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Abstract—In the context of multiple constant
multiplications (MCM) design, we propose a novel
common-subexpression-elimination (CSE) algorithm
that models synthesis of coefficients into an estimated
cost function. Although the proposed algorithm gen-
erally does not guarantee an optimum solution, it is
capable of finding the minimum/minima of the func-
tion in practically sized problems. In our design ex-
amples that have known optimal solutions, synthe-
ses of coefficients using the proposed method match
the optimal results in a defined search space. We
also discover the relationhsip and propose an improve-
ment search space for optimization that combine all
minimal-signed-digit (MSD) representations as well
as the shifted sum (difference) of coefficients to ex-
plore the hidden relationship. In some cases, the pro-
posed feasible solution space further reduces the num-
ber of adders/subtractors in the synthesis of MCM
from all MSD representations.

Keywords: common subexpression sharing, multiple

constant multiplications, genetic algorithm

1 Introduction

Multiple constant multiplications (MCM) are typical op-
erations in digital signal processing (DSP) as well as
in the design of finite-impulse-response (FIR) filters, as
shown in Fig.1. Multiplierless MCM is the focus of a lot
of research on high-speed and low-power devices. In mul-
tiplierless MCM, multipliers are replaced by simpler com-
ponents such as adders, and hard-wired shifts, as shown
in Fig.2. (The meaning of “adders” in our paper includes
subtractors as well because their hardware cost is simi-
lar.)

A commonly used method for minimizing the number
of adders in a MCM block is common-subexpression-
elimination (CSE) [1–7]. Conventional CSE algorithm
uses different signed-digit representations and looks for
common subexpressions to decompose coefficients. A
proposed algorithm in [1] finds common subexpressions
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Figure 1: A multiplier-based MCM example
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Figure 2: A multiplierless-based MCM example

from the CSD representation. Adder reduction of subex-
pressions is estimated using an exhaustive search. Flores
et al. have proposed an optimum solution technique [7]
that uses a SAT-based 0-1 integer linear programming
(ILP) solver. Their results show that the larger search
space of all minimal-signed-digit (MSD) representations
has improvement over the CSD representation in most
cases.

Feasible solution space other than the search space of
signed-digit representations may also be used to syn-
thesize MCM. For example, [6] proposes an augmented
differential coefficient approach that expands the design
space by employing both differences and sums of filter
coefficients. And [4] proposes an algorithm that searches
for pairs of available subexpressions to synthesize coeffi-
cients. The algorithm extracts all subexpressions of co-
efficients from CSD patterns and also treats coefficients
themselves as CSD subexpressions of each other.

In this paper, we propose a CSE algorithm, which deter-
mines the syntheses of coefficients by using an estimated
cost function. The function accepts syntheses of coef-
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ficients as inputs and returns an integer that estimates
the adder cost. Genetic algorithm [8][9] is used to min-
imize the cost function when the search space is large.
It is found that the solutions of the proposed CSE al-
gorithm match the optimum solutions in [7]. We also
propose a feasible solution space that uses shifted sum
(difference) of coefficients. The expansion of the feasi-
ble solution space is applied into our algorithm and has
shown improvements over all MSD representations.

Multiplierless MCM can be synthesized without subex-
pression sharing. An example is the simple CSD method
in [1][2], in which the adder cost to synthesize a coefficient
is (#nzbit of the coefficient − 1) where #nzbit denotes
the number of non-zero bits in the CSD or MSD repre-
sentations. Because the simple CSD method synthesize a
multiplierless MCM without sharing any subexpression,
the result of the simple CSD method is used as the up-
per bound of adder cost in the synthesis of multiplierless
MCM. On the other hand, the minimum required adders
to synthesize a multiplierless MCM from a set of coef-
ficients are not well determined. Because at least one
adder is required to synthesize a coefficient, a well known
lower bound of adder cost is the number of coefficients in
the MCM.

This paper is organized as follows. In Section 2, we intro-
duce the notations in the paper. In Section 3, different
feasible solution spaces are shown in a lookup table of
coefficient decompositions. The way to extract decompo-
sitions from the CSD or MSD representations as well as
the proposed expansion of feasible solutions is described.
In Section 4, an estimated cost function that uses lookup
table of decompositions is proposed. In Section 5, we in-
troduce a CSE algorithm that synthesizes a multiplierless
MCM using the estimated cost function. In Section 6, a
worked-out example is given to illustrate the proposed
algorithm numerically. In Section 7, our results are com-
pared to the representative results in [4] and [7].

