

Abstract—Based on a recent view of Pstable models that allows

talking about knowledge and beliefs of an agent, we propose an
extension of the AGM postulates based on these notions. To this
extent we introduce a new principle of Irrelevance of Syntax. We
present a slight version of the updated operator as defined under
Pstable models that satisfies this principle.

Index Terms—Pstable, G3 logic, G’3 logic, Update programs,
Classical negation, AGM postulates.

I. INTRODUCTION

 The A-Prolog (Stable Logic Programming [1] or Answer Set
Programming) is the realization of much theoretical work on
Non-monotonic Reasoning and AI applications of Logic
Programming (LP) in the last 15 years. This is an important
logic programming paradigm that has now great acceptance in
the community. Efficient software to compute answer sets and
a large list of applications to model real life problems justify
this assertion. The two most well-known systems that compute
Answer sets are DLV [2] and SMODELS [3]. It has been
recently provided a characterization of answer sets by
intuitionistic logic as follows: a literal is entailed by a program
in the stable model semantics if and only if it belongs to every
intuitionistically complete and consistent extension of the
program formed by adding only negated literals [16]. The idea
of these completions using in general intermediate logics is
due to Pearce [18].

However, there is a family of problems that cannot be
modeled with this paradigm, particularly some argument
problems. Due to this inconvenience in [17] the authors
introduce a new paradigm called “Pstable model semantics”
which shares several properties with A-Prolog, but it is closer
to classical logic than stable. Pstable model semantics has at
least the same expressiveness of A-Prolog, this means we can
model anything that is modeled in A-Prolog. Pstable can
model things, hard or may be impossible of model with A-
Prolog. In this paper we use the implementation of Pstable
model semantics based on definition 2 and presented in [20].

This logical approach provides the foundations to define the
notion of nonmonotonic inference of any propositional theory
(using the standard connectives) in terms of a monotonic logic
(namely G3 logic), see [15, 16, 18]. The proposed
interpretation would be the following: Given a theory T, its

Paper submmited on February 26, 2007. Benemérita Universidad
Autónoma de Puebla – Facultad de Ciencias de la Computación, Puebla, Pue.,
México, C.P. 72570, moderm_cruzades@hotmail.com1,
fzflores@yahoo.com.mx2.

knowledge is understood as the formulas F such that F is
derived in T using G3 logic. This makes sense, since in G3
logic according to Brouwer, F is identified with “I know F''
(or perhaps some reader would prefer to understand the notion
of “knowledge" as “justified belief"). An agent whose
knowledge base is the theory T believes F if and only if F
belongs to every G3 complete and consistent extension of T by
adding only negated literals (here “belief" could be better
interpreted as “coherent" belief). Take for instance: ¬a → b.
The agent knows ¬a → b, ¬b → ¬¬a and so on. The agent
does not know however a. Nevertheless, one believes more
than one knows, but a cautious agent must have its beliefs
consistent to its knowledge. This agent will then assume
negated literals to be able to infer more information. Thus, in
our example, our agent will believe ¬a and so it can conclude
b. It also makes sense that a cautious agent will believe ¬a or
¬¬a rather than to believe a (recall that a is not equivalent to
¬¬a in G3 logic). This view seems to agree with a point of
view by Kowalski, namely “that Logic and LP need to be put
into place: Logic within the thinking component of the
observation-thought-action cycle of a single agent, and LP
within the belief component of thought'' [11].

We propose to reconsider the AGM postulates [1] under our
new interpretation that considers “knowledge" and “belief".
We propose the new postulate which we call Weak
Irrelevance of Syntax as follows:

(WIS): T1 ≡ '
3G T2 implies Bel(K ∇ T1) = Bel(K ∇ T2).

We show that the proposal shown in [6] for update almost
satisfies this principle and we propose a slight version of his
operator that indeed satisfies WIS. Our ultimate goal is to
question the current interpretations of the AGM postulates and
motivate a better understanding of the update operators
considering the logical framework that supports Pstable
models via G3 logic.

