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Abstract—This paper presents a systematic ap-
proach for the design of temperature controller us-
ing genetic algorithms (GAs) for thermal power plant
subsystems and investigates the robustness of the de-
signed control law. The proposed approach employs
GA search for determination of the optimal PI con-
troller parameters for a previously identified nonlin-
ear de-superheater of a 4X 325 MW thermal power
plant. Results indicate that the proposed algorithm
significantly improves the performance of the thermal
power plant sub-system.
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1 INTRODUCTION

Power plant subsystems are generally nonlinear and the
operating conditions may vary over a wide range sub-
jected to various disturbances and noise. Control of su-
perheater steam temperatures is one of the most widely
discussed control problems in thermal power plants. The
superheater process is part of the boiler process which it-
self is part of the thermal power plant. Most often boilers
include superheaters at a number of levels. The boiler
process includes several steam superheating processes
which are divided into parallel heating surfaces, counting
typically 4-8 high-pressure superheaters and 2-4 interme-
diate pressure superheaters. Each superheater process is
equipped with an attemperator device (water injection at
the inlet) for control of the steam outlet temperature of
the superheater. The control problem is attractive from
a theoretical point of view due to the complex character-
istics of the superheater process:

• The dynamics is of high order (lumped system),

• The dynamics is load dependent,

• System is exposed to major disturbances.
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Due to these reasons, attaining tight control is remained
a challenge for these industrial processes for years [1]-[3].

The thermal power plant under study has the capacity
of 4X 325 MW, utilizes a superheating system, consist-
ing of a primary and secondary de-superheater. De-
supserheater outlet steam temperature control of this
power plant is maintained by a ten-year-old PID con-
troller. The performance of the de-superheater, with the
existing system, does not show high quality set-point
tracking ability. The main purpose of this work is to
investigate the possibility of re-tuning of the operating
controller or designing a more efficient control strategy
to improve the performance of the system.

In this study an effective non-linear PI-like controller
for the second left hand de-superheater operating in the
steam power plant is designed using adaptive neuro-fuzzy
inference system (ANFIS) [4] model of the process. A low
order control scheme is developed based on PI controller
design method and genetic algorithms in order to improve
the performance of the existing control system.

2 BACKGROUND THEORY

2.1 Identification and Modeling

During the last 20 years, there have been significant de-
velopments in methods for model-based-control [5], [6].
Model-based control schemes require the existence of
suitable process models. The least square error (LSE)
method is proved to be the optimum algorithm for the
modeling of linear systems [7], [8].

For nonlinear systems, lack of good nonlinear process
models is a bottleneck for using model-based controllers.
Among different approaches for modeling nonlinear sys-
tems, artificial neural networks (ANN), fuzzy logic (FL),
and neuro-fuzzy systems (NFS) are widely used during
the last ten years [9]-[11]. Having enough data for a long
range of operating conditions, neuro-fuzzy networks are
the most suitable structures for modeling nonlinear sys-
tems.

In this paper the most common structure of neuro-fuzzy
networks, ANFIS [4], is considered. Figure 1 shows the
scheme of a linear Sugeno type fuzzy inference system
(FIS) [7]. In this structure, “antecedent” of rules con-
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tains fuzzy sets (as membership functions) and “conse-
quent” is a first order polynomial (a crisp function). The
structure shown in Figure 1(a) can be transformed to
the neuro-fuzzy network shown in Figure 1(b). In this
method, a fuzzy inference system is designed based on
the system’s specifications. This initial model is trans-
formed to a neuro-fuzzy network and then is trained by
experimental recorded data of the system. The training
procedure involves both gradient error back propagation
(to adjust membership function coefficients) and LSE (to
adjust linear output parameters).

These modeling methods can be applied to both static
and dynamic systems. If the output of the model at a
moment is applied as its input at the next moment; the
model is called “dynamic model” or “recurrent model”.
In other words, in recurrent models, the output of the
model at the existing moment, is influenced by the out-
put of the model, at previous moments. For example,
in a de-superheater, current outlet temperature of the
de-superheater model is dependent on its outlet temper-
ature in earlier moments. The nonlinear dynamic model
can be described by the following non-linear discrete time
equation:

{
y(k) = f(Y k,l;uk,m) ∀k ∈ N
y(0) = y0

(1)

where for any vector such as X,

Xk,l := [X(k), X(k − 1), . . . , X(k − l)]

Dynamic systems can be modeled satisfactorily by re-
current neural or neuro-fuzzy networks, not by static
(memory-less) networks.

