
 

 

 

  

Abstract—This paper presents the advances of a research using a 

combination of recurrent and feed-forward neural networks for long 

term prediction of chaotic time series. It is known that point-to-point, 

long term prediction for chaotic time series is not possible; however, in 

this research we are looking for ways to build dynamical systems using  

artificial neural network, that contain the same characteristics as the 

unknown systems producing a time series. The created systems should 

be such that they have chaotic invariants similar to the ones presented 

in the time series. Being able to create such system, the bounds of the 

predictions may be defined. We present some general concepts related 

to chaos, dynamical systems and artificial neural networks and present 

one model that, if not able to predict yet,  is able to autonomously 

oscillate in bounded limits and in a chaotic way. Some experimental 

results and future work is also presented. 

 
Index Terms— Chaotic signals, hybrid complex neural network 

(HCNN), Lyapunov exponents, recurrent neural networks.  

 

I. INTRODUCTION 

  The possibility of accurate prediction is still impossible for 

some applications, as weather, stock values or some biological 

signals. This is because they behave chaotically.  However, in 

many of these dynamical systems, it could be very useful to have 

a system able to predict if catastrophic events may occur. 

 Therefore the creation of a model with dynamical 

characteristics similar to the unknown model generating the 

time series produced by these systems could help in the 

prediction of such systems.  

 

II. DETERMINISTIC CHAOS AND LONG TERM PREDICTION 

A. Some definitions 

Deterministic chaos is understood as an aperiodic behavior very 

sensitive to initial conditions. In the last years it has been found 

that many non-linear systems present a chaotic behavior. There 

is not a universally agreed definition of chaos. According to [1] 

some characteristics of deterministic chaos are: 
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• Chaotic trajectories are aperiodic and deterministic 

• Chaotic systems are extremely dependant on initial 

conditions. Therefore small uncertainties in the initial 

state will grow exponentially fast average 

• Chaotic behavior is bounded and presents strange 

attractors 

• There is a particular pattern associated with chaotic 

behavior 

 

B. Non-Linear Dynamical Systems 

A dynamical system is one that changes with time. A non 

linear dynamical system can be represented by the equation: 

 

                        (1) 

  

 

Vector F is nonlinear; d is the dimension of the system. This 

equation describes the motion of a point in a d-dimensional state 

space known as phase space.  

A trajectory of the system is a curve of )(ty  drawn in the 

phase space, showing the solution of (1) for a specific initial 

condition. A family of trajectories for different initial conditions 

is called a phase portrait. The behavior of a dynamical system 

can be visualized using a plot called return map, which is a 

representation of the state space of the system. A return map 

shows the relation between a given point in a time series with 

other points further away in time. 

In the literature, many times nonlinear dynamical systems and 

chaotic systems are taken as the same. All chaotic systems are 

nonlinear, but not all nonlinear dynamical systems are chaotic. 

 

C. Chaotic Systems and Time Series 

Given a time series that represents a dynamical system, it is 

possible to find out the degree of nonlinearity in such system, 

using some numerical methods to calculate the invariants of the 

system [2]. The asymptotic behavior of a dynamical system 

when ∞→t  is known as its steady state. A steady state y* is a 

set of values of the variables of a system for which the system 

does not change as time proceeds.  That is: 

0=
dt

td )(y .                      (2) 

Some systems do not reach fixed points as ∞→t , rather 

they oscillate. The solution to their differential equation is 
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periodic, known as a limit cycle.  A limit set is defined as the set 

of points in the state space that a trajectory of the system 

repeatedly visits.  The points of the limit cycle form the limit set.   

An attractor is a set of points toward which a trajectory 

approaches after its transient state dies out [3].  Equilibrium 

points or fixed point and limit cycles are attractors.  A basin of 

attraction is a set of initial conditions for which the system 

approaches the same attractor as ∞→t .  

When the steady state behavior of a system is bounded but not 

an equilibrium point or a limit cycle then the system is said to be 

chaotic.  The geometrical object in state space to which chaotic 

trajectories are attracted is called a strange attractor.  A strange 

attractor presents one or more injection regions, which are 

zones of the phase space with a very large number of trajectories 

crossing along them. Such closeness in the trajectories makes 

the system to “jump” from one trajectory to other, generating 

what is known as chaos.  

