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Abstract – This paper analyses the results obtained when 

different topologies of 1-Dimensional Kohonen Networks 

where used to classify color pictures taken to Popocatépetl 
Volcano (located in the State of Puebla, México, active and 
monitored since 1997).  Due to the fact that volcano images 
needed to be correlated with other experiments in the research 

center where this was carried out, it was required to find out if 
classification was based on the intensity of the images or the 
topology of the pixels, that is, their connectivity. To do so, we 
addressed two approaches: one analyzing the results obtained 

when pixels in the images were permuted; the other using in 
the clusters generated by the network a novel metric 
previously tested to be invariant to topology of pixels, and 
comparing the results to the obtained when using the 
Euclidean distance. 

 
Index Terms – 1-Dimensional Kohonen Networks,  

non-supervised Image Classification, Metrics on Euclidean 
Spaces, Non-Supervised Classification. 
 
 

 

INTRODUCTION 
 

It is well known the use of 1-Dimensional Kohonen Networks for 

non-supervised classification when a high redundancy is present 

[5]. With non-supervised classification, images presenting similar 

features are grouped in classes. Many processing tasks (as 

description, object recognition or indexing) are based on such 

preprocessing [9]. In this paper, we use Kohonen Networks to 

classify color images, and analyze the criteria followed by the 

networks to create the clusters. The paper is organized as follows: 

Section I describes basic concepts of 1-Dimensional Kohonen 

Networks; Section II describes the pre-processing applied to 

images for avoiding training bias; Section III describes the 

methods and results of classification of 2D color images  with 

Kohonen networks and presents some analysis over the 

classification criteria. Section IV presents conclusions and future 

work. 
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I. FUNDAMENTALS OF THE 1-DIMENSIONAL  

KOHONEN NETWORKS 

 
A. Classifying Points in a n-Dimensional Space Through  

a 1-Dimensional Kohonen Network 

 
A Kohonen Network with two layers showing n input neurons and 

m output neurons may be used to classify points embedded in a  

n-dimensional space into m categories ([4], [8]). Input points have 

the form (x1, …, xi, …, xn). The total number of connections from 

input layer to output layer is n×m (See Figure 1). Each neuron j in 

the output layer 1, ≤ j ≤ m, will have associated a n-dimensional 

weight vector which describes a representation of class Cj. All 

these vectors have the form: 

Output neuron 1: W1 = (w1,1, …, w1,n) 

�  

Output neuron m: Wm = (wm,1, …, wm,n) 
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Fig 1. Topology of a 1-dimensional Kohonen Network [5]. 

 
B. Training the 1-dimensional Kohonen Network 

 
A set of training points are presented to the network T times. 

According to [5], all values of weight vectors can be initialized 

with random values. The neuron whose weight vector Wj,  

1 ≤ j ≤ m, is the most similar to the input point Pk is chosen as 

winner neuron, for each t, 0 < t < T. In the model proposed by 

Kohonen, such selection is based on the squared Euclidean 

distance. The selected neuron will be that with the minimal 

distance between its weight vector and the input  

point Pk: 
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Once the j-th winner neuron in the t-th presentation has been 

identified, its weights are updated according to: 
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When the T presentations have been achieved, values of the 

weights vectors correspond to coordinates of the ‘gravity centers’ 

of the points, or clusters of the m classes. 

 
 

II. REDISTRIBUTION IN THE n-DIMENSIONAL SPACE OF 

KOHONEN NETWORK’S TRAINING SET 

 
To avoid training bias, the training data was redistributed because 

it presented a non-uniform distribution over its space. This 

situation was similar to the next example: 

Consider a set of points distributed in a 2D subspace defined by 

rectangle [0,1] × [0,1]. Moreover, this set of points is  

embedded in a sub-region delimited, for example, by rectangle  

[0.3,0.6] × [0.3,0.6] (Figure 2).  

 

 
Fig 2. A set of points embedded in [0.3,0.6] × [0.3,0.6] ⊂ [0,1] × [0,1]. 

 
As points are not uniformly distributed in 2D space, we can expect 

important side effects during their classification process. For 

example, for a number of classes, we can obtain some clusters that 

coincide with other clusters or classes without associated training 

points.  

