
An Estimating Model of Node Accesses for INN

Search Algorithm in Multidimensional Spaces

Yaokai Feng ∗ Akifumi Makinouchi † Kunihiko Kaneko ‡

Abstract— Nearest Neighbor (NN) search has been
widely used in spatial databases and multimedia
databases. Incremental NN (INN) search is regarded
as the optimal NN search because of the minimum
number of node accesses and it can be used no mat-
ter whether the number of objects to be retrieved is
fixed or not in advance. R*-tree is still regarded as
being among the best high-dimensional indices. This
paper presents an analytical model for estimating per-
formance of the INN search algorithm on R*-tree.
For the first time, our model takes m (the number of
neighbor objects reported finally), n (database cardi-
nality) and d (dimensionality) as parameters, focus-
ing on the number of node accesses. In our model,
(1) the two key factors of dm (distance from the m-th
NN object to the query point) and σh (side length of
each node) are estimated using their upper bounds
and their lower bounds, which is very helpful to ef-
fectiveness of our model; (2) the particularity on the
number of entries in the root node and the possible
difference of fanouts between the leaf nodes and the
other nodes are taken into account. The theoretical
analysis is verified by experiments.

Keywords: INN Algorithm, multidimensional index,

R*-tree, node accesses, multidimensional spaces

1 Introduction

During the last decade, the increase in the number of
computer applications that rely heavily on spatial data
and on multimedia data has caused the database commu-
nity to focus on the management and retrieval of multi-
dimensional data. Nearest Neighbor (NN) search is very
important in Geographic Information Systems (GIS) as
well as in Multimedia Applications. For example, in GIS
applications, NN search can be used to find the neighbor
cities, schools or factories to a given location. In multi-
media database fields, NN search can be used to perform

∗Graduate School of Information Science and Electrical Engi-

neering, Kyushu University, Fukuoka City, Japan. Email: fengyk@

is.kyushu-u.ac.jp
†Department of Information Network Engineering, Kurume In-

stitute of Technology, Japan. Email: akifumi@cc.kurume-it.ac.jp
‡Graduate School of Information Science and Electrical Engi-

neering, Kyushu University, Fukuoka City, Japan. Email: kaneko@

is.kyushu-u.ac.jp

Manuscript received May 12, 2007.

similarity search, which is a very popular kind of content-
based search.

The existing NN search algorithms can be classified into
two different groups. One group is k-NN search algo-
rithms, where k, the number of neighbor objects to be
retrieved, is known and fixed in advance. The algorithms
in this group recursively traverse the index-tree in depth-
first manner and pruning strategy can be used to reduce
the number of node accesses. The other is Incremental
NN (INN) search algorithms, which can be used when the
number of neighbor objects to be retrieved is unknown in
advance. The INN search algorithm in [1] has been re-
garded as the optimal NN search algorithm [2].

R*-tree[3] is selected in this paper because it is still re-
garded as being among the best multi-dimensional in-
dexes and is widely used in researches and application
systems related to multi-dimensional databases.

The main contributions of this paper are as follows. (1)
This paper analyzes performance of the INN search algo-
rithm with m (the number of neighbor objects reported
finally), n (database cardinality) and d (dimensionality)
as parameters. (2) The two key factors of dm (distance
from the m-th NN object to the query point) and σh

(side length of each node) are estimated using their upper
bounds and their lower bounds, which is very helpful to
effectiveness of the model, especially in high-dimensional
spaces. (3) The particularity on the number of entries in
the R*-tree root-node is taken into account. (4) When R-
trees are used for point objects the difference between the
fanout of the non-leaf nodes and that of the leaf nodes is
also taken into account. (5) Our analysis focuses on the
number of node accesses (only the number of accessed
leaf nodes is analyzed in the other relevant works), which
is a very important factor on performance of the INN
search. Note that, although the number of accessed leaf
nodes is a very important factor of search performance,
only the number of leaf node accesses is not enough for
many cases.