 Through the years, the existence of chaos has been 

characterized in time series using several methods, among 

others: analysis of Fourier spectra, fractal power spectra, 

entropy, fractal dimension, and calculation of Lyapunov 

exponents.  However, several of these methods have proven not 

to be very efficient.  Even though, the calculation of Lyapunov 

exponents has been a common way to determine if a time series 

resulting from an unknown dynamical system is chaotic.  

 

D. Lyapunov Exponents 

The Lyapunov exponents (LE) λ λ λ1 2, ... d  are the average 

rates of expansion ( λi > 0 ) or contraction ( λi < 0 ) near a 

limit set of a dynamical system [4]. In other words, the LE are a 

quantitative measure of the divergence of several trajectories in 

the system. There is one LE for each direction in the 

d-dimensional phase space where the system is embedded.  The 

variable d represents the Lyapunov dimension or phase space 

dimension.  The LE’s are invariant measures; that is, they do 

not change when the initial conditions of a trajectory are 

modified or if some perturbation occurs in the system.  If at least 

one LE is positive, the system presents chaotic motion; hence it 

is very dependent on initial conditions.  If that is the case, the 

magnitude of the LE reflects the time scale on which the 

dynamics of the system become unpredictable.  

There are several algorithms developed to calculate LE from 

time series. Of special interest for our research is the one 

developed by Gencay and Decher [5] that estimates all the LEs 

of an unknown dynamical system using a technique based on a 

multivariate feed-forward neural network.  The main idea of this 

algorithm is to estimate a function from the observations of the 

system that is topologically equivalent to the one describing the 

system, and then calculate the LE of that function.   

E. Long-term prediction 

Forecasting consists of the evaluation of future values of a 

time series, 1≥+ hx hT   , , based on the observations of its past 

values Txxx ..., 21  [6].  In general, prediction may be seen as 

a function approximation problem [7] which consists of 

defining a complicated function )(yf  using other 

function )(
~

yf  that is a combination of simpler functions:  

∑
=

=
N

i

iiaf
1

)()(
~

yy ϕ .                                (3) 

If the bases functions )(yiϕ  are a linear combination of past 

outputs and/or inputs, the model is said to be linear.  When the 

bases are nonlinear with respect to the past signal, the model is 

non-linear.  For many years linear models have been the most 

popular tools to predict, but obviously they are not able to 

represent accurately non-linear dynamical systems. 

A predictor map defined by (3) can be written as: 

)),(() ayFy t(t =+1                            (4) 

Single-step prediction takes place when several observations 

of past values are used by the predictor to calculate the next 

point.  This is also called next-point prediction or one-point 

prediction. In this case the predictor map is applied 

once: )),(() ayFy t(t =+1 .This kind of prediction is 

normally carried out by non-autonomous predictors, where 

each prediction of time t  requires as external inputs 

observations at times t-1, t-2… t-d+1.  It is also possible to carry 

out single-step prediction using an autonomous predictor, 

which is able to fully represent the solution to the dynamic of the 

system, and therefore it only requires as external input the initial 

conditions of the system. In this case, from time t=0, the 

predictor will calculate the output at any time t without using 

any external inputs.   

Point-by-point prediction takes place when, in an iterative 

way, the predictor calculates outputs at times t, t+1, t+2 and so 

on. Here the predictor map is applied several times: 

)),((...)),),2(((

)),1(()

ayFaayFF

ayFy

tkt

ktk(t

k==−+

=−+=+
                   (5)  

  A non-autonomous predictor will require feedback from its 

own predictions to calculate new values when the value to be 

predicted is such that there are no more available observations.  

Point-by-point prediction is required for long-time prediction.  

A non-linear model can not be accurately described by a 

transfer function. However, a model equivalent to linear case 

can be constructed for non-linear systems using the embedding 

theory of Takens [8].  First it is required to reconstruct an 

embedding space using the available time series, with 

characteristics equivalent to the original system. With this it is 

possible to define a map that transforms from the current 

reconstructed state of the trajectory to the next state.  