 

Next we present a simple method to distribute uniformly the 

points of a training set for the general case of a n-dimensional 

space. 
 

Consider a unit n-dimensional hypercube H where points are 

embedded in their corresponding minimal orthogonal bounding 

hyper-box h such that h ⊆ H. The point with the minimal 

coordinates ),,...,,(
minminminmin 121min nn xxxxP −=  and the point with the 

maximal coordinates ),,...,,(
maxmaxmaxmax 121max nn xxxxP −=  will describe 

the main diagonal of h. We proceed to apply to each point 
),,...,,( 121 nn xxxxP −=  in the training set, including Pmin and Pmax, 

the geometric transformation of translation given by: 

min
' 1 (3)i i ix x x i n= − ≤ ≤  

 
By this way, we will get a new hyper-box h’ and the points that 

describe the main diagonal of h’ will be )0,...,0('min ���
n

P =  and 

)',',...,','('
maxmaxmaxmax 121max nn xxxxP −= . (See Figure 3).  

 

 
a) 

 
b) 

Fig. 3. a) A training set and its minimal orthogonal bounding hyper-box h.  

b) Translation of h and the training points such that P’min is the origin of 

the 2D space. 
 

The second part of the distribution procedure consists on the 

expanding of the current hyper-box h’ to the whole n-dimensional 

hypercube H. The scaling of a point ),,...,,( 121 nn xxxxP −=  is given 

by multiplying their coordinates by factors S1, S2, …, Sn each one 

related with x1, x2, …, xn respectively, in order to produce the new 

scaled coordinates x1’, x2’, …, xn’ [6]. The goal is to extend the 

bounding hyper-box h’ and translated training points to the whole 

unit hypercube H, by translating point:  
)',',...,','('

maxmaxmaxmax 121max nn xxxxP −=  to   
� )1,...,1(

n

.   

To do so, we define the set of n equations: 

max
1 ' 1 (4)i ix S i n= ⋅ ≤ ≤  

 

From equation (4) the scaling factors to apply to all points in 

hyper-box h’  are obtained (see Figure 4): 
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1
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a) 

 
b) 

Fig. 4. An example of preprocessing. (a) original points  

(b) translated points.  
 

Finally, each one of the coordinates in the original points of the 

training set must be transformed in order to be redistributed in the 

whole unit n-dimensional hypercube [0,1]n through: 

min
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1
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III. IMAGE CLASSIFICATION THROUGH  

1-DIMENSIONAL KOHONEN NETWORKS 
 

A. Representing Images through Vectors in ℜn 
 

Let m1 (rows) and m2 (columns) be the dimensions of a  

two-dimensional image. Each pixel in the image, n = m1 ⋅ m2, has 

associated a 3-dimensional point (xi, yi, RGBi),  

RGBi ∈ [0, 16,777,216], 1 ≤ i ≤ n, representing the color value of 
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the i-th pixel (assuming that the color of pixels are based in the 

color model RGB). The color values of the pixels are normalized 

such that they are in [0.0, 1.0],  through the transformation: 

_ (7)
16777216

i

i

RGB
normalized RGB =  

 

We define a vector in the n-Dimensional space by concatenating 

the m1 rows in the image considering for each pixel its normalized 

color RGB value.  By this way each image is associated to a 

vector in the n-dimensional Euclidean space. Due to this color 

normalization, the scalar values are in [0,1], making the training 

set embedded in a unit  n-Dimensional hypercube.  
 

B. Classifications Results 
 

Our training set contains 148 images selected from CENAPRED 

[3] database. These images contain some of the Popocatépetl 

volcano fumaroles occurred during 2003. The selected images 

have a resolution of 640×480 pixels and 24-bits color, using 

format compression JPG. 
 

