
Common subproofs in proof pairs

Guillermo Morales-Luna ∗

Abstract—In any formal theory, a proof is a se-
quence of well formed formulas (wff). Here, we con-
sider the digraph whose nodes are proofs and the
edges are pairs of proofs such that the second proof
is obtained from the first proof by the application of
an inference rule. A path is thus a proof extension,
and the corresponding shortest path problem consists
of finding the minimum number of inference rules ap-
plications in order to extend a proof from another
given proof. A slight modification is considered by
introducing a probability associated to each inference
rule from a current proof. Also a corresponding ver-
sion of the Longest Common Subsequence problem is
stated: Given two proofs, find the longest common
subproof. The dual problem is to find the Shortest
Common Superproof. We discuss these problems with
respect to the decidability of the given formal theory.
Our main purpose is to point similarities among the
LCS problem, rather important in areas as Bioinfor-
matics, and the characterization of analogy between
formal proofs in first order theories. We do not pre-
tend to improve some other well known methods for
constructing proofs based on analogy.

Keywords: Decidability, relative complexity

1 Introduction

Automatic theorem proving has been developed by sev-
eral general procedures including analogy. In this case,
given a source theorem and a target theorem some similar-
ities are looked for in order to transform the source proof
into a proof of the target theorem. One approach is the
so called derivational analogy [1]. As an alternative ap-
proach, since Curry-Howard Isomorphism [2] establishes
a correspondence between formal logics and computa-
tional calculi as a type theory, a methodology has been
presented in [3] for proof transformation, by representing
the proofs in a term-functional language and the proof
transformations as rewriting rules in the language giving
a whole impementation using NuPRL [4].

In this paper we do not deal with the processes of trans-
forming a proof into another proof. Rather, we want to
compare any two theorems in a formal logic in order to
decide how similar are they in terms of corresponding
proofs.

∗Computer Science Department, CINVESTAV-IPN, 07300
Mexico City, Mexico, Tel/Fax: (+52)-555-061-3759. Email:
gmorales@cs.cinvestav.mx . This work has been partially supported
by Mexican Conacyt.

The classical Edit Problem consists of, given an alphabet
Σ and two strings σ, τ ∈ Σ∗, to transform one word into
the other by using the least number of operations Insert,
Replace and Delete, acting on symbols. This last num-
ber is the edit distance between the strings. The Edit
Problem has had a great importance in Bioinformatics [5],
it is essential when comparing properties and structures
of two strands of RNA, and it is representative of Dy-
namic Programming paradigms. Bille [6] and Batu [7]
have presented extensive treatments for this problem.
In [8], a corresponding version for graphs is presented.
In [7] an approximation algorithm for the edit distance is
given (it decides in sublinear time whether the distance
is O(nα), 0 < α < 1). The procedures by Vidal et al. [9]
are already classical examples of efficient computations.
The Edit Problem is closely related to the Longest Com-
mon Subsequence (LCS) of two strings, which is solved
in time complexity O(n/ log n). LCS is quite relevant in
Bioinformatics as well, and recently [10] it has been used
to analyze the evolution of natural languages.

Here we deal with corresponding problems in formal logi-
cal theories. Any proof in a theory is indeed a sequence of
well formed formulas (wff). Hence, given any two proofs,
to find the longest subproof contained in those proofs or
the shortest superproof containing the proofs may pro-
vide information about the similarities between the given
proofs: The closer the longest subproof or the shortest
superproof are to the two given proofs, the more similar
these proofs are. No Edit Problem can be posed since
evidently there is no any possibility of deleting on proofs.

The current methods to solve the string versions of the
problems may be translated verbatim to the proof analy-
sis, and all computations will be related to the complexity
of the decision problem in the theory.

In the next section we introduce the basic notions and
the notation to be used in our presentation. Then we will
discus the shortest path problem, and the corresponding
versions to LCS and to Shortest Common Supersequence
(SCS) problems.

2 Preliminaries and notation

2.1 Proofs in formal logics

Let L be a language for a first order theory. Let F be the
set of well formed formulas and let A ⊂ F be a distin-

Engineering Letters, 15:2, EL_15_2_14
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



guished set of axioms. Any inference rule is of the form
F
φ

, where F is a scheme for finite sets of wff’s (called

the premises) and φ is a scheme for a wff (called the con-
sequence). Let R be a fixed set of inference rules. A proof
from a set of hypothesis H is a finite list of wff’s F ∈ F∗
such that for each i ≤ length (F ), if φi is the i-th formula
in F , then either it is an axiom, φi ∈ A, or an element
in H, or it is the consequence of an inference rule whose
premises have been matched by formulas in F previous to
φi, i. e. for some φj1 , . . . , φjk

, with indexes j1, . . . , jk < i,

the instantiated rule
φj1 , . . . , φjk

φi
matches an inference

rule
F
φ

in R. If φ is the last formula in a proof, then
it is said that φ is provable from H, H ` φ. The formal
theory T (H) is the set of all formulas provable from H.
The theory T = T (∅) consists of all theorems. The empty
list Λ ∈ F∗ will be considered also as a proof.