Given: 

))(()...(),(),(()( τττ 12 −+++= dnxnxnxnxny     (6) 

where )(nx is the time series, d is the embedding dimension, 

and τ  the time lag, a map 
dd

F ℜ→ℜ: , parameterized by 

)...,,( paaaa 321=a , can be constructed such that  

)),(()( ayFy nn =+1 .                            (7) 
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 Data resulting from a non-linear dynamical system contain 

invariant information that is essential to describe the 

geometrical structure of its attractor. A way to construct a 

predictor map is calculating such invariants from the data and 

then imposing them as constraints on the calculation of 

parameters, in a way that the dynamical system defined by F has 

similar invariants to the unknown system.  

 It is important to remark that reliable point-to-point 

prediction of chaotic systems with unknown dynamics is 

impossible [9]. Indeed, there is not a theory for recognizing 

whether a constructed predictor has been able to truly identify 

the original system. 

III. THE HYBRID COMPLEX NEURAL NETWORK 

A. Some previous work 

There are several studies related to modeling and prediction 

of non-linear time series using neural networks.  For example, 

Hayashi [10] analyzed the behavior of an oscillatory network 

with external inputs. His network is made of excitatory and 

inhibitory neural groups.  Each excitatory cell is connected to an 

inhibitory cell and to other excitatory cells. Hayashi observed 

that, when the external inputs to the network were similar to a 

memory pattern, the network generated a limit cycle near such a 

pattern.  For an input far from the memory patterns, a chaotic 

orbit was generated. Príncipe and Kuo [12] studied a dynamic 

modeling of chaotic time series using a recurrent neural network 

with a global feedback loop.  Their network was trained using 

back- propagation through time.  They proposed to use dynamic 

invariants as a measure of the success of the predictor, instead of 

a global error. Recurrent neural networks have shown to be 

crucial for activities involving non-linear dynamics and 

especially for chaos. 

Logar [13] showed that a 3-node fully-connected recurrent 

neural network (RNN) is able to oscillate; hence it may capture 

the dynamics of sine waves and work as an autonomous 

predictor. Once trained, these kind of networks can accurately 

predict point-by-point fairly well during long periods of time, 

using no external inputs except the initial point of the signal. 

Figure 1 shows this kind of network, that we named harmonic 

generator [15].  Based on this oscillation ability, Oldham [14] 

developed a predictor model which consists of a 

fully-connected RNN pre-loaded with information about the 

Fourier components of the signal to be learned.  Such a model is 

known as the complex network. 

 

Sine function 

 

3-node fully 

connected NN 

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 14 5 154 163 172 181 190 199 208 217 226 235 244

Initial 

condition 

 

 
Fig. 1 A Harmonic Generator 

 

B. Architecture and Training of HCNN 

The “Hybrid Complex Neural Network” (HCNN) [16] is 

based on several harmonic generators, connected to other 

neurons using feed-forward and recurrent connections.  Figure 2 

shows a HCNN. 

Training of the HCNN includes a mechanism to obtain 

information related to the chaotic dynamics of the training 

signal. This is done by introducing in the network information 

about Lyapunov exponents. To do so, we use a procedure 

similar to the one proposed at [5] which obtains an 

approximation of the Lyapunov exponents of a time series, 

based on a feed-forward neural network. Such neural network 

calculates a function that is topologically equivalent to the one 

describing the dynamical system. That network gets as input 

some past values of the series, generating the next value as 

output.  

Training HCNN to produce a particular time series is done as 

follows: 

1. Calculate the Fourier transform of a portion of the time 

series and obtain it fundamental frequency. The size of such 

portion should include at least one “pseudo” cycle of the series 

(is the time series is chaotic, there are not real cycles on it) 

2. Using the fundamental frequency, train a number of 

harmonic generators to produce sine functions with frequencies 

multiples of such fundamental. The number of harmonic 

generators depends on the desired size of the HCNN 

3.  Embed the trained harmonic generator in a HCNN, which 

is made of n input neurons in the first layer, m harmonic 

generator in the second layer, r hidden nodes in the third layer 

and 1 node in the output layer.  The topology includes feed 

forward connections between each layer. Only one node in each 

harmonic generator is connected to the next layer.  

4. Keeping fixed the harmonic generators weights, train the 

feed-forward weights using the algorithm back propagation 

through time (BPTT) [17].  This training feeds input nodes with 

(p-1) values of the tine series and use p values to calculate the 

error to propagate. This step creates the part of the system that 

poses similar invariant characteristics to the expected dynamical 

system. 

5. Train again the whole weights of the network using 

(BPTT). 