This paper is organized as follows. In Section 2, related
studies and the motivation are presented. The analyti-
cal model for estimating performance of the newest INN
search algorithm is presented in Section 3. In Section 4,
the model presented in this paper is verified by experi-

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

ments. The conclusion is drawn in Section 5.

2 Related Work

2.1 INN Search on R-trees

The key of the INN search algorithm is the use of one
priority queue to contain objects and nodes of the in-
dex. The objects and the nodes in the priority queue are
sorted in ascending order of their distance values (for ob-
jects) or MINDIST s (for nodes) from the given query
point, where MINDIST is the minimum distance of a
node (i.e., its MBR: Minimum Bounding Rectangle) from
the query point [4]. Initially, the priority queue is empty.
This algorithm begins with inserting the root node in the
priority queue. The members (nodes or objects) of the
priority queue are dequeued one by one. If the dequeued
member is a non-leaf node, then all of its child nodes are
inserted in the priority queue. If the dequeued member
is a leaf node, then all of its objects are inserted. This
process is a “dequeue-insert” process. The members (ob-
jects and nodes) of the priority queue must be sorted in
ascending order of their distances from the query point
at all times. Note that, when some object(s) and some
node(s) have the same distance values from the query ob-
ject, the object(s) should be located before the nodes. If
the dequeued member is an object, this object is reported
as the newest neighbor object. The algorithm repeats the
“dequeue-insert” process untill user is satisfied with the
search result or a wanted number of NN objects have been
reported. The INN search algorithm is shown in Fig.1.

Algorithm INN::INN search(QueryObject:q)
PriorityQueue queue;
queue.insert(0,root);
wait(Continue or not?);
WHILE not queue.isempty() DO

first=queue.dequeue();
CASE first is an intermediate node:

FOR each child in first DO
queue.insert(MINDIST(q,child),child);

CASE first is a leaf node:
FOR each object O in first DO
queue.insert(dist(q,O),O);

CASE first is an object:
report(first);
wait(Continue or not?);

ENDWHILE

Figure 1: INN algorithm.

2.2 Performance Analysis of the INN
Search Algorithm

Performance estimation of the INN search algorithm is
discussed briefly and tested in [1]. However, there exist
the following four problems in their analysis.

1. The presented model is on the following two factors
only. (1) The expected number of leaf nodes that inter-
sect the search region (defined later) and (2) the expected
number of objects remaining in the priority queue. How-
ever, they did not analyze the expected number of node
accesses. Certainly, accessed nodes do not only include
leaf-nodes and the priority queue contains not only ob-
jects.

2. The model is for two-dimensional spaces only. And
it can not be simply generalized to higher-dimensional
spaces

3. The presented model is not verified by experiments.
Many experiments on the INN search performance are
performed and discussed with uniformly distributed ob-
jects and the real objects as well. However, the presented
model is not verified by experiments.

4. The analysis is based on the following assumption:
“on the average, half of the objects in the leaf nodes that
intersect with the search region (defined later) are in-
side the search region, while half are outside”. We think
this assumption is farfetched. Because the situation is
expected to vary greatly even for uniformly distributed
point objects as the number of neighbor objects reported
finally changes.

Stefan Berchtold et al. present a cost model for NN search
[2]. However, as pointed out in the conclusion section of
that paper, that cost model can be used only in the case
that one NN object is reported and that model can not
simply be generalized to an arbitrary number of reported
NN objects. We noticed that only one NN object is not
enough in most applications. Moreover, it analyzes the
number of accessed leaf nodes only.

There are still some performance analytic works for some
other search algorithms, including the work [5] for k-NN
algorithm when k=1 and the work [6] for range search
algorithm.

3 Performance Estimation of the INN

Search Algorithm

The number of node accesses is an important factor on
search performance. For disk-resident indexes, it is di-
rectly related to the number of disk I/O operations; for
memory-resident indexes, it is directly related to the
number of cache misses.