2.2 PID Controller

Regardless of vast advances in the field of control systems
engineering, PID scheme still remains the most common
control algorithm in industrial use today. It is widely
used because of its flexibility, high reliability and ease of
operation and tuning (see for example [12]). A standard
form of the PID controller is given in Eq. 2.

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)
dt

(2)

The control u(t) is a summation of three functions of
the error e(t), from a specified reference (demand or set-
point) output ysp(t). Requirements on a control system
may include many factors, such as response to command
signals, insensitivity to measurement noise and process
variations, and rejection of load disturbances. Propor-
tional control has the effect of increasing the loop gain to
make the system less sensitive to load disturbances, the
integral of error is used principally to eliminate steady
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Figure 1: (a) A Sugeno-type fuzzy inference system; (b)
a Sugeno-type neuro-fuzzy network.
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Figure 2: Controller with anti-windup where actuator
output is not available.

state errors, and the derivative action helps to improve
closed loop stability. The parameters Kp,Ki,Kd are thus
chosen to meet prescribed performance criteria, classi-
cally specified in terms of rise and settling times, over-
shoot and steady-state error, following a step change in
the demand signal.

In many practical applications, due to the presence of
noisy signals, the derivative action is frequently not used
and many industrial controllers only have PI action. An-
other reason is that the derivative term increases sensi-
tivity of the systems subjected to noise or disturbances,
where it generates large outputs in presence of noisy or
disturbed error signals [12].

In the standard form of PID control, the error enters
linearly in the control algorithm, as it is shown in Eq. 2.
It is sometimes desirable to have higher controller gains
when the control error is large, and smaller gains when
the control error is small. This can be accomplished by
using the square of the control error. Thus, the control
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error is replaced by:

esquared = e|e| (3)

One reason for using error-squared signal is to reduce the
effects of low-frequency disturbances in the measurement
signal. These disturbances can not be filtered out, but the
use of error-squared control gives a small amplification of
the disturbance when the control error is small, and an
effective control when the control error is large [12].

While many aspects of a control system can be under-
stood based on linear control theory, some non-linear ef-
fects must be considered. In a control system with a
wide range of operating conditions, it is a common fact
that the actuator reaches its limit. This has severe con-
sequences for control. Integral action in a PID controller
is an unstable mode. This does not cause any difficul-
ties when the loop is closed. The feedback loop will,
however, be broken when the actuator saturates because
the output of the saturating element is then not influ-
enced by its input. The unstable mode in the controller
may then drift to very large values. This means that
the integral term “winds-up”. Integrator windup can be
avoided, by making sure that the integral is kept to a
proper value when the actuator saturates, so that the
controller is ready to resume action, as soon as the con-
trol error changes. This anti-windup scheme is known as
tracking or back-calculation. A well-known form of track-
ing is linear feedback anti-windup, which is shown in the
Figure 2 [12]. The actuator is represented by a signal
limiter. The difference between actuator input and out-
put es(t), is fed back to the integrator through the gain
1
Tt

. As soon as the limiter saturates, this signal becomes
non-zero and prevents the integrator from winding up.
The tracking time constant Tt can be used to tune the
value of anti-windup.

PID controller design methods differ with respect to the
knowledge of the process dynamics they require. A stan-
dard method of setting the parameters is through the use
of Ziegler-Nichols’ tuning rules [13]. These techniques
were developed empirically through the simulation of a
large number of process systems to provide a simple rule.
Optimization is a powerful tool for controller design, as
well. The method is simple in conception. A control
scheme with few parameters is specified. Next, system
specifications are expressed as inequalities of functions of
parameters. Then, the important specifications are cho-
sen as a function (performance index) to be optimized.
The method can be applied to design PID parameters
easily. Different performance criteria for PID controllers
are addressed in [12]. Indeed extra care must be exercised
when defining performance index, since it may have many
local minima. Another difficulty is the required computa-
tions may easily be excessive. However, new optimization
techniques can conquer these difficulties.