We present the results obtained by three 1-Dimensional Kohonen 

Networks with different topologies: 

• Network  

Topology τ0: 

o Images Resolution: 112×64 

o Input Neurons: n = 112×64 = 7,168 

o Output Neurons (classes): m = 20 

o Presentations: T = 10 

• Network 

Topology τ1: 

o Images Resolution: 56×32 

o Input Neurons: n = 56×32 = 1,792 

o Output Neurons (classes): m = 30 

o Presentations: T = 1,000 

• Network  

Topology τ2: 

o Images Resolution: 260×180 

o Input Neurons: n = 260×180 = 46800 

o Output Neurons (classes): m = 25 

o Presentations: T = 500 
 

The set of 148 training points (images) were presented a number 

of times according to the corresponding topologies. The training 

procedures were applied as described at Section II. All the weights 

vectors were initialized to 0.5.  
 

Figure 5 shows the classification of the training images using the 

three proposed topologies. The figures show the distribution of the 

148 training images in each one of the classes.  
 

C. Intensity Based Classification Vs. Classification Based in  

the Topology of Pixels in the Images 
 

One of the problems to consider is related with the question if our 

implementations of the Kohonen Networks classify according to 

intensity color or if they classify according to the connectivity, i.e. 

the topology between pixels composing an image. In order to give 

arguments that support our hypothesis that the network classified 

according to topology, we developed two approaches: 

• An approach (section III.C.1) based in a classification of the 

training images with pixels permuted. If our implementation 

classifies by color intensity, we may expect a distribution in the 

classes similar to distributions presented before permutation, as 

in Figure 5. 

• An approach (section III.C.2) based in the distances between 

the weight vectors associated to each output neuron. The 

clusters themselves are 2D color images. In this approach we 

will use an additional metric that guarantee the comparison of 

images only by their color intensity. According to Kohonen’s 

training algorithm, the clusters (class representatives) have been 

distributed uniformly in a unit nD hypercube. Such distribution 

implies that each cluster has itself specific characteristics that 

distinguish its respective class among other classes. By 

applying the new proposed metric, we can expect that distances 

show a considerable proximity between clusters, hence, they 

have similar color intensities. Moreover, this last result should 

establish a considerable distinct distribution respect to the 

distribution indicated by the Euclidean metric. In the case that 

Kohonen Network classifies only by color intensity, then the 

clusters distribution reported by both metrics should be similar.  
 

a)  

b)  

c)  
Fig. 5. Classification of the 148 training images  

according to Network Topology a) τ0, b) τ1 and c) τ2. 
 

C.1 Permutation of Pixels in the Training Images 
 

(See Table 1 for examples of the permutations described here.) 

• P1: Random permutation of all the pixels in the image. 

• P2: Division of the image in 25 rectangular regions and random 

permutation of the pixels in each region. 

• P3: Division of the image in 25 rectangular regions and random 

permutation of such regions. 

• P4: Division of the image in 25 rectangular regions, random 

permutation of the pixels in each region and random 

permutation of the regions. 
 

Table 1. Permutations of pixels applied to the training images.  

Original Image Permutation P1 Permutation P2 

 
 

  
Permutation P3 Permutation P4  
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Table 2. Distribution of the training images in the classes of network topology τ1. 
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Permutation P4 

 

Consider network topology τ1. For permutations P1, P3 and P4, we 

observe in Table 2 that two classes grouped the 80% of training 

images. 
 

The results using permutation τ2 differs from others by the fact 

that 80% of training images are grouped in seven classes with 

more than 5 images each one. Permutation P2 may be considered 

visually as one that preserves the connectivity of the pixels respect 

to the original training images. This is because if we increment the 

number of rectangular regions (more regions than those in 

permutation P2) and permute its corresponding pixels, as the 

number of regions increase the corresponding image will 

approximate to the original image. In fact, the original images can 

be seen as images divided in regions with only one pixel each one; 

obviously, the permutation of the pixel in each region leave to the 

image in its original state. 
 

C.2 Analysis Based in an Additional Metric over ℜ+ 
 

Definition 1 ([1] & [2]): Let x, y ∈ ℜ+. Let ρ be the function 

described as 

1

( , ) 1 (8)

0

x
if x y
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Such function is in fact a metric over ℜ+. See [7] for more details. 

 

Let I be an image. We know that each one of its pixels pi will have 

associated a vector (xi, yi, RGBi), i ∈[1,n], RGBi ∈ [0, 16777216]. 