For simplicity, like some other works [1, 8], we assume
that both data objects and the query points are uniformly
distributed in the domain. Without loss of generality, as
in other analytical works [5, 6, 9], we assume that the
data domain is a unit hyper-cube and we think that, in
this case, it is reasonable to assume that the R-tree nodes

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

of the same height have cube-like MBRs roughly of the
same size [1, 5, 8].

Some symbols used in the analysis and their descriptions
are shown in Table 1.

Table 1: some symbols and their descriptions.
Symbol Description

Accessesnode number of node accesses

fi average number of entries in each

non-leaf-root node

fr number of entries in root node

d dimensionality of database

dm distance from the m-th neighbor object

to the query point

n cardinality of database

σh side of the MBR of each node in level h

m number of neighbor objects reported

finally

σl side of the MBR of each leaf node

q query point

nh number of nodes in level h

fl average number of entries in each

leaf node

H Height of index tree

Note that the level numbers are counted from the root
level whose level number is zero.

In this paper, we present a model for estimating the num-
ber of node accesses of the INN search algorithm with m,
n and d as parameters.

Definition (search region):

We wish to analyze the situation up to m neighbor objects
have been reported. Let o be the m-th neighbor object
of the query point q, and dm is distance from o to q.
The region within distance dm from q is called the search

region. See Fig.2.

 q
query point

dm
node of this level

data space

search region

Figure 2: Nodes in level h that intersect with the search
region.

Then, let us consider the appearance of the priority queue
when the m-th neighbor object is dequeued (or say, ob-
tained), which is shown in Fig.3. In this figure, the black
dots in the priority queue are objects and the rectangles
are nodes. Generally speaking, when the m-th neighbor
object is dequeued, there exist some nodes and objects
remaining in the queue unless m is very large. Several
important propositions are given as follows.

...

Priority queue

object; node

the m-th nearest neighbor

dequeued

Figure 3: Priority queue when the m-th nearest neighbor
is dequeued.

Proposition 1

At the moment when the m-th neighbor object is de-
queued, the following equation holds.

Nh,dequeued = Nh,inter

where h refers to the level of R-tree and 0 ≤ h ≤ H − 1.
Nh,dequeued refers to the number of the nodes in level
h that have already been dequeued from the priority
queue. Nh,inter is the number of the nodes in level h
that intersect with the search region (i.e., those nodes
with MINDIST (q, node) < dm). In Fig.2, the region of
the dotted circle is the search region and the rectangles
are nodes in level h.

Proof:

Remember that all the members of the priority queue are
sorted in ascending order of their distances (for objects)
or MINDIST s (for nodes) from q (note that, objects are
located before nodes in the priority queue if they have the
same distance from q). And the MINDIST value (from
q) of any child node of each node, obviously, must be
greater than or equal to the MINDIST value of this
node. Thus,

(1) the MINDIST value of any node that has been de-
queued from the queue must be less than dm. That is,
they must intersect with the search region, and

(2) on the other hand, it is impossible for the nodes whose
MINDIST s are less than dm still to stay in the queue
or to be contained in some node that still stays in the
queue. In other words, all the nodes that intersect with
the search region must have been dequeued.

Thus, Proposition 1 is true. �

Proposition 1 means that the number of nodes in any
level that have been dequeued from the queue must be the
same as the number of nodes in this level that intersect
with the search region.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

Proposition 2

At the time when the m-th neighbor object is dequeued,
the expected number of the nodes in level h that have
been inserted and still remain in the priority queue,
Nh,left, is given by

Nh,left =

{

fr − Nh,inter (if h = 1)
fi · Nh−1,inter − Nh,inter (if h > 1)

Proof:

(1) if h > 1, at the parent level of level h (i.e., level h−1),
there are Nh−1,dequeued nodes have been dequeued and all
their fi ·Nh−1,dequeued child nodes (in level h) have been
inserted in the priority queue. Of these nodes in level h
that have been inserted in the queue, Nh,dequeued nodes
have been dequeued. Therefore,

Nh,left = fi · Nh−1,dequeued − Nh,dequeued

= fi · Nh−1,inter − Nh,inter

(2) if h = 1, the parent of this level is the root node and
the root node must have already been dequeued from the
priority queue. Thus, all the fr nodes in this level (child
nodes of the root) have been inserted. Of these fr nodes,
Nh,inter (here h = 1) nodes have been dequeued. Thus,
Nh,left is the difference of fr and Nh,inter �

Proposition 3

At the time when the m-th neighbor object is dequeued,
the expected number of objects that still remain in the
priority queue, Nobject, is given by

Nobject = fl · Nleaf,dequeued − m

where Nleaf,dequeued refers to the number of the leaf nodes
that have been dequeued.

