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Comparative Study of QRS Detection in Single
Lead and 12-Lead Electrocardiogram using
Support Vector Machine
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Abstract— Application of Support Vector Machine (SVM) for
QRS detection in single lead and 12-lead Electroodiogram
(ECG) using combined entropy criterion is presentedh this paper.
The ECG signal is filtered using digital filtering techniques to
remove power line interference and base line wandeSVM is used
as a classifier for detection of QRS complexes in>. Using the
standard CSE ECG database, both the algorithms pesfmed
highly effectively. The performance of the algorittm with
sensitivity (Se) of 99.79% and positive predictioft+P) of 99.15% is
achieved when tested using single lead ECG. It impves to
99.93% and 99.46% respectively for simultaneously ecorded
12-lead ECG signal. The percentage of false posiivand false
negative is low. The proposed algorithms perform kter as
compared with published results of other QRS deteots tested on
the same database.

Index Terms— ECG, Entropy, Combined Entropy, QRS
complex, SVM.

|l. INTRODUCTION

The electrocardiogram (ECG) is an important téa
providing information about functional status ofetieart.
Analysis of ECG is of great importance in the detec of
cardiac anomalies. In a clinical setting, suchrdsnisive care
units, it is essential for automated systems tatately detect
and classify electrocardiographic signals. The emirr
performance of these systems depends on severaltanp
factors, including the quality of the ECG signdle tapplied
classification rule, the learning and testing dettassed. As
displayed in Fig. 1, ECG is characterized by a metu wave
sequence of P, QRS and T- wave associated withtesthThe
QRS complex is the most striking waveform, caused
ventricular depolarization of the human heart. Ortbe
positions of the QRS complexes are found, the iocatof
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other components of ECG like P, T- waves and Stheag etc.
are found relative to the position of QRS, in ortdeanalyze the
complete cardiac period. In this sense, QRS detegtiovides
the fundamental for almost all automated ECG amalys
algorithms.
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Fig.1 ECG Signal

Numerous QRS detection algorithms such as derwativ
based algorithms, algorithms based on digital réltevavelet
transform, length and energy transform, artificiakural
networks, genetic algorithms, syntactic methods)bett
transform etc. are reported in literature. Kohlera¢ [1]
described and compared the performance of all ti@R&
detectors. Recently, few other methods based oterpat
recognition [2], Hilbert transform [3], wavelet trsform [4],
neuro-fuzzy approach [5], filtering technique [6first
derivative [7], curve length concept [8], movingeaaging
bncorporating with wavelet denoising [9] etc. aregosed for
the detection of QRS complexes. Christov et al [G§8}e a
comparative study of morphological and time-frequeBCG
descriptors for heartbeat classification. Most loése QRS
detectors are one channel detectors. A common iteehn
utilized in the QRS detector algorithm is to empdogcheme that
consists of a preprocessor and a decision rule Th&] purpose of
the preprocessor is to enhance the QRS, while sagipg the other
complexes as well as the noise and the artifabts pfeprocessor
consists of a linear filter and a transformatione purpose of the
decision rule is to determine whether or not QR®@mexes are
present at a given instant in the signal.
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SVMs based classification method represents a rmajo 2

development in pattern recognition research. Twiovations of
SVMs are responsible for the success of this methaely, the
ability to find a hyperplane that divides samplesoi two classes
with the widest margin between them, and the eidansf this
concept to a higher dimensional setting using Kdtmetion to
represent a similarity measure on that settingh Batovations
can be formulated in a quadratic programming fraankwhose
optimum solution is obtained in a computation tiog a
polynomial order. This makes SVMs a practical affdcéve
solution for many pattern recognition and clasatfan problems
in bioinformatics. Brown et al [12] describes aassful use of
SVMs applied to gene expression data for the thskassifying
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i=1,2;x=1,2,...8
whereo; andm are the standard deviation and meariof

class ands represents total number of samples in the ECG

signal.

Entropy is a statistical measure of uncertaintyfeAture,
which reduces the uncertainty of a given situatiare
considered more informative than those, which hawgosite
effect. Thus a meaningful feature selection ciateis to choose

unseen genes. Dehmeshki et al [13] used SVM for thiee features that minimize the entropy of the pattéass under

classification of lung data. Chu et al [14] appli&¥Ms for
cancer diagnosis based on micro-array gene expredaia and
protein secondary structure prediction. SVMs ase applied for
ECG signal analysis and arrhythmia classificatiid [L6, 17, 18,
19, 20, 21], where in QRS detection is accomplighedising
some other technique. SVM is applied in the presenk to

detect the QRS complexes in the single lead ECG and

simultaneously recorded 12-lead ECG signal.