2 Notation

The following notations are used in this paper.

• “C” denotes coefficient.

• “#nzbit” denotes the number of non-zero bits in the
CSD or MSD representations.

• “S” denotes subexpression.

• “Cset” is defined as the set of coefficients that is
waiting to be decomposed.

• “N” is the number of coefficients in Cset.

• “n” is an integer where 1 ≤ n ≤ N .

• “Cn” is the nth coefficient in Cset.

+

+

+

+
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LD=2
(b)
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Figure 3: Example of synthesing a coefficient 201: (a)
Logic depth (LD) = 3. (b) Logic depth = 2.

• “LTn” is the decomposition table of Cn.

• “Ln” is the number of decompositions in LTn.

• “xn” is an integer variable that is in the range of 1 ≤
xn ≤ Ln. It is also used as an index corresponding
to a decomposition in LTn.

• “Dset” is the set of coefficients that have determined
synthesis.

• “RT” is the result table that stores the synthesis of
multiplierless MCM.

• “LDB” is the pre-defined logic depth bound that
limits the maximum logic depth of the MCM. An
logic depth example is shown in Fig. 3.

3 Feasible Solution Space

3.1 Introduction

The adder cost minimization problem in the synthesis of
a set of coefficient of size N is NP-complete [10]. There-
fore, the search space should be bounded to reduce the
searching time. In the proposed CSE method, the neg-
ative coefficients are converted at the output of MCM
block. Only the absolute values of negative coefficients
are considered. Similarly, even coefficients are contin-
uously divided by 2 until they become odd. Original
coefficients are implemented from left-shifting the cor-
responding odd coefficients. Also, duplicated coefficients
are synthesized once only because multiple outputs can
be wired from a single coefficient. The modified coeffi-
cients have reduced the search space. As a result, the
coefficients in the synthesis of MCM are unique, positive,
and odd.

Equation (1) defines a decomposition of a coefficient Cn:

Cn = ±Si × 2p ± Sj × 2q (1)

where Si(Sj) is a subexpression of Cn that must be pos-
itive and odd; p and q are left shifts of Si and Sj for p

and q bits respectively; Si(Sj) 6= Cn.

Engineering Letters, 15:1, EL_15_1_23
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



There are infinite decompositions that satisfy equa-
tion (1) in a single coefficient. Some constraints are re-
quired to limit the search space. In our CSE algorithm,
each coefficient Cn generates a lookup table LTn that
stores the set of feasible decompositions of Cn. Different
decompositions and values of Si, Sj , p, and q of coefficient
831 are shown as an illustrative example.

3.2 Table Generation

Step 1) For each coefficient Cn, a lookup table LTn that
stores decompositions of Cn is generated based on all
MSD representations of Cn.

During the decomposition extraction from a MSD repre-
sentation, the decomposition that has the same pair of
subexpressions is inserted into LTn once only. This is
because the synthesis of different decompositions of a co-
efficient is equivalent to each other if they have the same
pair of subexpressions.

An example of decomposition extractions is shown in Ta-
ble 1. C2 = 831 has 3 different MSD representations and
they are 10101000001, 10011000001, and 01101000001,
where 1 represent negative one digit.

The first MSD of C2 = 831 is in fact also the CSD of C2.
Decompositions from x2 = 1 to 7 are generated from the
CSD representation. They are extracted from the com-
binational patterns of the coefficient’s signed-digit repre-
sentation. For examples, the decomposition at x2 = 5
( 1 0 1 01000001) is extracted as 101 << 8 + 1000001

(831 = 3 × 28 + 63). Similarly, the decomposition at

x2 = 6 ( 1 010 1 000001) is extracted as 10001 <<

6 + 100000001 (831 = 17 × 26 − 257).

The rest of MSD representations are also used to expand
the number of decompositions. The second and the third
MSD representations are 10011000001 and 01101000001.
The additional decompositions are indicated from x2 = 8
to 11 and from 12 to 15 respectively.

CSD and MSD representations have the same minimum
number of non-zero bits. The decompositions of all MSD
representations expand the solution space over the CSD
representation. The table size of all MSD representations
is about twice the table size of the CSD representation
in Table 1. The increased search space provides more
possible decompositions that may lead to less adder cost
in the synthesis of multiplierless MCM.

