ(s) = f−1

(

1

n

n∑

i=1

f(si)

)

(1)

where f is a strictly increasing and continuous func-
tion such that f(0) = 0 and f(smax) = smax (i.e., a
bijection in [0, smax]).

A specific example within this family is the normalized
modulus:

Θ(s) =
1

q
√

n

(
n∑

i=1

(si)
q

) 1

q

, q ≥ 1 ∈ R, (2)

obtained by taking f(z) = zq. This is a simple
and useful measure, general enough to be applicable
in many situations. It is also useful to introduce a
class of functions that maintain the defining similarity
properties when composed to a similarity measure.

Definition 3.3 (Similarity keeping) A function
š : [0, smax] → [0, šmax] that is strictly increasing and
continuous, and fulfills š(0) = 0, š(smax) = šmax > 0.

It is not difficult to show that composition to a si-
milarity measure yields a further similarity measure.
These functions are useful to act as activation func-
tions in the context of neural networks. The final
piece for constructing flexible similarity measures is a
transformation function, to obtain a similarity out of
metric distances.

Definition 3.4 (Similarity transforming) A si-
milarity transforming function ŝ is a strictly decreas-
ing monotonic and continuous function ŝ : [0,+∞) →
[0, smax] such that ŝ(0)= smax and lim

z→+∞
ŝ(z)=0. If

z is bounded 1 , then ŝ : [0, dmax] → [0, smax] and the
limit condition is replaced by ŝ(dmax) = 0.

Proposition 3.3 Let d be a distance function defined
in X and ŝ a similarity transforming function. Then
s = ŝ ◦ d is a similarity function in X.

1A distance d is bounded in a set X if dmax ≡ sup
x,y∈X

d(x, y)

is finite.

Proposition 3.4 Let š1, š2 be similarity keeping
functions. Then š1 ◦ š2 is a similarity keeping func-
tion. Let š, ŝ be similarity keeping and transforming
functions, respectively. Then š◦ŝ is a similarity trans-
forming function.

The following are example classes of ŝ functions:

• ŝ0(z) =
(
1 − zd

)α
, 0 < d ≤ 1, α ≥ 1, z ∈ [0, 1]

• ŝ1(z) = 1
1+(az)α , α > 1, a > 0, z ∈ [0,∞)

• ŝ2(z) = e−(az)α

, α > 0, a > 0, z ∈ [0,∞)

• ŝ3(z) = 2(1−σα(z)), for z ∈ [0,∞), α ∈ R, where
σα(z) = (1+exp(−αz))−1 is the logistic function.

Some of them are well known in the context of RBF
networks [26] or are commonly found in the data anal-
ysis literature [7]. In the proposed framework, the
requirement for inclusion in the list is fulfillment of
Definition (3.4). All the functions are set to yield
smax = 1.

3.3 Heterogeneous similarity measures

We consider in this work the following types of vari-
ables, for which corresponding similarity measures are
listed.

Nominal (categorical) : non-numerical variable on
which no order relation has been defined. It thus
can be seen as having a set of values (finite or
not).

Ordinal : variable (numerical or not) for which a
linear order relation has been defined on a finite
number of values, where each value has a crisp or
precise sense.

Continuous : numerical and crisp variable where a
linear order is defined on a continuum of values.

Set : variable whose values are classical sets.

Fuzzy Number : continuous variable whose values
are fuzzy numbers (expressing imprecision).

Linguistic : ordinal variable whose values are gen-
eral fuzzy sets (expressing vagueness).

The values of the last two variables can be obtained
where appropriate by converting each crisp value (or-
dinal or continuous) into a fuzzy quantity. The fol-
lowing are basic similarity measures (in the sense of

being universally applicable) fulfilling definition (3.1)
and are defined such that smax = 1.

3.3.1 Nominal variables

The most basic similarity measure for these variables
is the overlap. Let N denote a nominal space:

s(x, y) =

{
1 if x = y
0 if x 6= y

, x, y ∈ N (3)

3.3.2 Ordinal variables

Let (O,¹) be an ordered ordinal space and x, y ∈ O,
with an equality relation x = y ≡ x ¹ y ∧ y ¹ x and
strict precedence x ≺ y ≡ x ¹ y∧¬(x = y) defined in
the usual way. Let # denote set cardinality.

