
 
 

 

  
Abstract— In this paper, we propose a novel 

wavelet-based-CMAC (WCMAC) network for predictive image 
coding. The Gaussian functions of traditional CMAC are replaced 
by wavelet functions. In addition, properties and advantages of 
fuzzy TSK- model are used to modify the activation functions of 
CMAC for obtaining high approximation accuracy and 
convergent rate. The WCMAC is employed to predict differential 
pulse code modulation (DPCM) of image compression. The 
WCMAC predictor can not only have accurate prediction, but 
also rather study and adapt to various and constant changing data. 
Experimental results and comparisons with other state-of-the-art 
lossless predictors are given to highlight the advantages of the 
proposed approach. 
 

Index Terms—CMAC, wavelet, image compression, lossless 
image coding.  
 

I. INTRODUCTION 
 With the improvement of the digital system and the 

development of the internet, the quality of the multimedia data 
which includes image, voice and video becomes more and more, 
therefore, the data compression becomes important. Image 
compression is the process of using fewer data to represent the 
original image [13, 27]. The compression process is called 
“lossless” if the reconstructed image is identical to the original 
one; otherwise, it is called “lossy” compression [5, 13, 24, 27]. 
Lossless image coding is used in a wide variety of applications 
such as medical imaging and remote sensing. Therefore, many 
state-of-the-art lossless image coders (or predictor) have been 
proposed [12-14, 18, 25, 28, 32, 34]. Among which, most of the 
results are obtained by adaptive approaches and predictive 
coding in spatial domain. It is known that predictive coding, 
such as DPCM, offers an attractive means especially for 
real-time applications and encoding of high-resolution images, 
thus it has been adopted in advanced image coding systems [1, 
5, 6, 8, 13, 23, 24, 27, 29, 33-35]. In predictive image coding, 
we use the previously coded pixels, the so-called causal pixels, 
as the prediction inputs to predict the pixels to be encoded. 
Statistically, the entropy of the prediction errors will be smaller 
than that of the original image due to the high correlation 
between pixels. Therefore, the error (difference) between the 
original value and the predicted value are then entropy encoded 
to produce the bit stream. 
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Though have low computational complexity, the result of 
lossless image predictors obtained by using linear regression is 
not as good as expected. Thus, some of the results using fuzzy 
logic and neural networks as the nonlinear predictors are 
proposed [1, 8, 16, 23, 26, 34]. As can be seen, the results 
obtained by the use of a nonlinear predictor are better than that 
of obtained by linear predictors. Besides, most of the adaptive 
neural network-based predictors are made of multi-layered 
perceptions and the network weights are adapted in the coding 
process using a predefined training area. However, an online 
adaptation process with a large training area and training cycles 
may results in a drastic increase in the computational 
complexity.  

Cerbellar model articulation controller (CMAC) was 
developed by J.S. Albus in 1975 which is a perceptron-like 
associative memory that to formulate the processing 
characteristics of the cerebellum [2, 3, 7]. It performs nonlinear 
relationships from a broad category of functions. To take 
advantage of CMAC NN structure, the CMAC NNs are 
proposed for closed-loop control of complex dynamical 
systems [2, 4, 7, 10, 21]. Herein, a novel wavelet-based-CMAC 
(WCMAC) network for predictive image coding is presented. 
The Gaussian functions of traditional CMAC are replaced by 
wavelet functions. In addition, properties and advantages of 
fuzzy TSK- model are used to modify the activation functions 
of CMAC for obtaining high approximation accuracy and 
convergent rate. The WCMAC is employed to predict 
differential pulse code modulation (DPCM) of image 
compression. The WCMAC predictor can not only have 
accurate prediction, but also rather study and adapt to various 
and constant changing data. Finally, experimental results and 
comparisons to existing state-of-the-art lossless predictors will 
be given to highlight the advantages of the proposed approach.  

The rest of the paper is organized as follows. Section II gives 
a description about the DPCM. The WCMAC network and its 
learning algorithm are presented in Section III. Section IV 
introduces the WCMAC network for DPCM system. 
Experimental results are shown in Section V to demonstrate the 
effectiveness of the proposed system. Finally, a concluding 
remark is given in Section VI. 