Since small coefficients often occur in the MCM of FIR
filters, the decomposition process in this step is often re-
peated. To reduce the unnecessary computation, decom-
positions are pre-generated and stored into the hard disk
for coefficients up to 13-bits (i.e. 8192). Decompositions
of coefficient that are not pre-generated, they are gener-
ated during execution and save for future used. The size
of our saved data is about 10MB in Matlab 7.

Step 2) Insert decompositions that satisfy equation (2)
into LTn for all n.

Equation (2) is defined as:

Cn = ±Sk × 2p ± Sl × 2q (2)

where equation (2) is a more constrained version of equa-
tion (1). In equation (2), Sk(Sl) is a subexpression of Cn

that must be positive and odd; p and q are left shifts of
Sk and Sl for p and q bits respectively; Sk(Sl) 6= Cn; Sk

must be a coefficient in Cset∪Dset∪{1}; Sl must either
be a coefficient in Cset ∪ Dset ∪ {1} or #nzbit of Cn −
#nzbit of Sl > 1.

Since Cn, Sk, and Sl are restricted to be odd, one of the
Sk × 2p or Sl × 2q must be odd and the other must be
even. Equation (2) is then manipulated as follows:

Cn = ±Sk ± Sl × 2q for p = 0 and q > 1 (3)

or

Cn = ±Sk × 2p ± Sl for p > 1 and q = 0 (4)

Also, since both Cn and Sk are in Cset ∪ Dset ∪ {1};
Cn, Sk, Sl are all positive, equation (3) is manipulated
as follows:

Sl = (Cn + Sk) × 2−q or (5)

Sl = (Cn − Sk) × 2−q or (6)

Sl = (−Cn + Sk) × 2−q (7)

Equation (4) is manipulated as follows:

Sl = +Cn + Sk × 2p or (8)

Sl = +Cn − Sk × 2p or (9)

Sl = −Cn + Sk × 2p (10)

Decompositions that satisfy equation (2) are determined
based on the shifted sum (difference) of coefficients (Cn

and Sk). Exhaustive search are used to search for the
feasible decompositions in equation (5) to (10). Decom-
positions from x2 = 16 to 22 in Table 1 shows the result
of 831 when Cset = {2721, 831, 105, 7}.

Let MCL be the maximum wordlength of coefficients in
the CSD representation. For an estimation of complexity,
each coefficient has an upper bound of comparisons of
O(N × MCL). Therefore, the cumulated complexity for
N coefficients in Cset is O(MCL × N2).

The proposed expansion increases the feasible solution
space and as a result, better solution may be found. If Sl

is in the set Cset ∪ Dset ∪ {1}, Cn may be synthesized
with 1 additional adder. Otherwise, the upper bound of
Cn synthesis equals to #nzbit of Sl.

Similar to the decompositions that are generated from
the CSD and the MSD representations, decompositions
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of the shifted sum (difference) of coefficients have the
same adder cost upper bound. Because Sl is constrained
to have at least one lesser #nzbit than Cn in equation (2),
the synthesis cost of Cn in any decomposition does not
exceed the upper bound (the simple CSD method). De-
compositions of the shifted sum (difference) of coefficients
introduce decompositions that cannot be found from the
CSD and the MSD representations. Section 6 shows a
case of MCM that leads to a lower adder cost from the
proposed decompositions numerically.

Step 3) Remove invalid decompositions from LTn based
on RT and LDB.

A decomposition in LTn is invalid if it immediately causes
the critical path of MCM exceed LDB when it is syn-
thesized. The critical path of MCM is the largest logic
depth (LD) of the synthesized coefficients in RT . The
synthesized coefficient in RT has a logic depth equals to
max({LD of S}) + 1 where LD denotes logic depth and
S corresponds to the pair of subexpressions of the de-
composition in RT . Subexpressions that have not been
synthesized in RT is assumed to have the lowest possi-
ble logic depth calculated as ⌈log

2
(#nzbit of S)⌉. A de-

composition is also invalid if it causes a feedback in the
synthesis of MCM after it is inserted into RT .