Define now η : O → [1,m] ⊂ N
+ as η(x) = #{x′ ∈

O : x′ ≺ x} + 1. Since the order ¹ is linear, this is a
bijection and η(x′) = η(x) + 1 ⇔ x′ = succ(x). Since
every subset of a metric space is metric, a distance in
O can be set resorting to the standard metric in R if
O is finite:

d(x, y) =
|η(x) − η(y)|

#O − 1
∈ [0, 1] x, y ∈ O (4)

and, by selecting any ŝ(z), s(x, y) = ŝ(d(x, y)) is a
similarity measure, by Proposition (3.3). If O is in-
finite but countable (like N or Z), then for x, y ∈ O
one may use:

s(x, y) =
1

m − 1

(

m
min(η(x), η(y))

max(η(x), η(y))
− 1

)

∈ (0, 1]

(5)

3.3.3 Continuous variables

Let x, y ∈ ∆ ⊂ R. Any metric in R is a metric in
∆. In particular, any positive power of the standard
metric in R, d(x, y) = |x − y|q, q > 0 ∈ R is a metric
in ∆. This family of distances assigns greater impor-
tance to smaller distances for decreasing q < 1 and
less importance for increasing q > 1. In these con-
ditions, any s(x, y) = ŝ(d(x, y)) is a similarity mea-
sure in ∆, by Proposition (3.3). These distances can
be normalized by a factor obtained from a sample of

the distribution. Specifically, weighting by the stan-
dard deviation is equivalent to an unweighted measure
on standardized data. Self-normalizing measures like

d(x, y) = |x−y|
|x+y| (Canberra distance) are also possible.

3.3.4 Set variables

These can be regarded as generalized nominal vari-
ables whose values are not single elements of the space
but subsets thereof. Let S be a set space and x, y ∈ S .
Provided S is finite (so that all its subsets are),

s(x, y) =
#{x ∩ y}
#{x ∪ y} , x 6= ∅ ∨ y 6= ∅ (6)

with s(∅, ∅) = 1, is a similarity measure in S, with
smax = 1. It reduces to (3) for singleton sets.

3.3.5 Fuzzy variables

The word fuzzy is viewed in this work taking the epis-
temic interpretation of a fuzzy set, i.e., as describ-
ing the vague observation of a theoretically crisp ob-
ject. The imprecision stems from the indetermination
about the specific value of a variable, in a situation
where the set of all its possible values is known. Let
[R] = {[a, b] ⊂ R / a, b ∈ R, a ≤ b}. We begin by
defining a classic concept:

Definition 3.5 (Fuzzy number) A fuzzy number
in X (the reference set) is a convex and normalized
fuzzy set F with piecewise continuous µF . Symmetry
of µF is not required.

Let Fn(X) be the (crisp) set of all the fuzzy num-
bers in X, where X is assumed a continuum. For
variables representing fuzzy sets, similarity relations
from the point of view of fuzzy set theory (simila-
rity as a fuzzy equivalence relation) have been defined
elsewhere [12]. The present case is a crisp relation be-
tween fuzzy entities. The possibility Π measures the
co-occurrence of two vague propositions, with a value
of one standing for absolute certainty [32]. For two
fuzzy sets Ã, B̃ ∈ Fn(X), it is defined as:

ΠÃ(B̃) = sup
u∈X

{min (µÃ(u), µB̃(u))}. (7)

Proposition 3.5 Given x̃, ỹ ∈ F ⊂ Fn(∆),∆ ∈ [R]
(F a given family of fuzzy numbers), the function s :

F ,F → [0, 1] defined as s(x̃, ỹ) = Πx̃(ỹ) is a similarity
measure in F .

The addition of linguistic features to express vague-
ness both in the input patterns and in the inner work-
ings of the system itself can lead to new architec-
tures with enhanced expressiveness and flexibility [25].
Since words are less precise than numbers, this ap-
proach enables the use of vague information, in cases
where a precise quantity is unknown.

Definition 3.6 (Fuzzy quantity) A fuzzy quantity
in R is a normalized fuzzy set F with continuous µF

with support in [R].

Definition 3.7 (Fuzzy interval) A fuzzy interval
in R is a convex fuzzy quantity in R. Symmetry of
µF is a useful simplifying assumption although is not
required.

Definition 3.8 (Fuzzy p-quantity) A fuzzy p-
quantity in R is a fuzzy interval in R, such that µF

can be decomposed in three parts (from left to right):
a function with at most one inflection point and a
positive first derivative, a flat zone (null derivative)
and a function with at most one inflection point and
a negative first derivative. This is a kind of fuzzy
interval of the LR-type [33], defined for convenience.

A p-quantity with support in [a, b] models the vague
proposition “roughly between a and b”. Among the
several forms such fuzzy sets can take, the most pop-
ular are trapezoidal and bell-shaped. Note that a
fuzzy number is a unimodal fuzzy p-quantity. These
shapes are illustrated in Fig. (1). Let Fq(X) be the
(crisp) set of all the fuzzy p-quantities in X. Given
x̃, ỹ ∈ Fq(∆),∆ ∈ [R], with respective support sets
∆x̃,∆ỹ ⊂ ∆, a similarity can be obtained as:

s(x̃, ỹ) =

∫

∆x̃∪∆ỹ
µx̃∩ỹ(u)du

∫

∆x̃∪∆ỹ
µx̃∪ỹ(u)du

(8)

These variables are to be used whenever there is a
knowledge that moves us to define linguistic terms in-
stead of simple ordinals. If precise membership func-
tions are known, these should be used.