 

The dynamics of each neuron in the network is given by: 

dy

dt
y x I

i
i i i= − + +σ ( )                                         (8) 

where:  

x w yi ji j

j

= ∑                     (9) 

xi represents the input to the i-th. neuron coming from other 

neurons, Ii is an external input to i-th. neuron, wji is the weight 

connecting neuron i to neuron j and )(xσ is an arbitrary 

differentiable function, commonly a sigmoid. Ii  is used only in 

the input layer of the HCNN. 

 

Engineering Letters, 15:1, EL_15_1_10
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



 

 

 

s(t-5)            s(t-4)               s(t-3)            s(t-2)           s(t-1)

 
 

Fig. 2 An example of a Hybrid Complex Neural Network with 7 harmonic 

generators, 5 inputs and one output 
 

 

IV.  RESULTS 

The behavior of the Hybrid Complex Neural Network has 

been tested with several chaotic time series [16]. Here we 

present the results obtained when 512 points of an 

Electrocardiogram were fed to the network. Figure 3 shows such 

time series and Figure 4 its return map.  

As a metric of the performance of the network we used the 

Maximum Square Error (MSE) as well as the maximum LE λ1 

of the original and predicted time series. LE was calculated 

using our own implementation of the method described at [17]. 

It is important to point out that, as with other numerical 

algorithms, this is strongly dependent of the size of data and 

accuracy of input parameters.  

To calculate λ1 for the time series used and predicted in this 

experiment we applied the following input parameters: Number 

of inputs points = 512 or 1,536 (size of the signal), embedded 

dimension = 3 (as suggested in [18]), time delay = 15 

(calculated using auto-correlation function), time period of data 

= 0.028, maximum distance to look for neighbors = 0.008 and 

minimum distance = 1.0e-05.  We obtained a Maximum LE of 

3.23±0.027 for this time series. At the time when we developed 

these experiments there was not an agreement in the literature 

about what was the real maximum LE of an electrocardiogram. 

Values as low as 0.34±0.08 [18] or as large as 29.0 [19] can be 

found.  

A HCNN with 5 input neurons, 7 harmonic generator, 7 

hidden neurons and 1 output neuron (Fig. 2) was trained using 

512 points of the ECG with 30,000 sweeps. A MSE of 2.5E-3 

was obtained. Figure 5 shows the original and predicted signal 

obtained in this experiment. Figure 6 shows the predicted signal 

by itself.   

We calculated the maximum LE for two different segments of 

the predicted signal: in the first 512 points and in the complete 

2048 predicted points. This was because the prediction of the 

first 512 points was made using original data as input to the 

network, and the rest of the signal (1,536 points) was predicted 

using predicted data as input to the network. The maximum LE 

was 4.88±2.21 using the first 512 points, and 7.52±1.95 using 

the 2,048 points.  
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Fig. 3. The ECG used in this experiment 
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Figure 4. A Return map of the time series at figure 3.  

 

Notice that the predicted output is enclosed to an upper value; 

that is, the network oscillates in an autonomous way, using their 

own predicted data and keeping their output with no divergence. 

This behavior is not seen in other linear predictors, or with 

predictors based on feed- forward neural networks, as shown at 

[16]. It is also noted that magnitude of the predicted signal is not 

as expected, especially in the peaks of the ECG. It can also be 

noticed that values obtained by topology B are noisier than the 

obtained by topology A. 

Figure 7 shows a return map of the predicted signal, where 

compared to figure  4 the attractor is missing the peak due to the 

short peak values of the ECG in the predicted signal. 

V. CONCLUSIONS AND FUTURE WORK 

A model combining recurrent and feed forward network to 

predict chaotic time series, called the hybrid complex neural 

network, is presented in this research. The result obtained using 

a HCNN for prediction of electrocardiograms are not 

satisfactory yet, However, HCNN is able to oscillate in a 

bounded and autonomous way, and generates a signal with 

positive LE. 
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Figure 5. Original  and predicted ECG 
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Figure 6.  Predicted ECG using HCNN  
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Figure 7. A Return Map of Predicted ECG  

 

These results are encouraging to improve the model. Future 

work in this model may include the use of phase information 

during the training of the harmonic generators and the use of 

some variant of teacher forcing during training. Also the use of 

ensemble forecasting by training several HCNN in parallel that 

collaborate among them may contribute to improve the results. 
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