

Abstract—We present an implementation of pstable model

semantics. Our implementation uses the well known tools:
MiniSat and Lparse. Also we show the utility of an automatic
demonstrator implemented with these tools for applications
where the logic has consistence problems.

Index Terms—Satisfactibility, Pstable, Text Implication.

I. INTRODUCTION

 The stable model semantics for logic programming support it
self within the non-monotonic reasoning, [1]. This approach
has been widely used and it is perhaps the most well known
semantics for knowledge representation. The Pstable model
semantics, introduced in [2] shares several properties with
stable model semantics, but it is closer to classical logic than
stable. Pstable model semantics has at least the same
expressiveness of stable, this means we can model anything
that is modeled in stable, and how we proof with our
experiments Pstable can model things, hard or may be
impossible of model with stable models. This is why we are
interested in a good implementation. The purpose of this paper
is to show the utility and reach of this tools.

II. BACKGROUND

We introduce some concepts which are needed for further
understanding of the work and the results presented on this
document.

Pstable Model Semantics

The definition of the pstable model semantics was shown in
[2] and is the following:

Let P be a normal program, and M a set of atoms. We say that
M is a pstable model of P if M is a model of P and RedM(P) |=
M.

Textual Implication

This term is used when from the semantic of a text in natural
language, is possible to infer, another text in natural language.
More specific, if the true of one sentence implies the true of
the other one, also call hypothesis [3].

Paper submmited on February 26, 2007. Benemérita Universidad

Autónoma de Puebla – Facultad de Ciencias de la Computación,y FCFM,
Puebla, Pue., México, C.P. 72570, moderm_cruzades@hotmail.com1,
fzflores@yahoo.com.mx2, jdzf55@yahoo.com.mx3.

III. PSTABLE SOLVER

The previous analysis of graph problems and text implication
solving, add to the intention of solving by using logic, make a
big gap, mainly because the classic logic requires complex
modeling, just for pre-solving inconsistencies. There’s a logic
extension able to solve inconsistencies, so that is the logic
modeling we will use for our implementation.

Logical solution tools are available, unfortunately ASP is still
weak for problems as simple as:

a→b and b→a and ¬b.

this look like a contradiction, strangely if we make a deep
look of this we can see it as:

(a or ¬b) and (b or ¬a) and ¬b.

is a sentence with a main characteristic, the property of having
satisfiable values for a simple solution implying ¬b and ¬a,
even been false values they make true the problem, this
models are stable for the solution and they are also solution of
the original problem form.

Satisfiability can be done by many SAT solvers, we choose
the MINISAT [4] solver, because won all the industrial
categories of the SAT 2005 competition and the SAT-Race
2006. MiniSat is a good starting point both for future research
in SAT, and for applications using SAT, like all sat solvers
MINISAT use the DIMACS CNF format as an input, so if we
wanna make a PSTALBE solver it's gonna be important first
convert traditional logic input to the exclusively disjunctive
form.

First approach to make this made us look to Lparse most of all
because works with variable-free programs that are quite
cumbersome to generate by hand also is a front-end that adds
variables (and a lot of other stuff) to the accepted language of
smodels [5] and generates a variable-free simple logic
program that can be given to smodels and we suppose that the
resulting file will be easier to convert in DIMACS CNF file.
to do the parsing, but we don't get the expected result as we
show as follows:

input
 a :- b, not c.
 c :- b, not a.
 e :- c.
 b.

output

Pstable Tool and Its Aplication
Fernando Uceda Ponga1 Fernando Zacarías Flores2 Dionicio Zacarías Flores3

Engineering Letters, 15:2, EL_15_2_18
__

(Advance online publication: 17 November 2007)

 1 1 0 0
 1 2 1 0 3
 1 3 1 1 4

1 4 1 1 3
0
1 b
2 e
3 c
4 a
0
B+
0
B-
0
1

is easy see how its too bounden in with smodels format and
that only lead us to a mayor level of complexity in the final
parsing, and it's gonna make harder, analysis-matching of the
output with the program for performing the adjustment and
actualization in the body.

Taking this experiences in consideration we decide to develop
a custom parser this parsing step and conversion thread was
implemented in java, because we look forward, and the further
work will end-up in a online portal [6], once we choose this
path, the proofs gave us java as a good environment for
integrate all the work.

Later on, to parsing of a translation is done a input program
like the one below

c->b ^ d.
b->a.
a->c.
not b.

At once, the conversion of program looks like this:

c
c comments
c 1 c
c 2 b
c 3 d
c 4 a
p cnf 4 5
1 -3 0
1 -2 0
2 -4 0
4 -1 0
-2 0

taking this as an example, let us show how the program work,
the variables are not stored and converted by alphabetical or
numeric order, they are parsed by order of apparition, the
variables are stored in a modified hash table (see table 1) with
sub-classing, if the memory can be seen the table be this:

Table 1. Hash table

(The table use only numeric values, we put label for easier

understanding)

Structured as a dynamic structure has no limits of variables
and connections between them, also make trivial, add actions
or deletion, but can increase the time of searching a negated
variable.