 

II. DIFFERENTIAL PULSE CODE MODULATION (DPCM) 
Differential pulse code modulation (DPCM) has been 

used in a wide variety of applications such as image and speech 
compression [13, 18, 27]. Due to the high correlation between 
successive image samples, a relatively simple solution to 
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remove the redundancy is to encode the differences between 
successive samples rather than the samples themselves. The 
resulting technique is called DPCM. Since the difference 
between samples is expected to be smaller than the actual 
sampled amplitudes, fewer bits are required to represent the 
difference. Thus, the concept of DPCM is to estimate the inter 
pixel redundancies of closely spaced pixels by extracting and 
coding only the new information between pixels. Only new 
information in the signal is encoded rather than the original 
signal. That is, the new information of a pixel is defined as the 
difference between the actual and predicted value of that pixel. 
In addition, predictive coding, such as DPCM, offers attractive 
means especially for real-time applications and encoding of 
high-resolution image. 

Figure 1 shows the basic block diagram of a lossless 
predictive coding system. Both the predictors in the encoder 
and the decoder are identical. Figure 2 shows the two 
dimensional image in an M×N array. For convenience, we use 
the symbol p to denote the pixel f(i,j) currently being encoded. 
The predicted value is generated using the previously decoded 
samples as the prediction inputs and rounded to the nearest 
integer p̂ . The output of the predictor is then subtracted from 
the original value to form the difference or prediction error.  

ppe ˆ−=                                                         (1) 
The prediction error in (1) is then entropy encoded to produce 
the bit stream for transmission or storage. The decoder in Fig. 1 
reconstructs p from the received bit stream and performs the 
reverse operations. 

pep ˆ+=                                                           (2) 
Obviously, the predictive DPCM removes the mutual 

redundancy between successive pixels by coding prediction 
errors. If the predictor is well designed, the entropy and the 
variance of the prediction error will be much smaller than that 
of the original image. The performance is essentially dependent 
upon the choice of the predictor. Recently, many approaches 
have been proposed for the predictor design [1, 5, 6, 12-14, 
16-18, 23-29]. Most of which use a linear combination of the 
previously coded pixels to estimate the pixel to be encoded [24, 
27]. Though with low complexity, the prediction result 
obtained by the use of linear predictors is not as good as 
expected. Thus, some approaches using fuzzy logic and neural 
networks as the nonlinear predictor have been proposed [1, 8, 
17, 23, 26, 35]. Obviously, the results are better than that of 
obtained by the linear predictors. In this paper, we propose the 
use of WCMAC system to develop an adaptive linear-like 
predictor (Gaussian function and linear combination). As we 
will see in succeeding sections, the proposed system performs 
nonlinear prediction but with much reduced computational 
complexity just like a linear predictor. 

III. WAVELET-BASED-CMAC (WCMAC) NETWORK   

Cerebellar model articulation controller (CMAC) is a 
perceptron-like associative memory that was developed by J.S. 
Albus in 1975 to formulate the processing characteristics of the 
cerebellum [2, 3]. This model performs nonlinear relationships 
from a broad category of functions. CMAC NN has been 

applied in many real-world applications such as robotic control, 
signal processing, and pattern recognition by its fast learning, 
good generalization capability, and ease to implement [4, 7, 
9-11, 18, 20, 21, 30]. 

In this paper, to achieve highly approximated accuracy and 
speed up the convergence, the traditional CMAC NN is 
modified as a novel wavelet-based CMAC NN. The major 
differences are: the Gaussian receptive fields functions are 
replaced by first order wavelet functions and the weight 
memory space are linear combination of input variables which 
took the advantages of TSK-type fuzzy model. Figure 3 depicts 
the proposed WCMAC system.  

Herein, we indicate the signal propagation and the basic 
function of every node in each layer, )( l

inet  denotes the net 
output, the superscript (l) indicates the lth layer and the subscript 
i indicates the ith input variable.  

Layer 1:  

For the ith node of layer 1, the net input and the net output 
are: 

)()( )1()1( txtnet ii =    

)())(()( )1()1()1()1( tnettnetfty iiii == , ni ,,2,1 ⋅⋅⋅= .     (3) 

Each node of the first layer transports the input to the 
membership layer. 