The decomposition at x2 = 22 in Table 1 is 111 × 25 −
2721. When LDB = 3, the decomposition immediately
causes the critical path of MCM exceed LDB. It is found
to be invalid as shown below:

LD of 111 = ⌈log
2
(#nzbit of 111)⌉ = 2

LD of 2721 = ⌈log
2
(#nzbit of 2721)⌉ = 3

max({2, 3}) + 1 = 4 > LDB = 3

4 Proposed Estimated Cost Function

We propose a way to estimate the adder cost of MCM
using all lookup tables from LT1 to LTN . The value of
xn corresponds to a decomposition in LTn as an example
in Table 1. We define a MCM estimated cost function as:

f(x1, ..., xN )=#ValidDecomposition (11)

+

All∑

i

(#nzbit in NSi − 1)

where f accepts N input variables from x1 to xN and
returns an integer number. Before the evaluation, NS is
an empty set, and #ValidDecomposition is equal to the
number of decompositions in RT .

During the evaluation, decompositions are temporarily
inserted into RT in a sequential order, from x1 to xN .
If the decomposition at xn is invalid, Cn is inserted into
NS. Otherwise, the decomposition at xn is temporarily
inserted into RT ; #ValidDecomposition is increased by

Table 1: Complete table of C2 = 831
x2 Decomposition Search Space

1 1 × 210 − 193 CSD / MSD 1 0101000001

2 −1 × 28 + 1087 CSD / MSD 10 1 01000001

3 1 × 26 + 767 CSD / MSD 1010 1 000001

4 −1 + 13 × 26 CSD / MSD 1010100000 1

5 3 × 28 + 63 CSD / MSD 1 0 1 01000001

6 17 × 26 − 257 CSD / MSD 1 010 1 000001

7 1023 − 3 × 26 CSD / MSD 1 010100000 1

8 −1 × 27 + 959 MSD 100 1 1000001

9 −1 × 26 + 895 MSD 1001 1 000001

10 7 × 27 − 65 MSD 1 00 1 1000001

11 15 × 26 − 129 MSD 1 001 1 000001

12 1 × 29 + 319 MSD 0 1 101000001

13 1 × 28 + 575 MSD 01 1 01000001

14 9 × 26 + 255 MSD 0 1 10 1 000001

15 511 + 5 × 26 MSD 0 1 10100000 1

16 383 + 7 × 26 Proposed
17 1055 − 7 × 25 Proposed
18 1279 − 7 × 26 Proposed
19 −961 + 7 × 28 Proposed
20 1041 − 105 × 21 Proposed
21 −9 + 105 × 23 Proposed
22 111 × 25 − 2721 Proposed Invalid

1; for the subexpressions at xn that are not in Cset ∪
Dset ∪ 1, they are inserted into NS.

At the end of all insertions, the value of f is calculated
as shown in equation (11). Decompositions that are tem-
porarily inserted are removed after the evaluation. The
adder cost of NS is calculated based on the simple CSD
method. As a result, the estimated cost function is an
upper bound of the adder cost when the MCM is synthe-
sized according to x1 to xN .

In a typical MCM design, f may have 10 input variables
and each variable may range from 1 to 10. The search
space of f is 1010. The minimization complexity of f that
uses brute force approach is O(MN ) where M is the table
size and N is the number of variables.

It is assumed that the decompositions in a table are ran-
domly ordered. However, useful information can still be
obtained from the relationship between different input
variables. Genetic algorithm is used into this problem be-
cause it can give a local optima solution efficiently even
the search space is complicated. In genetic algorithm,
minimization of f is started from a population of ran-
domly chosen input variables. Genetic algorithm searches
for a pattern of inputs that is closed to the minimum. The
pseudo-code of genetic algorithm is shown below:
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f(7,2,5,4,3)
f(1,6,3,4,5)

f(7,2,5,4,5)

f(1,6,3,4,3)

5 Matches

f(1,2,3,4,5)

f(7,6,5,4,3)

f(1,2,3,4,5)

f(7,6,5,4,3)

Crossover

Crossover

4 Matches

3 Matches

2 Matches

1 Match

Figure 4: A crossover operation when f(7, 2, 5, 4, 5) is the
minimum of f

1. Choose initial population

2. Evaluate the fitness of each individual in the popu-
lation

3. Select best-ranking individuals to reproduce

4. Breed new generation through crossover and muta-
tion (genetic operations) and give birth to offspring

5. Evaluate the individual fitnesses of the offspring

6. Replace worst ranked part of population with off-
spring

7. Repeat step 3 to step 6 until <terminating
condition>

A new population can obtained from randomly exchang-
ing (crossover) variables between two input patterns
(chromosomes). An example of a crossover operation is
shown in Fig. 4. f(7, 2, 5, 4, 5) is assumed to be at the
minimum of f ; f(1, 2, 3, 4, 5) and f(7, 6, 5, 4, 3) are one of
the pairs of chromosomes in a population. The circled
input variables are randomly chosen and exchanged. The
number of input vairables that matches the input pat-
tern of f(7, 2, 5, 4, 5) are shown in Fig. 4 to indicate the
fitness.