Search of a negated variable is tricky because SAT solvers use
the disjunctive for of the implication this mean that a variable
may be negated in the new format, so we make a extra table to
index the first one:

Table 2. Table for search process

The table is shown very simplified but, it contains the

information of the row where the variable occur and link the
search process with the insert process.

These two structures make easy the iterative process of
calculate PSTABLE models. The process is simple and have
these steps:

I. Parsing
II. Build Dynamics tables
III. Convert dynamics tables in to DIMACS CNF file
IV. Invoke minisat
V. Call answer analyst
VI. search negated variables that are not in the solution
 model or in the assuming set
VII. insert negated row to the program
VIII. show PSTABLE model

Steps IV to VII are performed until the sat solver is unable to
find a solution that can satisfy the program and all possible
models where checked, in this moment all models that can't be
satisfied

IV. TEXT IMPLICATION PLUG IN
Taking the Pstable-Solver program as a core-system with the
ability of accept plug-ins we develop a plug-in with the
characteristic of convert logical expressed text in to a logical
inconsistent program, this because we want to express the
program as a automatic theorem demonstrator using the
contradiction way. With this, we obtain the PStable model of
the text and the implication we want to prove is or not true,
obviously if the Pstable model have only true atoms and is

Var Not Fact And -> Or
c 1 False False 0 3,2 0
b 2 True False 3 4 0
d 3 False False 2 0 0
a 4 False False 0 1 0

Complement
c False
b True
d True
a True

Engineering Letters, 15:2, EL_15_2_18
__

(Advance online publication: 17 November 2007)

equal to the facts in the logical program, we can say that the
logic is tight and the text truly implies what the input
suppose. By the other side is all the atoms from the
supposition are false and the minimal model can not make true
any of its atoms, we can know for sure that the logic is not
tight and is not adventure to say “the text implication is false”,
how ever if part of the atoms are true and other false, the logic
is obviously weak, in this cases we get advantage of the
Pstable characteristics for the analysis of the false atoms, the
goal is find a model where this atoms can be true. If the atoms
can be true in a model the conjunction of the models gave us
an answer true of false as a value of the implication.

The application with the plug in looks like this:

The application can support batching and multiple log solving.

To illustrate the complexity of this calculus we compare our
demonstrator with the automatic demonstrator Otter. This
demonstrator is well known as one of the best automatic tools.

For the challenge we take 322 text implications of different
type in logic form, in 77 the implication was true, 235 was
false and 10 where so complex that even people could not say
if there’s or not implication.

With this set of proofs Otter answer to 3 problems with a yes,
those were corrects, but the 319 remaining problems could not
been solve and was unable to gave an answer, this results was
very poor but the tools we develop gave much better results,
anwer 32 correct yes 235 corrects no and 3 corrects unknown ,
to 45 problems answer unknown but the answer must be yes,
we think that this is because the logic was very weak, even
with that the pstable model proof to be a better aproch to the
solution of this problem.

V. CONCLUSION
We decide to do this investigation, and gave this direction,

because, hybrid systems and fuzzy solutions are taking lead in
this day so we want to prove that, classic logic is a prower full
tool if it's uses properly. During the realization of this
experiments we discover that our Textual Implication tool
depend by the moment of the accuracy, existed in the parsing
tool which translate natural language to logic, we really think
that this tool can be improve with Pstable or Stable models,
Any way our tool show to be more precise, and we came to
the conclusion that is because the logic we are using and the
way we pass the problem to the logic, in fact the more
important thing is the right modeling of the problem that why
our tool is less sensitive to a bad parsing than, ordinal logic
demonstrators.

REFERENCES
[1] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for

logic programming. In Robert A. Kowalski and Kenneth Bowen, editors,
Proceedings of the Fifth International Conference on Logic
Programming, pages 1070–1080, Cambridge, Massachusetts, 1988. The
MIT Press, URL citeseer. ist.psu.edu/gelfond88stable.html.

[2] Mauricio Osorio Galindo and Juan Antonio Navarro Pérez and José R.
Arrazola Ramírez and Verónica Borja Macías”. Logics with common
weak completions. Journal of Logic and Computation, 2006. URL doi:
10.1093/logcom/exl013

[3] Técnicas Aplicadas al Reconocimiento de Implicación Textual, Jesús
Herrera, Anselmo Peñas, Felisa Verdejo, Departamento de Lenguajes y
Sistemas Informáticos, Universidad Nacional de Educación a Distancia
Madrid, España, {jesus.herrera, anselmo, felisa}@lsi.uned.es

[4] MiniSat is a minimalistic, open-source SAT solver, developed to help
researchers and developers alike to get started on SAT. It is released
under the MIT licence, and is currently used in a number of projects

[5] The program smodels is an implementation of the stable model
semantics for logic programs. Smodels can be used either as a C++-
library that can be called from user programs or as a stand-alone
program together with a suitable front-end. The main front-end is lparse.

[6] Portal can be available for every one to solve their problems, portal will
be capable of learning so if a solution is already done we don't calculate
again, or if a problem is not solved propertly the user can enter the right
solution (this is a scenario that rarely occur, and we suppose will have a
probability very near to 0).

Engineering Letters, 15:2, EL_15_2_18
__

(Advance online publication: 17 November 2007)