Layer 2:  

Similar to the fuzzification of fuzzy logic system, the 
input/output relation is  
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Note that the Gaussian functions of this layer are replaced by 
the first order wavelet functions- Haar wavelet function. From 
the results of literature [19], the Haar functions are orthogonal 
basis, i.e., the Haar wavelet functions have the ability of 
universal approximation. By the property of universal 
approximation, the Haar wavelet functions are adopted to 
replace the Gaussian functions.  
Layer 3:  

The operation of each node is the product of inputs (similar 
to the fuzzy AND operation), i.e.,  

∏=
j

kjkk txwtnet )()( )3()3()3(   

)())(()( )3()3()3()3( tnettnetfty kkkk ==  rk ,,2,1 ⋅⋅⋅= .  (4) 
Layer 4: 

Each node calculates the linear combination of input 
variables, i.e., the consequent part of TSK-type fuzzy model. 
The details operation described below.  
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jqnjqjqjq wwwW ],,,[ )(10 L=  

Engineering Letters, 15:1, EL_15_1_18
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



 
 

 

∑
=

⋅×=
r

j

T
jqqq HWtxtnet

1

)4()4( )()()(                                                           

)())(()( )4()4()4()4( tnettnetfty qqqq ==  

             ,])()[(
1 1

0
)4(∑ ∑

= = ⎭
⎬
⎫

⎩
⎨
⎧ ⋅+=

r

j

n

i
iijqjqq txwwtnet    rq ,,2,1 ⋅⋅⋅=  (5) 

The function approximation properties of neural networks 
and fuzzy systems are well-known [19, 31]. Similarly, the 
WCMAC also has the universal approximation ability [4, 11]. 
By the way, the function approximation properties of the 
WCMAC can be guaranteed.  

Herein, we use the well-known backpropagation learning 
algorithm to train the WCMAC. The general used update laws 
is  

)()()1(
W
GtWtW

∂
∂

−+=+ η                                               (6) 

where G denotes the error function for training. First, the error 
cost function for tracking control is defined. 
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where )4(
qy  and y are WCMAC output and actual system output, 

respectively. By gradient method, the update laws of the 
WCMAC network parameters are obtained as bellows.  
For W: 
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Finally, the update laws are  
jqjqjq WtWtW ∆+=+ )()1(  

  ijijij mtmtm ∆+=+ )()1(                          (13) 

ijijij tt σσσ ∆+=+ )()1( .                           
        

Remark 1. In this paper, the on-line (or real-time) learning 

performance is required for image compression. That is, the 
WCMAC network play the role of “adaptive predictor DPCM” 
and the WCMAC network is trained by only one cycle.   

 

IV. DPCM USING WCMAC NETWORK   
In this paper, we propose the use of the WCMAC network 

to design an adaptive DPCM predictor for image compression. 
The WCMAC network predictor is made adaptive to the 
varying statistics by learning from prediction errors using the 
gradient descent method to update network parameters 
continuously. In image coding systems, the pixels are usually 
encoded in a sequence such as from left to right and from top to 
bottom. Figure 4 (a) shows the raster scan order of a given 
image. By the results of [16], a block scanning method is 
proposed and the compression performance can be improved. 
Thus, we modify the order of the encoding sequence. Figure 4 
(b) shows the scanning order of the proposed partition method. 
For natural images, the variations of the pixel values tend to be 
smooth within a small region. Therefore, the image is 
partitioned into m×n regions. Finally, we encode the image by 
the sequence of the partition regions. We will use a set of 6 test 
images to demonstrate the effectiveness of the proposed 
WCMAC network predictor. 

The corresponding two-dimensional neighborhood of the 
pixel f(i,j) (denotes p) is shown in Fig. 5, where i and j denotes 
the horizontal and vertical direction respectively. The four 
causal pixels as shown in Fig. 5 are used as the inputs of the 
WCMAC predictor, and the output is the predicted pixel of 
f(i,j), i.e.,  

][)( WWWNNNtx −−=                                          (14) 

When the pixel f(i,j) is to be encoded, reconstructed values of 
its neighborhood on its left and top are also available in the 
decoder and the decoder can perform the same operations just 
like the encoder. 
      Besides, the gray levels of the test images are represented 
by 8 bits, i.e., [0 255]. To avoid being trapped in the saturation 
region in the first few steps while doing online training, the 
prediction inputs are always quantized and normalized, i.e.,  

[ ] [ ]WWWNNNtztztz −−==
ε
1)()()( 21  (15) 

where 255=ε . The output of WCMAC is also timed by ε . The 
on-line training scheme can be summarized as Fig. 6.  