3.4 Definition of heterogeneous spaces

An heterogeneous space, denoted Ĥn, is defined as
the Cartesian product of a number n of source sets,

Figure 1: Several specific forms for a continuous fuzzy set in R. From left to right: a fuzzy quantity, a fuzzy
interval, two fuzzy p-quantities and two fuzzy numbers.

as follows. Let X(α) = X1 × · · · × Xα denote the
Cartesian product with X(0) = ∅. Consider now a
collection of extended sets R̂1, . . . , R̂nr

, where R̂i =
Ri ∪ {X}, Ri ∈ [R], and 1 ≤ i ≤ nr. Consider

also collections of extended sets Ô1, . . . , Ôno
, with

Ôi = Oi ∪ {X}, 1 ≤ i ≤ no, where each Oi is
a finite and linearly ordered set, and extended sets
N̂1, . . . , N̂nn

, with N̂i = Ni ∪ {X}, 1 ≤ i ≤ nn,
where each Ni is a finite and unordered set. Con-
sider now the collection of nf extended families of

fuzzy sets of the form F̂1, . . . , F̂nf
, where F̂i = Fi ∪

{X},Fi ⊂ Fq(∆i),∆i ∈ [R], and 1 ≤ i ≤ nf . Note
that Fn(∆i) ⊂ Fq(∆i). Finally, consider collections

Ŝ1, . . . , Ŝns
, with Ŝi = Si ∪ {X}, 1 ≤ i ≤ ns, where

each Si are sets whose elements are sets. In all cases,
the extension is given by the special symbol X , which
denotes the unknown element (missing information)
for which only equality is defined and behaving as an
incomparable element w.r.t. any ordering relation. In
these conditions, set:

Ĥn ≡ R̂(nr) × Ô(no) × N̂ (nn) × F̂ (nf) × Ŝ(ns) (9)

with n = nr + nf + no + nn + ns > 0. According to

(9), the elements of Ĥn are general tuples of n com-
ponents: real numbers, fuzzy numbers or quantities,
ordinals, nominals, sets and missing values. We call
such a structure an heterogeneous space.

Corollary 3.1 Let Θ be an aggregation. Given a
group of heterogeneous similarities s = {σ1, . . . , σn},
where σi : Ĥi, Ĥi → [0, σmax] ∪ {X}, any measure s
defined as s(x,y) = Θ(σ1(x1, y1), . . . , σn(xn, yn)), is
a similarity measure in Ĥn = Ĥ1 × · · · × Ĥn.

To see this, make Xi ≡ Ĥi and si = σi(xi, yi) in
Proposition (3.1).

3.5 Similarity-based neuron models

Definition 3.9 (H-neuron) An heterogeneous neu-
ron or H-neuron is any function of the class:

Γ = {γi : Ĥn → Ĥ | γi(x) = γ(x, αi)), αi ∈ A}
(10)

where x ∈ Ĥn and A is the neuron parameter space.

This definition accounts for neuron models perform-
ing general mappings from (heterogeneous) input and
output spaces. In consequence, H-neurons can be
classified according to the nature of their codomain
(not necessarily restricted to a subset of the reals). In
the present work, a model with a codomain given by
Ĥ ∈ R ∪ {X} is set forth and called of the real kind.

Definition 3.10 (S-neuron) A similarity-based
neuron or S-neuron (of the real kind) is an H-
neuron for which γ is a similarity in Ĥn and
Ĥ = [0, smax] ∪ {X}, smax > 0 ∈ R.

Accordingly, the S-neuron is sensitive to the degree
of similarity between its heterogeneous inputs and
weights. The reason to consider in the first place
neuron models of the real kind is twofold. On the
one hand, there is a natural coupling with classical
neuron models (i.e. accepting only real-valued and
complete inputs). On the other hand, in this work
the emphasis is put on the definition of scalar simi-
larities on bounded real intervals. Nonetheless, Defi-
nition (3.10) makes provision for neurons computing
similarity functions in other codomains.

Definition 3.11 (HNN) A feed-forward Heteroge-
neous Neural Network (or HNN) is a feed-forward net-
work composed of l ≥ 1 layers of S-neurons, and a
linear output layer.