Proof:

Since Nleaf,dequeued leaf nodes have been dequeued, all
the fl ·Nleaf,dequeued objects in these leaf nodes have been
inserted in the queue. Note that m objects have been
dequeued. Thus, the number of remaining objects is fl ·
Nleaf,dequeued − m. �

Proposition 4

For uniformly distributed query point, the probability of
the query point being located in any node is the volume
of this node.

Proof:

See Fig.4. It is clear that, if the possibility of the query
point being located in any location keeps the same, the
probability of the query point being contained in one
node, Pnode, is given by

Pnode =
V olumenode

V olumespace

Whole data space

node

query point

Figure 4: Probability of the query point being located in
any node.

Considering the volume of the whole space is 1. Thus,
Proposition 4 is true. �

3.1 Expected Distance from the Query
Point to the m-th NN Object (i.e., dm)

3.1.1 Coarse Estimation

See Fig.5(a). The shadow hyper-sphere is called Ratio-

Sphere whose center is q and volume is m
n . Its radius

is denoted as δm. Considering the volume of the whole
space is 1 and all the objects are uniformly distributed,
the expected number of objects in RatioSphere should be
m, which means that δm can be used to roughly estimate
dm. Obviously, RatioSphere is the average space share of
m NN objects in the whole space.

Data space

δm

q

(a) δm

δm

dm

q

(b) dm and δm

RatioSphere
search region

Figure 5: Estimation of dm.

Let V olregion be the volume of RatioSphere. According
to the knowledge of geometry, the volume of RatioSphere,
V olregion, is given by

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

V olregion =

√
πd

Γ(d/2 + 1)
· δd

m

Γ(x + 1) = x · Γ(x) Γ(1) = 1 Γ(1/2) =
√

π

Considering V olregion = m
n , δm can be estimated by

δm = d

√

m

n
· Γ(d/2 + 1)√

πd
(1)

3.1.2 Revised Estimation

When Equation (1) is used to estimate dm, the question
may occur that “Is the m-th NN object of q really just
located on the surface of RatioSphere?”. If not so, then
dm may be less than δm. See Fig.5(b).

However, dm is not less than δm−1. This is because that,
if dm < δm−1 then the expected number of objects in the
search region (defined in Page 3) is less than or equal to
m − 1, which is less than m. That is,

δm−1 ≤ dm ≤ δm (2)

Considering that the objects are uniformly distributed,
the average of δm and δm−1 is used as dm. That is,

dm =
1

2
(δm+δm−1) =

1

2
√

π

d

√

Γ(d/2 + 1)

n
·(d
√

m+ d
√

m − 1)

(3)

We noticed that the difference between δm−1 and δm and,
the difference between δm and dm should not be ignored,
especially in high-dimensional spaces where the objects
are very sparse. The above differences are still not con-
sidered in the existing analyzing works. Because dm is a
key factor to the performance model, we believe that the
revising of dm estimation is very helpful to our model.

3.2 Expected the length of the Side of Node
MBR (i.e., σh)

It is clear that the expected number of nodes in level h,
nh, can be given by

nh = fr · fh−1
i (h ≥ 1) (4)

Let ShareSpace(k) refer to the average space share of k
NN objects in the whole space, whose volume should
be k/n since the objects are uniformly distributed and
the volume of the whole space is 1. The expected num-
ber of objects in each node of level h is n/nh. Thus,

the corresponding space share of each node in level h is
ShareSpace(n/nh), whose volume, V olshare, is

V olshare =
n
nh

n
=

1

nh

Clearly, V olshare can be used to estimate the expected
volume of each node. However, it is only the upper
bound on the volume of each node in level h since there
is not always objects on all the faces of the corresponding
ShareSpace of each node.