This paper is structured as follows: ECG signappveessing
is described in section 2. Section 3 presentsed dascription
of the SVM for two-class problem. ImplementationSdM for
a given problem of QRS detection is discusseddtiae4. The
experimental results and discussion of the propadgarithm
are provided in section 5.

Il. PREPROCESSING OF ECG SIGNAL

A raw ECG signal of a patient is acquired. It igeaf
contaminated by disturbances such as power liregfarence
and baseline wander. The finite impulse respon#e) (Rotch
filter proposed by Van Alste and Schilder [22] $2d to remove
baseline wander. The adaptive filter to remove timsevander
is a special case of notch filter, with notch abzZeequency (or
dc). This filter has a “zero” at dc and consequentkates a
notch with a bandwidth of (m)*f; , wherefs is the sampling
frequency of the signal and p is the convergencanpeter.
Frequencies in the range 0-0.5Hz were removeddocesthe
base line drift. The filter proposed by Furno amaripkins [23]
is used to remove 50Hz power line interference.

The slope at every sampling instant of the filtde€Xs signal
is calculated for each lead and these are clustetedtwo
classes, namely QRS and non-QRS classes using Ksnoéa
clustering algorithm [24]. Slope is used as an irtgpu feature
because slope of the ECG signal is much more inQRS
region than in the non-QRS region.

The probability of slope at each sampling instabbging to
each of the two classes is calculated using (1).

consideration [24].

The entropyhi(x) at each sampling instant for QRS and non
QRS classes is calculated using (2). These ens@ie then
normalized.

hi(x)= -Pi(x)loge Pi(x),
i=1,2;x=1,2,....s

)

The combined entropy.(X) is then calculated by using (3).

he(X)= (1-han(X) )* hun(X)
i=1,2;x=12,...8
where,h;(x) andh,,(X) are normalized entropies belonging
to the QRS and non-QRS class respectively. The rmdb
entropy is also normalized to obtain normalized loioved
entropyhcq(x).

Similar procedure is applied for remaining leadsthis way,

a set of twelve normalized combined entropy curees for
each lead is obtained.

Fig. 2 demonstrates the results obtained duringrpoessing
for lead V5 of record MO1_020 of CSE ECG datababke.raw
ECG signal is displayed in Fig. 2(a). As depictedrig.2 (b),
the preprocessor removes power line interferendebase line
wander present in the raw ECG signal. Fig. 2(cwshm (),
entropy curve for QRS region. It can be seen fittisdurve that
it has lower values in the QRS region and highéwesin the
non-QRS region. The low value of entropy in the QR§on
indicates lower uncertainty or in other words higbertainty of
that region belonging to QRS region. Similarly,Hegvalues of
entropy in the non-QRS region indicate higher utaiety or in
other words lower certainty of that region belomgio QRS
region. Thus the entropyh;(X) curve provides critical
information about the degree of certainty of aw@adielonging
to QRS region.

Fig. 2(d) shows$,.(x), entropy curve for non-QRS region. It
can be seen from this curve that it has lower ‘&inethe
non-QRS region and higher values in the QRS rediae.low
value of entropy in the non-QRS region indicatesveio
uncertainty or in other words higher certainty bétt region
belonging to non-QRS region. Similarly, higher \eduof
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Fig.2 (a) Raw ECG of lead V5 of record MO1_

20 ofEOSCG database, (b) Filtered ECG Signal,

(c) Entropy QRS, (d) Entropy non-QRS, (e) fi{X)] curve, (f) Combined Entropy

entropy in the QRS region indicate higher uncetyaor in
other words lower certainty of that region belomgito
non-QRS region. Thus the entrdmpy(x) curve provides critical
information about the degree of certainty of aw@adielonging
to non-QRS region.

Now if [1- hyy(X)] curve is seen, it also provides similar

information as that di;(x) i. e. [1-h,,(X)] gives lower values in
the QRS region and higher values in the non-QR®meas
shown in Fig. 2 (e). Now if the curve, showing gheduct

hen(X) = (1hoq(X)) * h1n(X), called combined entropy is obtained,

it has much lower values in QRS region and muchédrigalues
in non-QRS region thus giving even better informatompare

to hy, (X) andhy, (X), curves shown in Fig. 2 (c) and (d). This can

be seen in the combined entropy curve shown in2Ff.
Therefore, combined entropy is used in the presemk to
obtain the transformed signal for the detection @RS
complexes.