A simple parsimony principle leads to consider feed-
forward architectures of one hidden layer of S-neurons
and a linear output layer. From a conceptual point of
view, a second hidden layer would compute to what
degree two patterns are similar by comparing their
representations in hidden space. When the model is
constructed as a composition of two mappings (a dis-
tance followed by a decreasing activation function ŝ),
it is immediate to realize that the usual RBF model
is a particular case of HNN in which Ĥn = R

n (hence
n = nr) and l = 1.

3.6 A worked example of S-neuron

A basic but very useful S-neuron can be devised using
a Gower-like similarity index, well-known in the liter-
ature on multivariate data analysis [17]. For any two
objects xi, xj given by tuples of cardinality n, this
index is given by the expression:

sG(xi,xj) =

∑n

k=1 sk(xik, xjk) δijk
∑n

k=1 δijk

(11)

where sk is the similarity according to variable k, and
δijk is a binary function expressing whether the ob-
jects are comparable or not according to variable k,
equal to 1 if xik 6= X ∧ xjk 6= X and to 0 otherwise.
The ignorance of the absent elements normalized by
the number of present ones has been found superior
to other treatments in standard data analysis experi-
ments [11].

The possibility that none of the partial similarities
can be performed has to be handled with special care,
since the result is 0

0 , which is unfeasible from the point
of view of a computation. Pessimistic solutions like
setting sG(xi,xj) = 0 (objects are incomparable) or
optimistic ones like setting sG(xi,xj) = 1 (objects
are indistinguishable) are not fully satisfactory. The
present framework offers a third possibility, namely, to
set sG(xi,xj) = X expressing that this computation
of similarity is lacking. This missing value can be
eventually processed by other S-neurons in subsequent
layers.

As a further consequence of Definition (3.10), missing
values are allowed in the weights. This is interpreted
by the neuron in a way analogous to a missing input:
it is ignored (as if the connection were not there).
This is consistent with the fact that a similarity mea-
sure must be symmetric and could be beneficial to a
learning algorithm, enabling the units to ignore some
of their inputs. If a weight is missing at the end of a
training process, then the connection can be removed
(a form of network pruning).

Since (11) is a linear aggregation operator, a non-
linear component can be added to in the form of
a similarity keeping function š. In particular, the
widespread logistic function can be used by adapting
it to map the real interval [0, 1] on (0, 1). Compu-
tationally cheap families of sigmoidal functions can
be especially designed to operate in the [0, 1] interval,
such as š(·) = f(·, k) [30]:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
tiv

at
io

n
fu

nc
tio

n

argument

Family of sigmoidal functions for heterogeneous neurons

f(x,100)
f(x,10)

f(x,0.25)
f(x,0.1)

f(x,0.025)
f(x,0.01)

f(x,0.001)

Figure 2: The family of sigmoidal functions f(x, k),
for different values of k.

f(x, k) =

{
−k

(x−0.5)−a(k) − a(k) if x ≤ 0.5
−k

(x−0.5)+a(k) + a(k) + 1 if x ≥ 0.5
(12)

where k > 0 ∈ R is a parameter controlling the shape.
This family of functions (Fig. 2) meets the condi-
tions in Def. (3.3). They are all continuous bijections
in [0, 1], fulfilling ∀k ∈ R

+, f(0, k) = 0, f(1, k) =
1, lim

k→∞
f(x, k) = x and f(x, 0) = H(x − 0.5), being

H the Heaviside function. The expression a(k) is so-

lution of a(k)2 + a(k)
2 − k = 0, obtained by imposing

the first two equalities.

This S-neuron has many advantages: it is intuitive,
fulfills all the desired properties for aggregation, is
computationally cheap and is also a generic measure,
in the sense that it does not take assumptions about
how the partial similarities are computed.

4 An experimental study

4.1 Problem description

The following data sets are studied: the well-known
Pima Diabetes, Horse Colic, Credit Card, Heart Dis-
ease and Solar Flares taken from the Proben repos-
itory [27], Sinus-Cosinus from [5] and SISO-Bench
from [29], for a total of seven learning tasks, altogether
representative of the kinds of variables typically found
in real problems, while displaying different degrees of
missing information (from 0% to 26%). Most of the
problems found in these repositories were originally
meant for general machine learning approaches, and
cannot be directly used by traditional neural systems

because of the usual presence of non-continuous or
missing information. Their main characteristics are
displayed in Table 1.

4.2 Experimental methodology

The primary aim has been to compare the relative per-
formance of the HNN over the classical RBF. The net-
work architectures are composed of a hidden layer of
h ∈ {4, 8, 12, 16} neurons plus as many output units as
required by the task, sigmoidal for classification prob-
lems and linear otherwise. It should be pointed out
that a principled model selection process for a prob-
lem is a subject of research in itself [21]. Hence, the
results on standard benchmarks should not be taken
as state-of-the-art (although they are not out of tune)
but as developed examples of application.