The notion of proof depends existentially on the notions
for axioms and inference rules. Let us recall a series of
classical results: whenever the set of axioms A and the
set of inference rules R are recursive, then the theory T
is a recursively enumerable set [11]. Thus, if the theory
is also complete, then the class of theorems is recursive
indeed. Hence, the so called ÃLoś-Vaught Test: “Any the-
ory with no finite models that is categorical is complete”,
will imply that any such theory is recursive. On the other
hand, if the theory is strong enough to weakly represent
every recursive property, then the theory cannot be de-
cidable [12]. The First Gödel’s Incompleteness Theorem
implies, thus, that no completion of arithmetic can be
recursively axiomatizable. Clearly, the complexity of any
theory is determined by the complexities of its set of ax-
ioms and its set of inference rules.

Let d·e : F → N be a computable coding function. Let
FA be a representation function for the set of axioms:
∀φ ∈ F (φ ∈ A ⇔ FA(dφe) = 0); and for each inference

rule R =
φ̃0, . . . , φ̃k−1

φ̃k

∈ R let FR be a corresponding

representation function: for any φ0, . . . , φk−1, φk ∈ F ,

φ0, . . . , φk−1

φk
matches R

⇔ FR(dφ0e , . . . , dφk−1e , dφke) = 0.

The collection of functions C = {FA} ∪ {FR|R ∈ R} is
the basic complexity class. Let D be the class of sets that
can be represented with second-order formulas consisting
of quantifier-free formulas involving symbols in C and at
most one string of existential quantifiers ∃f ∈ C or, in
other words, D consists of the Σ1 second-order formulas.
Naturally, if C is in turn representable in T then those
second-order representations have equivalent first-order
representations. It is direct that the notion of proof can
be decided by an oracle in D.

2.2 Permutations of proofs

Let P be the set of proofs. If we denote by F∗ the collec-
tion of finite sequences of elements in F , then P ⊂ F∗.
For any proof F = [φi|0 ≤ i ≤ n− 1] ∈ P, if its length
is n = length (F ), and π is a permutation of the
set of indexes {0, . . . , n − 1}, let us define π(F ) =[
φπ(i)|0 ≤ i ≤ n− 1

]
as the wff list whose elements are

those of F permuted according to π. We will say that
the permutation π is consistent with F if π(F ) ∈ P:
π(F ) is also a proof. For any two F, G ∈ P let us say
F ≡w G if there is a permutation consistent with F such
that G = π(F ), or in other words, if G is just a rewriting
of F .

Clearly, ≡w is an equivalence relation among proofs.

In order to decide whether two proofs are equivalent let
us consider the height hF (φ) of any wff φ in a proof F .
Namely, if F is a proof and φ ∈ F is either an axiom
or a hypothesis, then hF (φ) = 0, and if φ is the conse-
quence of a rule with set of premises {φ0, . . . , φk−1}, then
hF (φ) = 1 + max{hF (φj)|j = 0, . . . , k − 1}. If the wff’s
in F are permuted according to their height values, then
an equivalent proof is obtained, and if at each segment
of constant height the wff’s are ordered lexicographically
then a “canonical” proof is got.

Then two proofs are equivalent according to ≡w whenever
they produce the same canonical proof. This decision
procedure involves at most O(n2) tests of wff equality,
where n is the length of the involved proofs. Indeed, the
decision process for predicate F ≡w G is representable in
D as well. Let P0 = (P/ ≡w) be its quotient space. For
any F ∈ P let us identify F with its equivalence class
[F ] ∈ P0.

2.3 Graph of proofs up to permutations

Let GT be the graph whose set of nodes is P0, and whose
edges are of the form (F, G) such that the proof F pro-
duces the proof G by the application of some inference
rule in R: G is thus a successor of F , and F is a precedent
of G.

For each F ∈ P0, let succ(F ) be the set of G’s such
that (F, G) is an edge in the graph GT . The out-degree
of F is the cardinality of succ(F ). The out degree of
a node gives the number of possibilities to proceed to
extend proof from the current node. In order to give
preferences among these possibilities, let us assume that
for each F ∈ F∗ there is a probability density function
PrF over succ(F ),

∀G ∈ succ(F ) : 0 ≤ PrF (G) ≤ 1 and∑
{PrF (G)|G ∈ succ(F )} = 1.

Each edge (F, G) will be labeled by the probability real

Engineering Letters, 15:2, EL_15_2_14
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



number PrF (G) and will have associated a weight, or dis-
tance, equal to − log(PrF (G)) (obviously, if PrF (G) = 0
then the weight is +∞).