Initialize Population 
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Selection, Crossover 

Mutation

Generation of Fit 

Individuals

Termination Criteria 

Figure 3: GA computational flow chart [14].
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Figure 4: Super heating system of the steam power plant.

2.3 Genetic Algorithms (GAs)

In recent years there have been extensive researches on
heuristic stochastic search techniques for optimization of
proportional-integral-derivative gains [14]-[16]. A GA is
a search/optimization technique that uses genetics and
natural selection as a model for problem solving. In the
GA, a population of randomly created individuals goes
through a simulated process of evolution, which is a dig-
ital survival of the fittest in which individuals in the cur-
rent population breed to produce new individuals hope-
fully better suited to the environment. Each individual
represents a potential solution to the problem, a candi-
date set of parameter values. A GA works on the cod-
ing of the parameters and not on the exact parameters
so that it does not depend on the continuity of the pa-
rameters or the existence of derivatives of the functions
required in some conventional optimization algorithms.
The coding method allows the GA to handle multi-modal
(i.e., many-peaked) and multi-parameter type optimiza-
tion problems easily, which are rather difficult or impos-
sible to be treated with classical optimization methods.
Salhi in [17] gives a general overview of heuristic search
methods including GAs. The sequential steps for search-
ing optimal solution using GA are shown in Figure 3. The
GA is allowed to run iteratively until it reaches a prede-
termined ending condition. Different termination criteria
may be used, such as limiting the maximum number of
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Tb

De-superheater
V Ta

f

Figure 5: Inputs and the output of de-superheater.

generations, iterating until the best individual meets a
targeted fitness, convergence based on fitness, maximum
number of stall generations (sequence of consecutive gen-
erations), or when the least fit individual is fitter than
the given criteria [18]. In this work assigning the maxi-
mum number of stall generations was used to terminate
the search.

3 DESIGN OF GA-BASED PI CON-
TROLLER

3.1 Steam Power Plant De-superheater Dy-
namics

In this study a part of superheating system of a 4X 325
MW steam power plant is studied. The structure of a
superheating system in a steam power generating plant
is shown in Figure 4. For normal operation of the power
plant and when the capacity of the power plant is over
30% of its nominal value, the desired output tempera-
ture of super-heater is 540 degrees Celsius. This temper-
ature is adjusted at the de-superheater by spraying water
through spraying valves. Figure 5 shows the inputs and
the output of the second left-hand de-superheater where
the three inputs are: inlet steam temperature Tb, mass
flow rate of the spraying water V , and the steam mass
flow rate f . The output is the steam temperature af-
ter spraying water Ta (outlet steam temperature). The
steam mass rate (f) is summation of two other signals.
The first signal is half of the total mass of the water flow-
ing into the drum (after drum the steam flow is divided
into two branches) and the second signal is the first de-
superheater spraying water mass flow rate which is added
to the main steam flow. The de-superheater dynamics is
influenced by both of these signals with long time delays.

3.2 Neuro-Fuzzy Identifier Training

In this paper 1st order (linear) Sugeno type fuzzy infer-
ence systems are employed to model the process [7]. Fig-
ure 6 illustrates the input/output signals of the neuro-
fuzzy model for the de-superheater in the discrete do-
main. In neuro-fuzzy model values of Tb, V , and f with
respective time delays are introduced. Also, the values
of Ta subjected to two time delays is included as inputs.
The output of the neuro-fuzzy model is the outlet steam
temperature of the de-superheater Ta(k + 1). The rela-
tion between the ten inputs and one output of Figure 6
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Figure 6: Inputs and output of the de-superheater’s
neuro-fuzzy model.
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for each fuzzy rule is given by the following equation:





Ta(k + 1) = ᾱ×
[
T k,2

b , V k,2, fk,1, Ta(k − 1), Ta(k − 2)
]T

+α11 ∀k ∈ N
Ta(0) = Ta0

(4)
where

ᾱ := [α1, α2, . . . , α10]