4.3 Training methodology

A form of nested k-fold non-stratified cross-validation
(CV) is used. The idea of nested or double cross-
validation dates from the seventies [22], and works
as follows: divide the whole data set into k1 pieces,
keeping each back in turn for independent testing, and
using the rest for k2-fold CV. This fits k1k2 models.
Using one of the k1 pieces for test, one for validation
and the remaining k1 − 2 for training, this is equiva-
lent to set k2 = k1 − 1, so that a total of k1(k1 − 1)
fits are to be done. This is a very general framework
using no special model assumptions. Although it can-
not “validate” a model, it gives an unbiased estimate
of generalization [14]. We have worked out a simplifi-
cation to avoid an excessive computational overhead,
by performing only half of the computations involved.
In particular, we set k1 = 5, so that three folds go
for training, one for validation and one for test, form-
ing twenty 60%-20%-20% partitions. A representative
half of the combinations can be obtained by selecting
a balanced subset, such that each of the 5 folds ap-
pears twice as a validation fold, twice as a test, and 6
times (three times two) in one of the 3 training posi-
tions. It is also ensured that no two training parts are
generated out of the same 3 folds but in a different
order.

Early stopping is used in conjunction with double CV
as follows. The network is trained up to a maximum
number of error function evaluations, keeping track of
the best validation error. Strictly speaking, there is
no early stopping (only the use of a validation set),
as long as the process is not halted when a minimum
of the validation error is attained. When done, the

reported error is given by the error on the test part
using the network that produced the lowest error in
the validation part. This scheme is simple and has
been reported to be superior to regularization meth-
ods in many cases (e.g. [15]). For each of the ten
selected partitions, ten runs are carried out, varying
the initial conditions of the learner. Therefore, a total
of 100 fits per dataset, architecture and model are per-
formed. To avoid predetermined initial arrangements,
the data sets are randomly shuffled.

The example S-neuron described in (§3.6) is compared
to a classical RBF neuron based on Euclidean dis-
tance, followed by a Gaussian with its own variance
σ2

i (to be learned), as γi(x) = g(||x − wi||) where

g(z) = exp{− 1
2

z2

σ2

i

}. Specifically, the standard met-

ric in R weighted by the maximum deviation (§3.3.3)
using ŝ0 (α = 4, d = 1) for continuous variables, and
the measures (3), (4), (7) and (8), for ordinal, nom-
inal, fuzzy and linguistic variables, respectively, fol-
lowed by a logistic š(z) = f(z, 0.1) (12). It can be
shown that the obtained measure is not affected by
any linear normalization of the variables (including
standardization), rendering this usual preprocessing
step redundant.

The data sets for the RBF network are formed us-
ing the less distorting techniques among those ex-
plained in (§2): ordinal variables are mapped to an
equidistant linear scale, a 1-out-of-k coding is used for
nominal ones and an extra input is added for those
variables with missing values. Real-valued variables
are normalized to [0, 1]. This is not needed by the
S-neuron because it already computes a normalized
measure, but is beneficial for the RBF network.

4.3.1 Training procedure

In traditional neural learning algorithms having a
differentiable unit is essential for the application of
gradient-descent techniques, which restricts their ap-
plicability. Due to the existence of domains other
than the real continuum, the presence of missing data
and the eventual use of a non-differentiable similarity
function. The one chosen in this work is based on
a Breeder Genetic Algorithm (BGA) [23], a method
in mid position between Genetic Algorithms (GA)
[9] and Evolution Strategies [2] that deals directly
with continuous information. While in GA selection is
stochastic and meant to mimic Darwinian evolution,
BGA selection is driven by a deterministic breeding

Table 1: Basic features of the data sets: Def. (default accuracy), Missing (percentage of missing values), Missing-1
(percentage of cases with at least one missing value). Last column shows original heterogeneity.

Name Type #Cases Def. Missing Missing-1 In→Out Data
Pima Diabetes C 768 65.1% 10.6% 48.8% 8 → 2 6R, 0N, 2O
Credit Card C 690 55.5% 0.65% 5.4% 15 → 2 6R, 9N, 0O
Horse Colic C 364 61.5% 26.1% 98.1% 20 → 3 5R, 5N,10O
Heart Disease C 920 55.3% 16.2% 67.5% 13 → 2 3R, 6N, 4O
Solar Flares R 1066 - 0.0% 0.0% 9 → 3 0R, 5N, 4O
Sinus-Cosinus R 400 - 0.0% 0.0% 2 → 1 2R, 0N, 0O
SISO-Bench R 500 - 0.0% 0.0% 2 → 1 2R, 0N, 0O

C classification R regression R real N nominal O ordinal

mechanism, an artificial method in which only the
best individuals –usually a fixed percentage τ of total
population size µ– are selected to be recombined and
mutated, as the basis to form a new generation. The
BGA as used here does not need any coding scheme,
since its genetic operators are extended to handle he-
terogeneous information [4].