On the other hand, let us consider the corresponding
space share if the number of objects in each node is re-
duced by 1. That is ShareSpace(n/nh − 1), whose vol-
ume, V ol′share, is

V ol′share =
n
nh

− 1

n

Like in Section 3.1, V ol′share can give the lower bound on
the volume of each node in level h. This is because that
if the volume of each node is less than V ol′share then the
expected number of objects in this node should be less
than or equal n/nh − 1, which is less than the expected
number of objects in each node.

The expected volume of each node in level h, V olnode can
be given by

V olnode = σd
h =

1

2
(V olshare + V ol′share)

If Equation (4) is substituted, then σh can be given by

σh =
1

2

(

1

n

)
1

d





(

n

fr · fh−1
i

− 1

)
1

d

+

(

n

fr · fh−1
i

)
1

d





(5)

Considering the expected number of the objects in each
leaf node is fl, σl can be given by

σl =
1

2

(

1

n

)
1

d [

(fl − 1)
1

d + f
1

d

l

]

(6)

In this way, σh and σl are estimated using the average
of their upper bounds and their lower bounds instead
of using the share space of each node only. Because σh

and σl are also key factors to the performance model, we
believe that such an estimation of them is helpful to our
model.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

3.3 Expected Number of Node Accesses

Proposition 5

The probability of the search region intersecting with any
node of level h, Ph,intersect, is given by

τ =
d
∑

i=0

(

d
i

)

· σ(d−i)
h ·

√
πi

Γ(i/2 + 1)
· di

m

Ph,intersect = min{τ, 1}

where dm is estimated by Equation (3) and σh can given
by Equation (5).

Proof:

See Fig.6. The rectangle is a node MBR in level h whose
side length is σh. The dotted circle has the same size as
the search region and touches the side of the node MBR.
The round-corner rectangle (called Minkowski-sum) is
the trace of the center of the dotted circle after the dotted
circle makes a circuit, keeping the touching state, along
the sides of the node MBR.

node MBR

σ

σ dm
q

search region

dm
h

h

Figure 6: Example of Minkowski-sum in 2-dimensional
space.

It is clear that, if the search region intersects with the
MBR of this node, then the center of the search region,
q, is located in the Minkowski-sum of this node and vice
versa. That is,

Ph,intersect = Pq,mink = V olmink (see Proposition 4)

where Pq,mink refers to the the probability that q is
contained in the Minkowski-sum; V olmink is the vol-
ume of Minkowski-sum. Thus, calculating the volume
of Minkowski-sum in d-dimensional space is necessary for
calculating Ph,intersect.

The following formula for calculating the volume of
Minkowski-sum in d-dimensional space has been used in
[2] and has been mathematically proved in [10].

V olmink =
d
∑

i=0

Qi ·
(

d
i

)

σd−i
h ; Qi =

√
πi

Γ(i/2+1) · di
m

(7)

In Equation (7), if Qi is substituted into V olmink and
Ph,intersect ≤ 1 is considered, Proposition 5 can be
proved. �

Lemma 1 The expected number of nodes in level h that

intersect with the search region, Nh,inter, can be given by

Nh,inter = nh · Ph,intersect (8)

where Ph,intersect is estimated by Proposition 5 and nh

can be given by Equation (4).

Proof: To calculate Nh,inter we have to sum Ph,intersect

for every node in this level. Considering the objects and
the query point is uniformly distributed, all the nodes in
this level have the same probability of intersecting with
the search region. Thus, Nh,inter can be given by multi-
plying Ph,intersect with the number of nodes in this level,
nh. �

According to Proposition 1 and considering that the root
node must be accessed, by the moment when the m-th
neighbor object is reported, the expected number of node
accesses (i.e., the number of nodes that have been de-
queued from the queue), Accessesnode, is given by

Accessesnode = 1 +

H−1
∑

h=1

Nh,inter (9)

where H is the height of the R*-tree, Nh,inter is given by
Equation (8).