In this equation all input variables have Gaussian mem-
bership functions. Parameters αi and coefficients of
Gaussian membership functions for all associated fuzzy
rules are adjusted in the neuro-fuzzy model. Note that
Eq. 4 is written for each fuzzy rule, while for simplic-
ity the subscript of the associated fuzzy rule is omitted.
Figure 7 shows the training and testing sets used to cre-
ate the neuro-fuzzy and LSE models of the system. As
it can be observed, in the neuro-fuzzy model approach
the error is smaller than the LSE model. More details
on the training the neuro-fuzzy model appear elsewhere
[19], [20].
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3.3 Outlet-Temperature-PI-Controller De-
velopment Based on Genetic Algorithms
(GAPI)

As mentioned earlier, the outlet temperature of the de-
superheater is subjected to powerful disturbances, which
are inlet steam temperature (Tb) and steam mass flow
rate (f). Another difficulty is that the set-point is con-
stantly changing with time, thus a controller with good
tracking ability is required. Current PID action controller
operating on the system is designed to have very low sen-
sitivity to disturbances and has very poor tracking ability.
The most important problem in de-superheater control,
however, is that the control signal reaches frequently to
its minimum, where no cooling spray water V = 0. Con-
sidering these points, it is desired to modify current PID
controller to have a better tracking ability as well as ro-
bustness to disturbances. To accomplish this goal, a new
controller is designed for the region where disturbances
are more powerful and set-point is changing fast in time.
This guarantees the robustness of the controller in ad-
dition to its tracking ability. The desired region corre-
sponds to t = 1800 ∼ 3000 sec in Figure 7. New PI gains
are tuned by GA (GAPI) to minimize a performance cri-
teria through this region. In the GAPI formulation, the
developed neuro-fuzzy model of the system acts as the
plant and is the basis for evaluating the performance of
the controller. The derivative action was not included
because the de-superheater system in known to be noisy.

In order to find the best possible solution for the control
problem, different controller structures are studied. It is
clear that classical dynamic and steady-state measures
of performance, e.g., over shoot, rise time, and settling
time is inconveniencing in multi-step reference trajectory
evaluation. This is particularly true when the final scalar
objective function is to be a weighted sum of the different
performance measures. Problem here arises in attaching
weighting coefficients to each of these measures so that
they correspond directly to the relative importance of
the objectives or allow trade-offs between the objectives
to be expressed. Hence, in this work integral criteria
were considered as the measure of performance for the
control system. Measures like integral of absolute error
(IAE), the integral of time weighted square error (ITSE)
and the integral of square time error (ISTE) are regularly
used for PID tuning [12], [18]. In this study we employed
a performance criterion (index), which is a combination
of ISTE criteria and the integral of absolute values of
the controller’s command |u| in order to minimize energy
consumption, as shown in Eq. 5:

J = 1e− 8
∫ 1200

0

(
t2|e(t)|2 + 0.1|u(t)|) (5)

Table 1
GA parameters

Population 25
Initial range [0,1]
Selection Stochastic uniform
Generations 25

This performance is minimized using a GA in order to
tune parameters of different control structures. Parame-
ters of the GA algorithm are given in Table 1. In this
study several control strategies were investigated. First,
PI action controller (Kd = 0 in Eq. 2) was used:

u1(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ (6)

Next, PI action controller with an anti-windup strategy
was employed:

u2(t) = Kpe(t) +
∫ t

0

(
Kie(τ) +

es(τ)
Tt

)
dτ (7)

where es(t) is the saturation error.