The algorithm is used with an identical parameter
setup for all the experiments, regardless of the neu-
ron model, architecture or data set, to exclude this
source of variation from the analysis. The BGA task
is to minimize the RSE (13) on the training part, until
30, 000 error evaluations are used (end of resources)
in each run. Ten independent runs are performed for
each specific training scenario. The BGA is set to
the following parameters: µ = 100, τ = 25, extended
intermediate recombination with δ = 0.45 and con-
tinuous mutation with ρ = 0.5, k = 8. A total of
300 generations (30, 000/100) are carried out for each
run. This setting has been proven very useful in the
context of ANN optimization [10].

4.4 Results obtained

We present performance results measured across
four coordinates: generalization ability, network
complexity, readability and computational cost.

To measure the generalization ability, we report
the test set normalized root square error (NRSE) over
the n = 100 fits, given by:

NRSE =

√
∑

i ||ζi − yi||2
∑

i || < yi > −yi||2
(13)

where ζi is the network’s response to input pattern xi,
and < yi > represents the mean of the target function
over the data set. This value gives an impression of
how good a result is and, being normalized, permits
a comparison across different data sets. Reasonable
values are to be expected in [0, 1]. Values lower than
0.5 indicate fair fits. Values greater than 1.0 indicate
a poor performance. A value of 1.0 actually signals a
model as good as the average predictor ζi =< yi >.
For the classification problems, we also report the av-
erage test set correct classification rates. The results
are summarized in Tables 3 (left and right) and 2, in
which the results are presented from the perspective
of the architectures, averaged over the seven data sets,
and vice versa (this makes sense because the errors are
normalized).

Table 2: Generalization NRSEs for every architecture,
averaged over the seven data sets.

RBF HNN
4 hidden 0.6569 0.5745
8 hidden 0.6427 0.5724
12 hidden 0.6362 0.5795
16 hidden 0.6352 0.5938

The cornerstone of the networks grounded on S-
neurons relies in its good average behaviour. Across
all the data sets, the results for these networks are
consistently better (about a 10%) than those obtained
by the RBF network. This margin can certainly make
a difference in some application.

We define the network complexity p̂ as its num-
ber of parameters to be optimized. For a network

Table 3: Left: Mean generalization accuracies for classification data sets, averaged over the four architectures.
The results in parentheses show an average of the best values across the ten partitions (all these averages take test
set sizes into account). Right: Generalization NRSEs for regression data sets, averaged over the four architectures.

Problem RBF HNN
Pima Diabetes 69.98 (73.66) 74.92 (77.72)
Horse Colic 64.09 (66.15) 65.08 (69.90)
Heart Disease 80.14 (81.51) 81.07 (83.42)
Credit Card 76.18 (81.19) 81.84 (84.86)

Problem RBF HNN
Solar Flares 0.8553 0.9374
Sinus-Cosinus 0.3840 0.0424
SISO-Bench 0.1146 0.0234

Table 4: Complexities for the 12-hidden networks.

Problem RBF HNN
n̂ p̂ n̂ p̂

Pima Diabetes 13 194 10 146
Horse Colic 54 699 46 591
Heart Disease 33 434 14 194
Credit Card 51 650 21 278
Solar Flares 23 327 21 291
Sinus-Cosinus 5 49 2 37
SISO-Bench 5 49 2 37

with a hidden layer of h neurons and an output
layer of l linear neurons, this number is given by
p̂ = h ·m(n̂)+ (h+1) · l, where m(n̂) is the number of
model inputs (number of inputs after pre-processing).
These numbers are shown in Table 4 just for 12-hidden
networks as an example; it can be seen that they are
lower for the HNN (sometimes substantially).

The readability of the obtained solutions is illus-
trated in Table 5. We show the heterogeneous weights
of a hidden neuron taken at random from one of the
hundred networks delivered by cross-validation for the
Horse Colic problem. This problem is chosen because
it displays a good amount of heterogeneity. Linguistic
terms are shown in graphical form, whereas triangular
fuzzy numbers are shown in numerical form –rounded
to one decimal– for clarity. Note the obtained linguis-
tic terms are almost symmetric, a characteristic found
by the network itself. Although it would require an
expert judgement, this example neuron could be re-
garded as the soft prototype of a somewhat “stan-
dard” young horse. This assigns a well-defined mean-
ing to individual weights and to the neuron outcome
(a similarity degree in [0, 1]), and at the same time
permits to interpret the trained network in the orig-

inal input domain (i.e., a collection of measurements
about horses). In contrast, the weight vector for each
RBF neuron consists (for this problem) of 54 real
numbers.