SVM is a new paradigm of learning system. The tepknof
SVM, developed by Vapnik [25], is a powerful widalged
technique for solving supervised classificationgiems due to
its generalization ability. In essence, SVM classif maximize
the margin between training data and the decismmdary
(optimal separating hyperplane), which can be fdated as a
guadratic optimization problem in a feature spate subset of
patterns those are closest to the decision bouradargalled as
support vectors.

Consider a set of training examp(eci,yl), ..... ,(xl,yl),

SUPPORTVECTORMACHINE

where inpui; [J R" and class labelg D{—LH}. Decision

function of the formsgn((w.x)+b) is considered, where
(w.x) represents the inner product wfandx, w is weight

vector and is bias. It is necessary to find a decision fuorthj,,
with the properties

Y, (W) +b) =1 4)

i=1,

In many practical situations, a separating hypeptoes not

exist. To allow for possibilities of violating (43lack variables,
& are introduced like

& 20,

to get

Y (W) +b) 21-§ )
i=1,
The support vector approach for minimizing the

generalization error consists of the following:
|
d(w, &) = (ww) + CIZ:l{I

subject to constraints (5) and (6).

The C is a user defined constant. It is called regutagiz
parameter and determines the balance between timiraion of
the margin and minimization of the classificatioroe

The above minimization problem can be posed asistrained
guadratic programming (QP) problem. The solutioregirise to a
decision function of the form:

f(x) = sgn[lellyiai (xx;)+b (8)

whereq; are Lagrange multipliers. Only a small fraction of
the o; coefficients are nonzero. The corresponding pafrs

X; entries are known as support vectors and they dglfine the

Minimize:

()

decision function.
By replacing the inner produgk.x; ) with kernel function

K(X, x;); the input data are mapped to a higher dimensiona
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space [26]. It is then in this higher dimensionghce that a
separating hyperplane is constructed to maximiearhrgin.

IV. IMPLEMENTATION OF SVM FORQRSDETECTION
Implementation of SVM for QRS detection in ECG sibis

combined entropy values of all the twelve leadsimigtd during
preprocessing are used for training of SVM. Théning set
consists of normalized combined entropy valuesvefite leads
covering a wide variety of QRS morphologies. Duriting
training of SVM, a sliding window of size twelve mspling

done by using LIBSVM software [27]. LIBSVM is an instantsis moved over the normalized combinedegtvalues

integrated software package for support vectorsdiaation,
regression and distribution estimation. It uses edifred

from the training set. The first input pattern weds formed by
taking twelve values of normalized combined entropg each

sequential minimal optimization (SMO) algorithmgerform ~ from all the twelve leads at the first samplingtams. The
training of SVMs. SMO algorithm breaks the largeadratic Window is then moved forward by one sampling inséard the
programming (QP) problem in to a series of smajpesisible Second pattern vector is formed by taking anotheostwelve
QP problems. These small QP problems are solv&@lues of normalized combined entropy, one eacim & the
analytically, which avoids using a time-consumingnerical tWelve leads but now at second sampling instanteiVtne
QP optimization problem as an inner loop [28]. window lies in the QRS region, the desired outgdhe SVM is

In the present problem of QRS detection, SVM i§et to 1 and when it lies in the non-QRS regioe, desired
output is set to -1.

During testing, normalized value of twelve combined
which takes two parameteysandv. The parametey can be entropies, one from each of the twelve leads of E@Ga
viewed as a scaling parameter of the input datel,vaas a sampling instant, is used to form the input vetoorthe SVM.
shifting parameter that controls the threshold apping. The Then the window is moved forward by one samplirggant and
values ofy > 0 andv < 0 are more suitable for sigmoid kernela set of twelve combined entropies, again one fach of the

constructed using sigmoid kerri(x, x;) =tanh { (x.x;) +v),

[29].

A. Single Lead QRS Detection

In single lead QRS detection algorithm,
combined entropy values obtained during preprongsare
used for training of SVM. The training set consigif
normalized combined entropy values covering a watéety of
QRS morphologies. During the training of SVM, adslg
window of size ten sampling instants is moved ot
normalized combined entropy values from the trajréat. The
first pattern vector is formed by taking first teormalized
combined entropy values from first to tenth sangplinstant.
The window is then moved forward by one samplirggant and
the second pattern vector is formed by taking asradbt of ten
normalized combined entropy values but now fronoedcto
eleventh sampling instant. This way, a sliding vewdof size
ten sampling instant and a jump size of one sanspfeoved
over the normalized combined entropy curve. Whemtimdow
lies completely in the QRS region, the desired outy the
SVM is set to 1 and when it lies completely in then-QRS
region, the desired output is set to -1. The tragjrpatterns for
the ECG portion, when the window lies partialyQRS as well
as non-QRS regions are not considered during #irirtg of
SVM.