A PI action mechanism with squared error was also stud-
ied:

u3(t) = Kpeesquared(t) + Ki

∫ t

0

e(τ)dτ (8)

where esquared is given in Eq. 3. As the fourth approach,
PI action mechanism with squared error was combined
with the anti-windup policy, where the control signal was
generated in the following fashion:

u4(t) = Kpeesquared(t) +
∫ t

0

(
Kie(τ) +

es(τ)
Tt

)
dτ (9)

The fifth, and the last control strategy is given in Eq. 10:

u5(t) = Kpeesquared(t)+
∫ t

0

(
Kieesquared(τ) +

es(τ)
Tt

)
dτ

(10)

It should be noted that, in order to obtain valid results in
all simulations, the control signal is subjected to theoret-
ical actuator saturations, where the maximum absolute
value for the rate of change of the control signal is set
equal to 2 and the minimum control signal is selected to
be zero. This model is used in the place of the unknown
actual actuator operating in the de-superheater (see Fig-
ure 2). Parameters, of the mentioned control strategies
were tuned by a GA in order to minimize the performance
criteria given in Eq. 5. Controller parameters obtained
by the declared syntheses are given in Table 2.

Results shown in Table 2 indicate that the fifth control
strategy has the best performance. Thus, it is predictable
that it would have least error and best robustness. There
is another conclusion can be made from the Table 2. It
can be seen that adding anti-windup scheme consider-
ably improves the system’s response. In the next section
obtained results are discussed in details.
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Table 2
Parameters of different control strategies obtained by optimizing modified ISTE performance criteria

Control Description No. of J Kp Ki Kpe Kie
1

Tt

Strategy generations
u1 PI action 59 59.3 2.292 0.0123 — — —
u2 PI action with anti-windup 68 46.40 0.748 0.08 — — 0.112
u3 P action for square error and I action for error 42 66.42 — 0.02 0.886 — —

P action for square error
u4 and I action for error 95 49.26 — 0.12 0.412 — 1.15

with anti-wind up
u5 PI action for square error with anti-windup 82 44.04 — — 0.215 0.0323 0.321
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Figure 8: Dynamic time response of the de-superheater
with pure PI controller.

3.4 Outlet-Temperature-PI-Controller Per-
formance Evaluation

In this section, the efficiency and the robustness of the
designed control strategy for the de-superheater is stud-
ied and the performance of different schemes is compared.
Since a standard PID type controller is the operating con-
troller in the de-superheater control circuit of the studied
power plant, it is employed for judgment in this paper.
Simulations are performed using MATLAB/SIMULINK.
First, the performance of the two PI action controllers,
u1 and u2 are studied. The time response of the pure PI
action and PI action with anti-windup are illustrated in
Figures 8 and 9 respectively. It can be observed that the
designed PI controller, although has smaller error track-
ing error than the current PID controller, its time re-
sponse is very oscillatory and has very low damping. It is
clear from the time response of the PI controller that the
actuator saturates several times, thus, the “PI with anti-
windup controller” must have much better performance.
As expected, the “PI with anti-windup controller” shows
much fewer oscillations while tracking the reference sig-
nal. This is clearly due to the anti-windup gain in the
control loop. The system’s dynamic performance is ex-
amined considering optimized “PI action for square error
with anti-windup” as the controller. It is observed in
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Figure 9: Dynamic time response of the de-superheater
PI with anti-windup controller.

Figure 10 that the controller follows the set point much
better, while it damps out the oscillations rapidly.

To demonstrate the robustness of the designed GAPI con-
troller (u5), dynamic system’s response for an interval
out of the design region is depicted in Figure 11. As it is
shown, although the disturbances are much different from
disturbances in the design region, the controller is able
to maintain the stability of the system and tracks the
reference signal very closely, which clearly reveals that
the proposed GAPI is quite robust to a wide range of
variations in disturbances and set-point changes.

4 CONCLUSIONS

This paper demonstrates an application of artificial in-
telligent techniques in modeling and control of thermal
power plant de-superheater. In this study, an effective
controller for the second left hand de-superheater of a
steam power plant with the capacity of 4X 325 MW is
developed based on a previously identified plant using
ANFIS technique. To develop the control strategy, differ-
ent PI structures are optimized using genetic algorithms
in order to boost the performance of the operating con-
trol circuit in the steam power plant. A GA is employed
for automated controller tuning for assumed different PI
controllers and optimizing the performance of the con-
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trol strategy for the high-order non-linear thermal power
plant subsystem. Results are reported to show practica-
bility of the developed control law as well as its advan-
tages over the operating controller.
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