In addition, the quality of lossless predictive coding is 
evaluated by the entropy of the prediction error in bits per 
symbol H(s) defined by [13] 

)(log)()( 2
1

i

n

i
i spspsH ∑

=

−=                                        (16) 

where )( isp  is the probability of occurrence of the symbol is . 
After on-line adaptation, the histogram of prediction error for 
image “Lena” is shown in Fig. 7. Thus, from Fig. 7, we observe 
that the probability of error around zero is very high. That is, 
the WCMAC predictor provides high accuracy of prediction 
and performs well.  
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V. EXPERIMENTAL RESULTS  
In lossless predictive coding of images, the predictor is 

designed to minimize the entropy of the prediction error such 
that a maximum compression ratio can be achieved. The 
performance of the proposed adaptive WCMAC predictor can 
be demonstrated by the following experimental results in 
comparison with other predictors. The highly approximation 
accuracy and faster convergent speed are also shown for 
“Pepper, Barbara, Sailboat, Lena, Lynda, Pentagon,” images.  

Table 1 gives the comparison of different approaches [23, 
26].  Obviously, the proposed adaptive WCMAC predictor 
performs better than other fuzzy logic system or neural network 
nonlinear predictors with smaller entropies. These comparison 
results show the advantages of the proposed adaptive WCMAC 
approach. 

VI. CONCLUSION  

In this paper, we have proposed the use of an adaptive 
WCMAC network system for lossless image coding. A 
modified scanning order method has been designed to improve 
the compression performance. The adaptive WCMAC 
predictor has the following advantages- fast convergence and 
minimum parameters (use the matrix computation), high 
accuracy approximation, and easy to understand. The 
experimental results reveal that the adaptive WCMAC system 
has real-time training performance, and accurate prediction. 
Experimental comparisons with the most advanced methods in 
the literature have been presented to highlight the advantages of 
the proposed adaptive WCMAC scheme for data compression. 
Furthermore, the usefulness of the proposed approach has been 
demonstrated through experimental results and comparisons to 
existing state-of-the-art linear and nonlinear predictors. 
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Figure 1: Block diagram of differential pulse code modulation (compression and reconstruction). 

 
 
 

f(1,1) f(2,1) f(3,1) … f(M-1, 1) f(M,1)
f(1,2) f(2,2) f(3,2) … f(M-1,2) f(M,2)
f(1,3) f(2,3) f(3,3) … f(M-1,3) f(M,3)

M  M  M  O M  M  
f(1,N) f(2, N) f(3, N) … f(M -1, N) f(M, N)

 
Figure 2: Two dimensional image- M×N array. 

 
 

 
Figure 3: Wavelet- based CMAC network architecture. 
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Figure 4: Scanning order of a two-dimensional image: (a) raster scan of an image (b) the used block scan method. 
 

     

  f(i,j-2),NN   

  f(i,j-1),N   

f(i-2,j),WW f(i-1,j),W f(i,j),P   

     

Figure 5: Two dimensional neighborhood of prediction inputs. 
 
 

 
Figure 6: Training scheme of WCMAC predictor. 
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Figure 7: The histogram of prediction error for image Lena. 
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Table 1: Comparison results 
Predictive Median Hybrid Filters [26] Neural Networks [23]Image 

Type1 Type2 Type3 Type4 Type1 Type2 

T-S Type Fuzzy 
neural 

Network [17] 

WCMAC 

Lena 4.56 4.32 4.51 4.53 4.54 4.64 4.49 3.72 
Barbara 5.68 5.60 5.60 5.60 5.56 5.59 4.72 4.24 
Sailboat 5.28 5.32 5.24 5.25 5.40 5.48 4.98 4.51 
Pepper 4.92 5.05 4.91 4.95 5.37 5.31 4.42 4.27 
Lynda 3.44 3.79 3.49 3.57 4.49 3.61 3.33 2.80 

Pentagon 5.30 5.23 5.22 5.20 5.29 5.41 5.06 4.54 
Avg. 4.86 4.93 4.83 4.85 5.11 5.00 4.5 4.01 
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