If the corresponding equations are substituted into Equa-
tion (9), the estimating formula of the node accesses can
be given by Equation (10), where fr, fi, fl and H will be
discussed in Section 3.4.

3.4 Discussion of fr, fi, fl and H

fr, fi and H in the above Equation (10) are discussed
here.

Let Fi and Fl denote the maximum number of entries in
each non-leaf node and the maximum number of entries in
each leaf node, respectively. When one R*-tree is built,
there are two possibilities that Fl = 2 ∗ Fi (for point
objects) and Fl = Fi. Here the two cases are discussed
separately.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

Accessesnode = 1 +

H−1
∑

h=1

fr · fh−1
i · min

{

d
∑

i=0

(

d
i

)

· π
i

2 · di
m · σd−i

h

Γ(i/2 + 1)
, 1

}

where

dm = 1
2
√

π
d

√

Γ(d/2+1)
n · (d

√
m + d

√
m − 1)

σh = 1
2

(

1
n

)
1

d

[

(

n

fr ·f
h−1

i

− 1
)

1

d

+
(

n

fr ·f
h−1

i

)
1

d

]

(10)

3.4.1 Case of Fl = 2 ∗ Fi

According to the analysis made by C. Faloutsos and I.
Kamel [6], the average node utilization of all nodes in
R*-tree is 70%. Clearly,

n = (0.7 ∗ Fi)
(H−1) · fl = (0.7 ∗ Fi)

(H−1) · (0.7 ∗ Fl)
= 2 ∗ (0.7 ∗ Fi)

H

H = dlog(0.7∗Fi)(n/2)e (11)

where Fi is given by user and it decides the size of each
node.

As pointed in [3], the number of entries in the root node
has its specific characteristics. Anyway, the number of
the non-root nodes far exceed that of the root node (only
one root node). Thus, we can think the average node
utilization of the non-root nodes is also 70%. That is,

fi = 0.7 ∗ Fi fl = 0.7 ∗ Fl = 2 ∗ fi (Fl = 2 ∗ Fi)

It is clear that

n = fr · f (H−2)
i · fl = 2fr · f (H−1)

i

fr =
n

2f
(H−1)
i

(12)

Now, we have to prove that fr calculated by Equation
(12) meets the limitation of 1 < fr ≤ Fi.

According to Equation (11), logfi
(n/2) ≤ H <

logfi
(n/2) + 1. Then it becomes easy to prove 1 <

fr ≤ Fi, which is omitted because of the limitation of
space.

3.4.2 Case of Fl = Fi (say F)

In the same way as the former case, fr, fi, fl and H can
be given by

fl = fi = 0.7 ∗ F H = dlogfi
(n)e fr =

n

f
(H−1)
i

Note that the above formulas in this paper are based on
the average case and not absolute ones. However, we are
interested in the average case, and exceptional cases do
not harm the generality.

4 Experimental Evaluation

Using uniformly distributed points we verified our esti-
mating model as the three parameters (i.e., d, m and n)
change. Since the analysis in this paper is based on the
average case, the results are the average values of 100
random trials. Because of the space limitation, only the
results of the case that Fl = 2 ∗ Fi (see Section 3.4) is
presented in this paper. Fi is denoted as Fanout in this
section. Anyway, according to our study in the other case
(Fl = Fi), the tendency of performance and the error rate
of our model do not change much.

4.1 Evaluation with Different d

Since the analysis in this paper is based on the average
case, the results are the average values of 100 random
trials.

Table 2 shows the calculated results and their experimen-
tal counterparts. Without loss of generality, we let m be
40 and n be 40,000.