During testing, a set of ten normalized combinettogy
values of a particular lead of a subject from anddad CSE
ECG database is picked up to form the input vefdorthe
SVM. Then the window is moved forward by one sanwpli
instant and again a set of ten combined entropyegabf ECG
are taken to form next input pattern vector. Artraf 1's is
obtained at the output of SVM, when the window érses
through the QRS region and -1 for the non-QRS regio

B. Twelve- Lead QRS Detection

In twelve lead QRS detection algorithm normalizecg

normalize

twelve leads of ECG were taken to form next inpattgrn
vector. A train of 1's is obtained at the outpuSafM, when the

(\ivindow traverses through the QRS region and -1 thar

non-QRS region.

In some cases, when the P or T waves are pealaune; the
SVM gives a train of 1's but of smaller durationcasnpare to
that of QRS complex. In order to differentiate betw trains of
1's for QRS complex and that for P or T waves, aerage
duration of all the trains of 1's is calculated.oEk trains whose
duration is greater than average pulse duratiopiaked up as
QRS complexes by the algorithm and those whosetidores
smaller than the average pulse duration are disdar@ihus,
false positive detection of QRS complexes can Haaed.

V. EXPERIMENTAL RESULTS ANDDISCUSSION

A. Training Set

In single lead QRS detection training set is forrhgdaking
9667 samples (normalized combined entropy valuasring a
wide variety of QRS morphologies of 12 differenbjacts. A
window size of 10 is selected because too smalltaodarge
size of the window leads to under-capturing and-@apturing
of the ECG signal respectively.

In twelve lead QRS detection training set cons¥t9667,
12-lead samples (normalized combined entropy values
covering a wide variety of QRS morphologies of saene 12
subjects as in single lead QRS detection. The winsiae of
twelve, containing twelve normalized combined epyrealues,
one from each of the twelve leads of ECG.

B. Parameter Selection

There are three free parameters namely of the sigmoid
kernel function and margin-loss trade-o, should be
etermined to find the optimal solution. It is nkhown
eforehand whicl€, y andv are the best for this problem. The
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objective is to obtain befl, y andv so that the classifier can due to prominent slope of P and T wave in somescase

accurately predict unknown data (testing data)thenpresent
study four- fold cross- validation approach is usetlne these
free parameters [30]. In this, the training dataliisded into
four subsets of equal size. Sequentially one suiss&tsted
using the classifier trained on the remaining stshSehus, each
instance of the whole training set is predictedeos the cross
validation accuracy is the percentage of data waietcorrectly
classified. The optimum values 6£2,y = 0.2 andv=-0.1 are
obtained for both the training sets with the creafidation
accuracy of 98.72% and 99.34% for single lead amedi/e lead
training set respectively.

C. Performance Evaluation

To evaluate the performance of the QRS detectigoridhm,
two parameters, sensitivit) and positive prediction+P) are
used [31] and are defined as:

TP
S — ©)
TP+FN
TP
+P=—m—
TP+ FP

whereTP stands for true positivésP for false positive and
FN for false negative. Detection is said to be pasitive {TP)
if the algorithm correctly identifies the QRS coewland it is

said to be false negativel) if the algorithm fails to detect the

The sensitivity and positive prediction of proposdgbrithm
for QRS detection is found to be better than theesponding
figures (98.49% to 99.6% f@e and 99.43% to 99.6% farP)
of the algorithms reported in literature and testadhe same
database [11, 33, 34, 35, 36, 37].

Fig.3 shows results obtained at the preprocessagesand
QRS detection of lead L1 of record MO1_075. As digd in
Fig.3 (b), the preprocessor removes power lingfetence and
base line wander present in the signal. Some oPtlaed T-
waves are prominent in this case. Pulse duratiorthi
prominent T-waves is smaller than average pulsatdur and
hence rightly not picked up as QRS complex by therahm as
shown in Fig. 3 (d).

Fig.4 shows QRS detection of lead V2 of record MO/9.
In this case the P and T- waves are not promitemige all the
QRS complexes have been correctly detected by SVM.

Fig.5 shows QRS detection of lead V2 of record MOI6.
T-waves are peaky in this case. Though the entinpthe
T-wave region is lower, these T-waves are not deteas QRS

(10)complexes by the SVM due to smaller pulse duration.