A path from a proof F to a proof G is a procedure to
obtain G from some premises involved in F .

Given F0 ∈ P0, let succ(0)(F0) = {F0} and, for any inte-
ger n ≥ 1, let

succ(n)(F0) =
⋃ {

succ(G)|G ∈ succ(n−1)(F0)
}

. (1)

succ(n)(F0) is thus the collection of all proofs that extend
F0 by applying a sequence of exactly n inference rules.
Any Fn ∈ succ(n)(F0) is connected to F0 by a sequence
on n edges (F0, F1), (F1, F2), . . . , (Fn−1, Fn). Let us label
this path by the product Pr(n)

F0
(Fn) =

∏n
i=1 PrFi−1(Fi),

and consequently its distance is

− log
(
Pr(n)

F0
(Fn)

)
=

n∑

i=1

(− log
(
PrFi−1(Fi)

))
. (2)

Clearly, Pr(n)
F0

determines a probability density over
succ(n)(F0). Besides, the search of the path with highest
probability from a proof F to a proof G, coincides with
the search of the shortest path connecting those proofs,
if any, in GT .

Dijsktra’s algorithm arises naturally as a very first can-
didate to calculate shortest paths.

On the other hand, for any two proofs F,G ∈ P0 let us
define F ¹ G if and only if either F = G or there is a
path in GT connecting F with G. ¹ is an ordering in P0.
For any two proofs F , G, its intersection F ∩G is a lower
bound of the pair {F, G} and its juxtaposition F ∗G (with
suppressed repetitions of formulas) is an upper bound.
Since the proofs are of finite length we have that (P0,¹)
is a lattice and its diagram is precisely the graph GT .
Hence the following problems can be posed in GT :

Shortest path.
If F and G are two proofs such that F ¹ G, calculate
the most probable path connecting F with G.

Longest Common Subsequence (LCS).
Calculate F ∧T G = Inf{F,G}, for any given two
proofs F, G ∈ P0.

Shortest Common Supersequence (SCS).
Calculate F ∨T G = Sup{F, G}, for any given two
proofs F, G ∈ P0, .

3 Shortest path

Given two proofs F and G, a translation of Dijkstra’s al-
gorithm to compute the shortest distance ρF (G) between
F and G in the graph GT is the following:

1. Initially, let W := {F} and
W1 := {F1 ∈ succ(F )|F1 ¹ G}.

2. For each F1 ∈ W1 do ρF (F1) := − log (PrF (F1)).

3. While G 6∈ W do

(a) let F0 := ArgMin{ρF (F1)|F1 ∈ W1};
(b) let W2 := {F1 ∈ succ(F0)−W1|F1 ¹ G};
(c) for each F1 ∈ W2 do

ρF (F1) := ρF (F0)− log (PrF0(F1));

(d) for each F1 ∈ W1 do assign to ρF (F1) the value
min{ρF (F1), ρF (F0)− log (PrF0(F1))};

(e) W := W ∪ {F0};
(f) suppress F0 from W1;

(g) W1 := W1 ∪W2

4. Output ρF (G)

In the above pseudocode, the operator ArgMin at the
right side of assignment 3.(a) denotes the argument F1

that makes the map ρF to attain its mimimum value over
the class W1.

Given two proofs F , G, with F ¹ G, departing from
F0 = F , and advancing through edges in GT we look for
the shortest path from F to G. Since at each step the
current subproof F0 must be a subsequence of the goal
proof G, the algorithm should perform O(n2) queries,
with n = length (G), about whether a formula in G is
the consequence of an inference rule with hypothesis con-
tained in the current subproof F0. Each query depends on
the number of schemes for the inference rules and the uni-
fication process. Thus the calculation of shortest paths
has time complexity O(nru(k)) where r is the number of
inference rules schemes, k is the maximum length of for-
mulas in G and u is the time complexity of the unification
process in F .

4 Common subsequences

4.1 LCS

For any proof F ∈ P0, let us distinguish its last formula
as Θ(F ) = φ and let Ξ(F ) = F − [φ], or equivalently, let
us split the proof as F = Ξ(F ) ∗ [Θ(F )].

The following remark serves as basis for the Dynamic
Programming approach to find the longest common se-
quence: For any F,G ∈ P0, let

F ∧T G = (Ξ(F ) ∧T Ξ(G)) ∗ [Θ(F )]

whenever Θ(F ) = Θ(G), or let

F ∧T G = longest of {(Ξ(F ) ∧T G) , F ∧T Ξ(G)}
otherwise. This gives an algorithm of order
O (length (F ) length (G)), i.e. proprtional to the product

Engineering Letters, 15:2, EL_15_2_14
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



of the lengths of F and G, with respect to tests for equal-
ity in P0. Each such test can be performed in linear time
with respect to max(length (F ), length (G)) using oracles
in the set class D as defined at the end of section 2.1.