In our CSE algorithm, the minimum of f is unknown.
The fitness of a chromosome is determined by the esti-
mated cost f . A good cost function is important since
the fitness formulation is related to the speed and ac-
curacy. After each crossover operation, the newly cre-
ated chromosomes are inserted into the population and
sorted according to their adder cost. The population has
a pre-defined size. Therefore, chromosomes with a large
adder cost are dropped before the next crossover opera-
tion. Crossover operations are performed iteratively to
minimize f . Although genetic algorithm generally does
not guarantee an optimum solution, examples have shown
that the final solution is well adapted into our CSE algo-
rithm.

Table 2: Subexpression table of C1 = 2721 and C2 = 831
x1 1 2 ..... 24 ..... 32 33

1 1 ..... 1041 ..... 4384 111
C1 = 2721 673 2209 105 831 831

x2 1 2 3 ..... 19 20 21
1 1 1 ..... 961 1041 9

C2 = 831 193 1087 767 7 105 105

5 Proposed Algorithm

We are proposing an algorithm to maximize the subex-
pression sharing using equation (11). A simplified
flowchart of the algorithm is shown in Fig. 5. The de-
scription of the algorithm is as follows:

1. Reducing all multiplication values of MCM to a set
of coefficients that are unique, positive, and odd as
illustrated in Section 3. Put them into Cset.

2. Order the coefficients in Cset by their #nzbit in de-
scending order. If there are multiple coefficients that
have the same #nzbit, order them by their integer
values in descending order. Create or update all LTn

according to the procedures in Section 4

3. Search for valid decompositions that may synthesize
a coefficient with 1 adder in a sequential order, from
LT1 to LTN . If a coefficient may be synthesized
with 1 adder, synthesize the coefficient and update
RT ; move the coefficients from Cset to Dset. If one
or more decompositions may synthesize a coefficient
with 1 adder, choose a decomposition that would
result in the lowest logic depth. If a coefficient is
synthesized, go to 7). Otherwise go to 4).

4. Minimize equation (11) and save the sets of decom-
positions that have the minimum cost.

5. If multiple minima are found in equation (11), pick
the set of decompositions according to the follow-
ing priority: i) the lowest average logic depth of the
temporarily synthesized coefficients in Cset, ii) the
lowest average logic depth of NS, iii) the smallest
average value of NS.

6. Synthesize the coefficient(s) that have the most
#nzbit into RT . Move the coefficient(s) from Cset

to Dset. If there are new subexpressions in RT that
are not in the set of Cset ∪ Dset ∪ {1}, copy them
into Cset.

7. If Cset is not empty, go back to step 2). Otherwise,
the RT would contain the full synthesis of MCM.

Analysis of the algorithm and an illustrative example is
shown in Section 6.
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End

Reduce  Cset  to a set
 of coefficients that are

unique, positive, and odd

Order  Cset  and
generate lookup tables

LT1  to  LTN

Is  Cset  empty?

Synthesize applicable
coefficients with

1 adder and remove
them from  Cset

Find the minima of
f ( x1 , ..... , xN )

Pick a set of
decompositions from the

minima based on
different priorities

Synthesize the coefficients
that have the most #nzbit
and remove them from

Cset.  Insert new
subexpressions into  Cset.

Can any
coefficient be
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1 adder?

Yes

No

No

Yes

Coefficients are
in  Cset  initially

1) 2)

3)

4)

5)

6)

7)

Figure 5: A simplified flowchart of our proposed CSE
algorithm

6 Example

As an example to illustrate our algorithm, we set Cset =
{105, 831, 2721, 896} initially. LDB = 3. N = 4. Dset =
{}. RT = {}

In 1), coefficients are reduced to unique, odd, and positive
in Cset. The resultant Cset is {105, 831, 2721, 7} since
the actual multiplication of 896 can be implemented at
the output of coefficient 7 and left-shift it for 7 bits (896 =
7 × 27).