The computational cost associated to each neuron
model is estimated as follows. From the total CPU
time of each training session (for all data sets and
architectures) the total time taken by a hidden neu-
ron is computed, normalizing by the number of pat-
terns, and averaging across the different data sets.
The resulting quantity is then divided by the number
of times a neuron is asked to process the entire data
set which, in this study, amounts to 10× 10× 30, 000
(10 folds, 10 runs per fold, 30,000 data set evaluations
per run). The obtained quantity is the average num-
ber of CPU milliseconds that a hidden neuron takes
to evaluate one pattern of the training set, across all
the data sets2. The resulting numbers are 0.00184 ms
(RBF) and 0.00175 ms (HNN).

In summary, the obtained results can be said to be
satisfactory in a number of senses:

1. The generalization ability is remarkably better,
on all but one of the data sets and very much on
the average across all the data sets.

2. The number of parameters, for same numbers of
hidden units, is lower.

3. The readability of the obtained solutions is en-
hanced.

4. The training time is slightly less than for a RBF
network.

2The machine used for the experiments is a dedicated
SUNTM Enterprise E-250 (2 CPU ULTRA-SPARC-II at
400Mhz, 128Mb RAM), rated at 16.8 SPECint95 and 13.5
SPECint base95 marks.

Table 5: Some heterogeneous weights of a hidden neuron for the Horse Colic problem.

Name Type Value

1 Age linguistic

AGE

young adult

2 Rectal temperature (celsius) fuzzy number 37.3 ± 2.1
3 Pulse (beats per minute) ordinal 70
4 Respiratory rate (times per minute) ordinal 64

5 (Subjective) temperature of extremities linguistic cold cool normal warm

TEMPERATURE

7 Mucous membranes color nominal “normal pink”
9 (Subjective) pain estimation nominal “no pain/alert”

10 Peristalsis: gut activity linguistic absent hypomotile normal hypermotile

PERISTALSIS

14 Nasogastric reflux PH fuzzy number 2.1 ± 0.3
16 Abdomen nominal “distended small intestine”
18 Total protein (grs./dl) fuzzy number 73.6 ± 19.8

5 Conclusions and outlook

The conceptual and functional definition of a neu-
ron as a similarity computing device permits to base
the computation on principled grounds, and carries a
number of advantages: first, the task performed by
the hidden neurons is clearly delimited, allowing for a
deeper influence on the workings of a neural network;
second, it gives a precise semantics to the computa-
tion, thereby facilitating the interpretation process;
third, the possibility of adding prior knowledge to
the model and the treatment of different data sources
are nicely integrated in the framework. The coopera-
tive work of different soft computing techniques (neu-
ral networks, evolutionary algorithms and fuzzy sets)
makes these networks capable of learning from non-
trivial data sets.

We would like to stress the fact that the experi-
ments presented constitute worked examples of use,
for which little domain knowledge was available (only
the data types) and some design decisions had to be
made. Therefore, a different decision on how to treat
a given variable could have been taken. This is, how-
ever, one of the advantages of the approach. The in-
corporation of correct prior knowledge, together with
a methodology that respects the nature of the data

and endows the networks with a clear semantics are
on the basis of the altogether very satisfactory results.
This pattern of behaviour has already been observed
on experiments carried out with a preliminary studied
model, applied to real-world problems in Environmen-
tal Sciences [3]. We hence believe that our contribu-
tions can be effective in a broad spectrum of situa-
tions, and at the same time offering the possibility to
be tailored to specific problems. It is our hypothesis
that these models can add to the practical computing
power of artificial neural models.

References

[1] Aamodt, A., Plaza, E.“Case-based reasoning:
Foundational issues, methodological variations
and system approaches”. AI Communications,
7(1):39-59, 1994.

[2] Bäck, Th., Schwefel, H.P. “A Survey of Evolu-
tion Strategies”. In Procs. of the 4th Intl. Conf.
on Genetic Algorithms, Booker and Belew (eds.),
Morgan Kaufmann: San Mateo, pp. 2-9, 1991.

[3] Belanche, Ll., Valdés, J.J., Comas, J., Roda, I.,
Poch, M. “Prediction of the bulking phenomenon
in wastewater treatment plants”. Artificial Intel-
ligence in Engineering, 14(4): 307-317, 2000.

[4] Belanche, Ll. “Evolutionary Optimization of He-
terogeneous Problems”. In Parallel Problem Solv-
ing from Nature. Merelo et al. (Eds.) LNCS 2439,
pp. 475-484. Springer-Verlag, 2002.