Lets assume that the dimensions of each pixel are equal to one. 

We will define the Total Intensity of I, denoted by T(I), as: 

1

( ) (9)
n

i

i

T I RGB
=

=∑  

Let IA and IB be two images with the same geometrical 

dimensions. Let T(IA) and T(IB) be their corresponding Total 

Intensities. Because T(IA), T(IB) ∈ ℜ+ we can calculate its 

distance through metric ρ. 

Now, we will define the similarity between images IA and IB 

according to the value of ρ(T(IA), T(IB)). Let 0 ≤ ε < 1 be an 

arbitrary value such that 

IA is similar to IB ⇔ ρ(T(IA), T(IB)) < ε 
 

It is shown that a classification based in metric ρ will not take in 

account the connectivity between the pixels in the images. For 

example, for the images presented in Figure 6 we have that 

ρ(T(IA), T(IB)) = 0. 
 

IA  IB  
Fig. 6. An example where ρ(T(IA), T(IB)) = 0.  

IB is image IA applying permutation P3. 
 

Kohonen Network uses the Euclidean metric over ℜn. Because the 

representatives of the classes (clusters) in the network are 

themselves vectors in ℜn, then we can determine the Euclidean 

distance between any pair of clusters.  
 

We define a false color map that represents the distribution of the 

clusters in the subspace [0, 1]n. The maximal Euclidean distance 

between any two clusters will be nd =max  and the minimal 

distance will be dmin = 0. Every Euclidean distance between two 

clusters will be associated with a color in the grayscale 

through
256

max

⋅
d

d . For d = 0 black color is associated, for d = dmax 

then white color is associated. 
 

Moreover, we define a false color map that represent the distances 

between the clusters in the subspace [0, 1]n under metric ρ. For 

any clusters a and b, ρ(a, b) will be associated with the grayscale 

through ρ(a, b)⋅256. If ρ(a, b) = 0 then a = b and therefore such 

distance will be represented by black color. On the other hand, 

ρ(a, b)⋅256 → 256 while ρ(a, b) → 1. 
 

Consider Network Topology τ0. The false color maps associated to 

the distances between the clusters under the Euclidean metric and 

ρ metric are presented in Table 3. It can be observed in the map 

under metric ρ that the 47% of the distances between clusters are 

less than 0.20. This indicates that, according this metric, an 

Engineering Letters, 15:1, EL_15_1_8
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



important number of clusters are similar with ε = 0.20 (the mean 

distance in this metric is 0.2542 with variance 0.0373 and standard 

deviation 0.1933). In the other hand, for topology τ0, n = 7,168, 

hence, dmax= 7168  = 84.66. Analogously we consider the number 

of distances whose value is less than the 20% of dmax. By this way, 

the map based in the Euclidean metric reports that only the 19% of 

the distances between clusters are lower than 16.9328 (the mean 

distance under Euclidean metric was 24.2119 with variance 

94.7531 and standard deviation 9.7341). In conclusion, both 

metrics report different distributions of the clusters which make 

visible the differences between a classification based in topology 

of pixels, by the Kohonen Network, and a classification based in 

color intensities of the images. 
 

 

IV. CONCLUSIONS 
According to the results provided by the approaches discussed in 

sections III.C.1 and III.C.2 we can infer that image classification 

based in a 1-Dimensional Kohonen Network groups an image set 

according to features based in the connectivity between pixels, 

i.e., their topology. As part of future work, we will analyze the 

images contained in each one of the resulting classes and their 

respective neighborhoods in order to determine some features 

shared by these images. By identifying these features, in our 

images domain, we will analyze the possible application of our 

classifications in the prediction of events of Popocatépetl volcano. 

Another objective considers the comparison of non-supervised 

classification with other techniques that allow the automated 

retrieval and classification of images such as Case Based 

Reasoning (CBR) and Image Based Reasoning (IBR). 
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Table 3. False Color Maps that show the distances between clusters in Network Topology τ0. 

Distances according to Euclidean Metric Distances according to ρ Metric  

 
 

 

In both maps: 

 Maximum Distance 

 Minimum Distance 
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