In 2), Cset is ordered and labeled as {C1 = 2721, C2 =
831, C3 = 105, C4 = 7}. LT1 to LT4 is generated ac-
cordingly. The complete table of LT2 is shown in Ta-
ble 1. Coefficients that have a large #nzbit generally
need more adders. They are also likely to be in the criti-
cal path of the MCM. As a result, the order of coefficients
in Cset is important because coefficients at the beginning
of Cset have higher priority to synthesize. C1 always has
the highest priority and, in this case, C4 has the lowest.
Decompositions of coefficients that synthesize first gen-
erally have a larger table size because they have fewer
constraints from the synthesized coefficients in RT . A
larger table provides a larger search space that may lead
to a smaller adder cost. Notes that the decompositions
at x2 = 22 is invalid because the decomposition causes
the MCM greater than the predefined LDB = 3. It is re-
moved from LT2 before proceeding to the next step. As
an intermediate result, L1 = 33; L2 = 21; L3 = 19; and
L4 = 1.

In 3), coefficients that require only 1 adder are synthe-
sized. This is because the decompositions are likely to ap-
pear in the minima of f . Synthesizing coefficients in this
step reduces the search space of f . In this example, C3 =
105 and C4 = 7 may be synthesized with 1 adder. As a
result, 105 is first implemented with 1 adder as 7×24−7.
7 is then implemented with 1 adder as 1 × 23 − 1. The
intermediate result is Cset = {C1 = 2721, C2 = 831}.
Dset = {105, 7}. RT = {105 = 7×24−7, 7 = 1×23−1}.
N = 2.

In 4), equation (11) is generated in the form of f(x1, x2).
A simplified table that shows pairs of subexpressions for
C1 and C2 is shown in Table 2. To illustrate the estimated
cost function f , the set of NS for f(1, 3) is {673, 767}.
f(1, 3) = 4 + (3 + 2) = 9. The set of NS for f(24, 20) is
{1041}. f(24, 20) = 4 + (2) = 6.

In 5), the algorithm picks the set of coefficients decom-
positions that is further away from the LDB. In gen-
eral, coefficients and subexpressions having a lower aver-
age logic depth may leave more flexibility for coefficients.
It reduces the probability of decompositions that violate
the LDB constraint. In our example, only 1 solution is
found to have the minimum of 6 and it is at f(24, 20).
The algorithm goes to 6) directly.
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In 6), coefficients with the most #nzbit are synthesized
into RT while coefficients with less #nzbit remain in
Cset. This is because the sizes of the lookup tables of
the remaining coefficients may be increased from adding
and subtracting the newly inserted coefficients. As a re-
sult, the algorithm in the next iteration may find more
common-subexpressions with each other. In our exam-
ple, the coefficient that has the most #nzbit is C1 = 2721
and it has 5 non-zero bits. 2721 is therefore moved from
Cset to Dset. The new subexpressions are inserted into
Cset. As an intermediate result, Cset = {831, 1041}.
Dset = {105, 7, 2721}. RT = {105 = 7 × 24 − 7, 7 =
1 × 24 − 1, 2721 = 1041 + 105 × 24}. N = 2

In 7), since Cset is not empty, go back to 2) and the algo-
rithm enters the second iteration. In 2), the lookup table
for 831 is updated and another lookup table is generated
for 1041. In 3), 831 is synthesized as 1041 − 105 × 21.
Notes that 1041 is a subexpression that appears in the
proposed expansion of search space at x2 = 20 in Ta-
ble 1. In 6), 1041 is synthesized as 1 × 210 + 17. In the
third iteration of 3), 17 is synthesized as 1× 24 + 1. The
final synthesis of MCM is RT = {105 = 7 × 24 − 7, 7 =
1 × 24 − 1, 2721 = 1041 + 105 × 24, 831 = 1041 − 105 ×
21, 1041 = 1 × 210 + 17, 17 = 1 × 24 + 1}.

7 Results

We have implemented the algorithm in [4] and extracted
the data results from [7]. The results are shown in Ta-
ble 4. The specifications of our filter examples are shown
in Table 3.

Filter 1 consists of the coefficients described in Section 6.
Filters 2 and 3 are the L1 filter and the example 2 filter
in [4]. Filters 4 to 8 are the filters 4 to 8 in [7].

In Table 3, “length” stands for the filter length or the
number of multiplications of the MCM. “Width” is the
maximum binary bit size of coefficients. “#nzbit” is the
maximum number of non-zeros terms in CSD or MSD
representations. “#coeff” is the number of coefficients
in Cset after the process 1) in Section 5. #coeff is also
the lower bound of the adder cost. “Simple CSD” is the
adder cost of the simple CSD method. It is also the upper
bound of the adder cost.