[5] Bersini H., Bontempi, G. “Now comes the time
to defuzzify neuro-fuzzy models”. Fuzzy sets and
systems, 90(2), 1997.

[6] Bishop, C. Neural Networks for Pattern Recogni-
tion. Clarendon Press, 1995.

[7] Chandon, J.L., Pinson, S. Analyse Typologique.
Théorie et Applications. Masson, 1981.

[8] Cherkassky, V., Mulier, F. Learning from data:
concepts, theory and methods. Wiley, 1998.

[9] Davis, L.D. Handbook of Genetic Algorithms.
Van Nostrand Reinhold, 1991.

[10] De Falco, I., Della Cioppa, A., Natale, P.,
Tarantino, E. “Artificial neural networks opti-
mization by means of evolutionary algorithms”.
In Soft Computing in Eng. Design & Manufac-
turing. Springer, 1997.

[11] Dixon, J.K. “Pattern recognition with partly
missing data”. IEEE Trans. on Systems, Man
and Cybernetics, 9: 617-621, 1979.

[12] Dubois, D., Esteva, F., Garćıa, P., Godo, L.
Prade, H. “A logical approach to interpolation
based on similarity relations”. IIIA Research Re-
port 96-07. Barcelona, Spain, 1996.

[13] Duda, R.O., Hart, P.E. Pattern classification and
scene analysis. John Wiley, 1973.

[14] Fiesler, E., Beale, R. (Eds.) Handbook of Neural
Computation. IOP & Oxford Univ. Press, 1997.

[15] Finnof W., Hergert F., Zimmermann, H.J. “Im-
proving model selection by non-converging meth-
ods”. Neural Networks, 6: 771-783, 1993.

[16] Ghahramani, Z., Jordan, M.I. “Learning from in-
complete data”. Memo. 1509, MIT, 1994.

[17] Gower, J. “A general coefficient of similarity and
some of its properties”. Biometrics, 27, 1971.

[18] Hahn, U., Chater, N., “Understanding Simila-
rity: A Joint Project for Psychology, Case-Based
Reasoning, and Law”. Artificial Intelligence Re-
view, 12: 393-427, 1998.

[19] Hebb, D. The organization of behaviour, John
Wiley, 1949.

[20] Little, R.J.A., Rubin, D.B. Statistical analysis
with missing data. John Wiley, 1987.

[21] Moody, J. “Prediction Risk and Architecture Se-
lection for Neural Networks”. From Statistics to
Neural Networks: Theory and Pattern Recog-
nition Applications. Cherkassky, et al. (Eds.),
NATO ASI Series F, 136. Springer, 1994.

[22] Mosteller, F., Tukey, F. Data analysis & regres-
sion. Addison-Wesley, 1977.

[23] Mühlenbein, H., Schlierkamp-Voosen, D. “Pre-
dictive Models for the Breeder Genetic Algo-
rithm”. Evolutionary Computation, 1(1): 25-49,
1993.

[24] Murphy, P.M., Aha, D. “UCI Repository of ma-
chine learning databases”. UCI Dept. of Informa-
tion and Computer Science, 1991.

[25] Pedrycz, W. “Fuzzy sets in pattern recognition:
accomplishments and challenges”. Fuzzy sets and
systems, Vol. 90, No. 2, 1997.

[26] Poggio T., Girosi, F. “A theory of networks for
approximation and learning”. MIT Memo 1140,
1989.

[27] Prechelt, L. “Proben1: A set of Neural Network
Benchmark Problems and Benchmarking Rules”.
Facultät für Informatik. Univ. Karlsruhe. Tech-
nical Report 21/94, 1994.

[28] Stanfill, C., Waltz, D. “Toward memory-based
reasoning”. Communs. of the ACM 29, 1986.

[29] Su, Y., Sheen, Y. “Neural networks for sys-
tem identification”. Intl. J. of Systems Science,
23(12), 1992.

[30] Valdés, J.J, Garćıa, R. “A model for heteroge-
neous neurons and its use in configuring neu-
ral networks for classification problems”. LNCS-
1240, pp. 237-246. Springer-Verlag, 1997.

[31] Wilson, D.R., Martinez, T.R, “Heterogeneous
Radial Basis Function Networks”. In Procs.
of the 6th Intl. Conf. on Neural Networks
(ICANN’96), vol. 2, pp. 1263-1267, 1996.

[32] Zadeh, L. “Fuzzy Sets as a basis for a theory of
possibility”. Fuzzy Sets & Systems (1),3-28, 1978.

[33] Zimmermann, H.J. Fuzzy set theory and its ap-
plications. Kluver Academic Publishers, 1992.