Table 2: Evaluation as d increases (n=40,000, m=40).
Accessnode

d Fanout calculated tested error rate (%)
2 40 5.97 5.80 2.85
4 20 36.80 35.46 3.64
6 13 239.56 229.52 4.19
8 10 1385.84 1260.38 9.05
10 8 4348.04 3673.34 15.52
12 7 5128.83 4751.60 7.36

From Table 2, the following observations can be obtained.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

1. Performance of the INN algorithm degrades exponen-
tially as d increases. In other words, the number of node
accesses increases greatly as dimensionality grows, which
is dimensionality curse of NN search mentioned in many
works. We can understand this as follows.

As the dimensionality grows, the distribution of ob-
jects becomes more and more sparse. The objects and
the node MBRs will become more and more distant from
the query object. However, the node MBRs become more
distant from the query object much slower than the ob-
jects. This means that the search region expands much
quickly than the node MBRs leaving the query point as
the dimensionality grows. Thus, the number of nodes
that intersect with the search region will become larger.
This means that the number of nodes that have to be
accessed will increases and, the number of nodes and ob-
jects that are inserted in the priority queue also increases.

2. As dimensionality increases, the gap between calcu-
lated result and tested result gets larger. We think this is
because in high-dimensional spaces, the objects become
very sparse and it seems that some other factor(s) should
be taken into account. Anyway, according to our experi-
ments presented in Appendix 4.3, the error rate is reduced
for large databases.

3. When d increases from 10 to 12, the error rate drops
greatly. This is because the INN search tends to access
all the nodes and all the objects in this case. Thus, for
Accessnode, both the calculated result and the tested re-
sult tend to the total number of nodes. And the error
rate of Accessnode when d = 12 mainly comes from the
difference between the calculated total number of nodes
and the actual total number of nodes.

4.2 Evaluation with Different m

The results are shown in Table 3. The experiments were
performed with d = 4, n = 40, 000 and Fanout=20.

Table 3: Evaluation as m grows (d=4, n=40,000,
Fanout=20).

Accessnode

m calculated tested error rate (%)
20 27.27 26.04 4.51
40 36.80 35.46 3.64
60 44.45 42.64 4.07
80 51.14 49.41 3.38
100 57.21 54.83 4.15

From Table 3, we know that the change of m has not
much influence on accuracy of our model when m is rel-
atively very small to n. Another observation is that per-
formance of the INN search algorithm degrades as m in-
creases. We think this is easy to understand.

4.3 Evaluation As n Increases

We changed our database cardinality from 200 to 200,000.
The results are shown in Table 4. The experiments were
performed with d = 4, m = 40 and Fanout=20.

Table 4: Evaluation as cardinality increases (d=4, m=40,
Fanout=20).

Accessnode

n calculated tested error rate (%)
200 8.14 7.21 11.43
2000 30.77 28.53 7.28
20000 36.60 35.21 3.80
40000 36.80 35.46 3.64
60000 36.81 35.62 3.23
80000 37.84 36.81 2.72
100000 38.10 37.30 2.10
200000 38.82 38.13 1.78

From Table 4, we observe that

1. The error rate of our model tends to become smaller
as the database becomes larger. We think this is be-
cause that larger databases of uniformly distributed
points tend to meet well the assumptions in our anal-
ysis.

2. If n reaches some number (20000 in Table 4), the
number of node accesses and the length of the pri-
ority queue increase very slowly as n increases. We
think this is because that there exist the following
two contrary factors that counteract each other to
some extent.

(a) On the one hand, as n grows, the point den-
sity increases. Thus, the dm tends to become
shorter and the volume of the search region be-
comes smaller.

(b) On the other hand, as the point density in-
creases, the node MBRs become smaller and
density of nodes increases.

The issue occurs that how Fanouts are determined in
our experiments and how does it affects on the error rate
of our model. We choose Fanouts in the experiments
such that the product of Fanout and d keeps roughly
fixed, aiming at keeping the node size fixed in different-
dimensional spaces. In this way, we can observe the per-
formance tendency of the INN search as the dimension-
ality changes. The reason that the fanouts in our ex-
periments are set to small numbers is that, we think the
experiment result also reflects the manner of the cases of
larger datasets in this way.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

5 Conclusion

In this paper we proposed a performance model to math-
ematically analyze performance of the INN search algo-
rithm with m (the number of neighbor objects reported
finally), n (database cardinality) and d (dimensionality)
as parameters. In this model, the two key factors of the
distance from the m-th NN object to the query point and
the side length of each node are estimated using their up-
per bounds and their lower bounds.