In Table 4, “LO” is the number of logic operations which
equals the total number of adders and subtractors. “LD”
is the logic depth. “cputime” is the processing time of
our proposed algorithm in seconds. “LO*” is the result
of the proposed algorithm using the decompositions from
all MSD representations alone.

LDB is set to be ⌈log
2
(#nzbit in Table 3)⌉ in our pro-

posed algorithm and in [4] because the increase of LDB

from its minimum depth would increase the delay signifi-
cantly. Take filter 3 as an example, a logic depth increase

from 3 to 4 would increase the critical path by 33% but
the size of the MCM is only reduced by 2%.

Genetic algorithm is used to minimize the estimated cost
function. The population size is set to 300 and the ge-
netic algorithm is terminated when no improvement is
found in 5 consecutive iterations. A brute force search is
performed when the size of the problem is less than 3000
because the computation time is comparable or less than
that of using genetic algorithm.

The speed of our algorithm is acceptable in practically
sized problems. Our program is coded in Matlab 7 and
executed on a 2.6 GHz PC with 512MB memory. We
have implemented the algorithm in [4] for comparison.
The result of [7] are extracted directly from their paper.
Although the speed of [7] cannot be directly compared,
their results are included as a reference. The processing
time of the proposed method is longer than those of [7]
and [4] in filters 4 to 7. This is expected because the
speed of convergence is slow in genetic algorithm and it
also requires a longer setup time. For a more complicated
problem in filter 8, the processing time of the proposed
algorithm is 1280 seconds while it is terminated after 3600
seconds in [7] and it is about 7200 seconds in [4].

Although genetic algorithm generally does not guarantee
an optimum solution, the final solution is well adapted
into our CSE algorithm. For our synthesis examples of
multiplierless MCM, it is shown that in filters 4 to 7,
LO* is the optimal solution in the MSD solution space.
Our results match the solution in [7] that searches for
an optimal solution using the SAT-based 0-1 ILP. LO* in
filter 8 outperforms the result in [7] because their program
is terminated after 1 hour and as a result is not optimal.

The proposed expansion of search space is also exploited.
The expansed search space further reduces the size of the
MCM in some cases. Adder reductions are seen in filters
4, 7, and 8 where filters 4 and 7 are optimal in the MSD
solution space. All logic depth is restricted to be 3. It
saves about 58% adders than simple CSD and saves about
6% adders than MSD. It is also shown in filters 1 to 3
that the proposed algorithm produces a smaller LO than
[4]. Although the relationship between the coefficients
in terms of subexpressions is situtation dependent [7],
the proposal search space exploits hidden and significant
relationship between coefficients. It saves more adders for
cases of larger filter becuase of more hidden relationship
is observed. It shows that actual area is saved using the
proposed design.

8 Conclusion

We have proposed a novel CSE algorithm that models
synthesis of coefficients into an estimated cost function.
Genetic algorithm has been shown to be capable of min-
imizing the cost function and give a satifactory (nearly
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Table 3: Characteristics of the MCM
(Lower) (Upper)

Filter length width #nzbit #coef CSD

1 4 12 5 4 11
2 25 13 6 13 44
3 121 15 7 51 139
4 81 12 5 28 68
5 121 12 5 34 76
6 60 14 6 20 52
7 60 14 5 29 77
8 60 14 5 28 84

Table 4: Result Comparasion with LD=3
Proposed [4] [7]

Filter LO* LO cputime LO LO

1 7 6 30.078 8 NA
2 21 19 1272.515 21 NA
3 56 53 827.560 54 NA
4 29 28 38.825 28 29
5 34 34 62.875 34 34
6 22 22 119.250 22 22
7 34 30 35.750 30 34
8 34 32 1280.625 32 35

optimal) design in a reasonable time within a finite search
space. Numerical examples have verified that the pro-
posed algorithm generates coefficients that match the
known optimal solutions. We have also proposed an ex-
pansion of differential coefficient solution space that gen-
erally further reduces the number of adders in the synthe-
sis of MCM from all MSD representations, which reduces
power consumption and silicon area in circuit. Futher-
more,an improved version is proposed recently [11], which
is to calculate the number of half adder and full adder for
a more accurate (minimium area) synthesis. We are ap-
plying this novel concept and will be published in the
future.
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