In Fig.6, QRS detection of lead L2 of record MO10Q5
displayed. In this case, SVM fails to detect thestfiQRS
complex because of the lower amplitude of the Revawud
smaller pulse duration compare to others.

Fig.7 shows 12-lead ECG signal of record MO1_00ESE

non-QRS wave is detected as a QRS complex.

The proposed algorithms for QRS detection are dessing
1500, single-lead ECG records and simultaneoustprded
125, 12-lead ECG records of dataset 3 of CSE rlmdtd-
measurement library [32]. This library containgoral 12-lead
simultaneous ECG recordings of 125 patients cogeainvide
variety of pathological cases. It should be noteckhthat the
CSE ECG library contains a high percentage of pagical
ECG's, and there are some QRS’s which are hardlygmized
even visually.

Every ECG signal from CSE ECG database is of 1@astidun

locations of the QRS complexes as detected by\hé. & can
be seen clearly that the morphology of QRS compléndhe
respective leads of ECG signal is consistent; hatidcke QRS
complexes have been successfully identified bySitil!.

Fig. 8 displays the QRS detection of the record MOIB. In
this case, T-waves are of larger amplitude in sklzads. These
T-waves are not detected as QRS complexes by gogithin
due to their smaller pulse duration. All the QR®nptexes in
this case are correctly identified by SVM indicgtirthe
effectiveness of the proposed algorithm.

In Fig.9, QRS detection of record MO1_045 is digpth In

sampled at 500Hz thus giving 5000 samples. Thed¥ 50this case, SVM fails to detect the eighth QRS cemplecause

samples are classified into QRS and non-QRS regadies

of the lower amplitude of the R-wave and smallds@auration

preprocessing. The sensitivitge] of 99.79% and positive compare to others. There were total 1487 QRS coreplia the
prediction ¢P) of 99.15% is obtained for single lead QRSyatabase. The proposed algorithm fails to detelgtmre QRS
detection. Improved performance is obtained for @B&@ction complex of record MO1_045. Any further attempt to
insimultaneously recorded 12-lead ECG signals Wwitlyentify/remove this false negative by way of atjug the

Se=99.93% and-P=99.46% The percentage of false negativeparameters of the SVM detracts the over all detactite of the
detection is 0.21 and that of false positive détecis 0.86 in  zgorithm.

the single lead QRS detection and it reduces t6 ar@l 0.54
respectively for QRS detection in simultaneouslgorded
12-lead ECG signals. The false positive detectamesmainly

(Advance online publication: 17 November 2007)
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Fig.3 QRS detection of record MO1_075 of CSE datalfa) Raw ECG, (b) Filtered ECG, (c) Entropy QRS,
(d) Entropy non-QRS, (e) Combined Entropy, (f) QRSection by SVM
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Fig.4 QRS detection of record MO1_079 of CSE databéa) Raw ECG, (b) Filtered ECG, (c) Entropy QRS,
(d) Entropy non-QRS, (e) Combined Entropy, (f) QRSection by SVM
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Fig. 5 QRS detection of record MO1_106 of CSE EGabase, (a) Raw ECG, (b) Filtered ECG,
(c) Entropy QRS, (d) Entropy non-QRS, (e) Combikatiopy, (f) QRS Detection by SVM
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Fig. 6 QRS detection for record MO1_050 of CSE Ef&@abase, (a) Raw ECG, (b) Filtered ECG,
(c) Entropy QRS, (d) Entropy non-QRS, (e) Combikadopy, (f) QRS Detection by SVM
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Fig. 7 QRS detection for record MO1_005 of CSE H{abase
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Fig. 8 QRS detection for record MO1_116 of CSE E{aBbase
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Fig. 9 QRS detection of record MO1_045 of CSE dasab
[9] S.W. Chen, H. C. Chen, H. L. Chan, A real time @QR&ction method
VI. CONCLUSION based on moving-averaging incorporating with wavadmoising, Comp.

In this paper, a novel QRS detector using SVM ppsed
and evaluated on the standard CSE database. SV&\gay
encouraging and consistent results for both sieglé as well as
12-lead algorithms as compare to the methods regpaarlier
in the literature for the given problem of QRS @ét:. Due to
high generalization ability of the SVM, the percaagd of false
positive and false negative detections is very Idle
performance of the algorithms depends stronglhjherselection
and the variety of the ECGs included in the trajnéet, data
representation and the mathematical basis of #ssifler. The
information about the QRS complexes obtained by riréthod
is very useful for ECG classification and cardia@gdosis. This
information can also serve as an input to a systerhallows
automatic cardiac diagnosis.
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