A variant for this problem is to find the common subse-
quence H ¹ F, G of both sequences F and G, of length
k ≤ min(length (F ), length (G)), with the highest prob-
ability among the k-length common subsequences of F
and G:

Hk(F, G) = ArgMax
(F0,H)

{
Pr(k)

F0
(H)|

H ¹ F, G & length (H) = k
}

.

Clearly, for any k ≥ 1, if Hk(F, G) = (F0,H) then

Pr(k)
F0

(H) = max
{

Pr(k−1)
F0

(Hk−1(F, F0)) · PrF0(F1)|

F1 ∈ succ(F0) & F1 ¹ F,G
}

. (3)

According to a Dynamic Programming approach, eq. (3)
solves the problem variant also in polynomial time with
respect to max(length (F ), length (G)) using oracles in
the set class D.

4.2 SCS

This problem is dual to LCS. Namely, for any given proof
F ∈ P0, let us distinguish its first formula as car(F ) = φ
and let cdr(F ) = F − [φ]; thus the proof can be split as
F = [car(F )] ∗ cdr(F ).

For any F, G ∈ P0, let

F ∨T G = [car(F )] ∗ (cdr(F ) ∨T cdr(G))

whenever car(F ) = car(G), or let

F ∨T G = shortest of {car(F ) ∗ (cdr(F ) ∨T G) ,
car(G) ∗ (F ∨T cdr(G))}

otherwise. This gives also an algorithm of order
O (length (F ) length (G)) w.r.t. equality tests in P0.

5 Conclusions

Both problems SCS and LCS may be used to decide simi-
larities and closeness among formal proofs, and they may
be treated by standard Dynamic Programming methods.
However the primitive actions in these procedures con-
sists of provability decisions in the formal theories.

Decidability problems in formal theories are representa-
tive of the complexities of those theories. The stated diffi-
cult combinatorial problems may relativize polynomially
their time complexities to those of decidability.

As a line of future development and practical use of the
methods exposed here we want to consider the Curry-
Howard Isomorphism [2] to exploit the typed λ-calculus

in order to compute more efficiently the distance among
two proofs using the metric in eq. (2).

References

[1] E. Melis and J. Whittle, “Analogy as a control strat-
egy in theorem proving,” in Proceedings of the 10th
Florida International AI Conference, FLAIRS-97.
also published as DAI Research Paper 840, Univer-
sity of Edinburgh, 1997.

[2] M. H. Sørensen and P. Urzyczyn, Lectures on the
Curry-Howard Isomorphism, ser. Studies in Logic
and the Foundations of Mathematics. Elsevier,
2006, no. 149.

[3] T. B. de la Tour and C. Kreitz, “Building proofs
by analogy via the Curry-Howard isomorphism,” in
Conference on Logic Programming and Automated
Reasoning, LPAR’92. LNAI 624, Springer, 1992,
pp. 202–213.

[4] R. L. Constable and et al, Implementing Mathe-
matics with the NuPRL proof development system.
Prentice Hall, 1986.

[5] D. Gusfield, Algorithms on Strings, Trees and Se-
quences: Computer Science and Computational Bi-
ology. CUP, 1997.

[6] P. Bille, Tree Edit Distance, Alignment Distance and
Inclusion, ser. Technical Report Series. IT Univer-
sity of Copenhagen, 2003, no. TR-2003-23.

[7] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhod-
nikova, R. Rubinfeld, and R. Sami, “A sublinear al-
gorithm for weakly approximating edit distance,” in
Proceedings of the Thirty-fifth ACM Symposium on
Theory of Computing, STOC’03. ACM, 2003, pp.
316 – 324.

[8] E. R. H. A. Robles-Kelly, “Edit distance from graph
spectra,” in Proceedings of the Ninth IEEE Interna-
tional Conference on Computer Vision, ICCV-2003.
IEEE, 2003.

[9] E. Vidal, A. Marzal, and P. Aibar, “Fast computa-
tion of normalized edit distances,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 17,
no. 9, pp. 899–902, 1995.

[10] R. D. Gray and Q. D. Atkinson, “Language-tree di-
vergence times support the anatolian theory of indo-
european origin,” Nature, vol. 426, no. 11, pp. 435–
439, 2003.

[11] H. B. Enderton, “Elements of recursion theory,” in
Barwise, J. (ed), Handbook of Mathematical Logic.
North Holland, 1977, pp. 527–566.

[12] J. L. Bell and M. Machover, A Course in Mathemat-
ical Logic. North Holland, 1977.

Engineering Letters, 15:2, EL_15_2_14
______________________________________________________________________________________

(Advance online publication: 17 November 2007)