References

[1] G.R. Hjaltason, H. Samet. “Distance Browsing in
Spatial Database”. ACM Transactions on Database
Systems, Vol. 24, No. 2, pages 265-318, June 1999.

[2] S. Berchtold, C. Bohm, D. A. Keim, HP. Kriegel. “A
Cost Model For Nearest Neighbor Search in High-
Dimensional Data Space”. in Proceedings of ACM
PODS Symposium, pages 78-86, Tucson, Arizona,
1997.

[3] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger.
“The R∗-tree: An Efficient and Robust Access
Method for Points and Rectangles”. In Proceedings
of ACM SIGMOD International Conference on Man-
agement of Data, pages 322-331, May 1990.

[4] N. Roussopoulos, S. Kelley, F. Vincent. “Nearest
Neighbor Queries”. In Proceedings of ACM SIG-
MOD International Conference on Management of
Data, pages 71-79, San Jose, CA, June 1995.

[5] A. Papadopoulos, Y. Manolopoulos. “Performance
of Nearest Neighbor Queries in R-trees”. In Proceed-
ings of International Conference on Database The-
ory, pages 394-408, Delphi, Greece, January 1997.

[6] C. Faloutsos, I. Kamel. “Beyond Uniformity and
Independence: Analysis of R-trees Using the Con-
cept of Fractal Dimension”. In Proceedings of ACM
PODS Symposium, pages 4-13, 1994.

[7] P. Boncz, S. Manegold, M. Kersten. “Database Ar-
chitecture Optimized for the New Bottleneck: Mem-
ory Access”. In Proceedings of the 25th International
Conference on Very Large Data Base, pages 54-65,
Edinburgh, Scotland, UK, September 1999.

[8] K. Kim, S. K. Cha, K. Kwon. “Optimizing Multidi-
mensional Index Trees for Main Memory Access”. In
Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, pages 139-150, Santa
Barbara, California, USA, 2001.

[9] I. Kamel, C. Faloutsos. “On Packing R-trees”. In
Proceedings of the 2nd International Conference
on Information and Knowledge Management, pages
490-499, Arlington, VA, November 1993.

[10] Changzhou Wang, Xiaoyang Sean Wang. “Indexing
very high-dimensional sparse and quasi-sparse vec-
tors for similarity searches”. VLDB Journal 2001(9):
344-361.

YaoKai FENG received his B.E. degree and M.E. de-
gree in Computer Engineering and Science from Tianjin
University, China, in 1986 and 1992, respectively. And,
since he received Ph.D degree in Information science from
Kyushu University, Japan, in 2003, he has been with
the same university as an assistant professor. His re-
serch interests include multidimensional indexing, spatial
databases, and XML databases. He is a member of IPSJ,
IEEE and ACM.

Akifumi MAKINOUCHI received his B.E. degree
from Kyoto University, Japan, in 1967, Docteur-ingereur
degree from Univercite de Grenoble, France, in 1979, and
D.E. degree from Kyoto University, Japan, 1988. Since
1990, he has been with the Graduate School of Informa-
tion Science and Electrical Engineering, Kyushu Univer-
sity, Japan, where he is a professor. He is a member of
IEICE, IPSJ, ACM, and IEEE.

Kunihiko KANEKO received his Ph.D degree from
Kyushu University, Japan. Since 1996, he has been with
the Graduate School of Information Science and Electri-
cal Engineering, Kyushu University, where he is an as-
sociate professor. His reserch interests include spatial
databases, and biomedical databases. He is a member of
IPSJ, IEICE, ACM and IEEE.

Engineering Letters, 15:2, EL_15_2_03
__

(Advance online publication: 17 November 2007)