Our paper is structured as follows: In section 2 we give
pstable model semantics. Immediately, we present G3 and G’3
logics to that they allow us to conserve our property WIS.
Next, in section 4, we extend our programs with strong
negation. In this order of ideas, in section 5, we present our
analysis with respect to irrelevance of syntax. Continuing with
this idea, in next section 6 we present our new proposal,
giving our new proposal about update process under Pstable
semantics. Finally, in 8 we give our conclusions and future
work.

Updates Under Pstable
Fernando Zacarías Flores1 and Mauricio Osorio Galindo2 and Edgar Fernández Plascencia2

Engineering Letters, 15:2, EL_15_2_20
__

(Advance online publication: 17 November 2007)

II. PSTABLE MODEL SEMANTICS
In this section, we introduce some concepts related with the

semantics of Pstable and its interpretation.

Pstable Model Semantics

The definition of the pstable model semantics was shown in
[17] and is presented here, and, in the same form as in [17] we
show the next reduction.

Definition 1. [17] Let P be a normal program and M a set of
atoms:

RedM(P) = { a ← β+ ^ ¬ (β- ∩ M) | a : -β+ ^ ¬β- ∈ P}

and where β+ and β- are sets containing, respectively, the

positive and negative atoms that occur in the body of the
clauses of P.

In other words, with this reduction every atom that is not in
the model M and is negated at the body of a rule is deleted.

Definition 2. [17] Let P be a normal program, and M a set of
atoms. We say that M is a pstable model of P if M is a model
of P and RedM(P) M.

Textual Implication

This term is used when from the semantic of a text in natural
language, is possible to infer, another text in natural language.
More specific, if the true of one sentence implies the true of
the other one, also call hypothesis [3].

III. G3 AND G’3 USING £3
In this section we define G3 and G’3 using £3. £3 is defining by
Lukasiewicz. He argues that if we wonder if future events are
true or false, then we pretend that the future is so certain one
as the past and it differs of this alone in that not yet has
happened. Its way to escape from this bog deterministic was
rejecting the law of the third excluded, i.e., that each
proposition is true or false, a third value is added, which is
read as possible. To build this logic £3 it is considered a
formal language (propositional) that it contains a numerable
set of atomic formulas, L, the binary connectives, →L, ∨L, ∧L,
the unary connectives ¬L, ◊L y L (the last two well-known
as modal operators) and the logical constant ⊥ whose meaning
is of falsehood and, therefore it is identified as zero (0).
Considering to →L and ⊥ as basics the rest of the connectives
can be seen as the following abbreviations:

T := (p →L p)
α ∧L β := ¬L (¬L α ∨L ¬L β)
α ∨L β := (α →L β) →L β

◊L α := ¬L α →L α
¬L α := α →L ⊥
 L α := ¬L (α →L ¬L α)

This way the evaluation of the connectives ¬L and →L is as it
is shown in the figure 2.1, while that a ∨L b = max{a, b} and
a ∧L b = min{a, b}.

a ¬L a →L 0 1 2
0 2 0 2 2 2
1 1 1 1 2 2
2 0 2 0 1 2

Figure 2.1 Evaluation of the connectives ¬L and →L

The only designated value is 2 therefore the tautologies £3 in
will be those formulas that evaluate at 2 for any possible
interpretation. In [19] a syntactic characterization of the modal
content of £3, is given. Also, the behavior of the modal
operators is studied and it is verified which modal principles
satisfy.

We will build two logics of three values defining their basic
connectives, negation and implication as abbreviations in the
language £3 according to figure 2.2.

¬G3 a := L¬La
a →G3 b := (a →L b) ^L ¬G3¬G3 (¬G3¬G3 a →L b)
¬G’3 a := ¬L La
a →G’3 b := a →G3 b

Figure 2.2 Abbreviations in the language £3

In to figure 2.3 we can observe the evaluations of the
connectives: ¬G3, ¬G’3, y →G3.

We have two different negations, considering each one of
them we build a different logic: G3 o HT (are equivalents),
with the connectives ¬G3 and →G3 (you can see the relation
between this logic and Stable in [16, 22]), and the logic G’3
with the connectives ¬G’3 and →G3. The disjunction and de
conjunction for G3 and G’3 are the same ones that those of £3.

a ¬G3 a ¬G’3
a

 →G3 0 1 2

0 2 2 0 2 2 2
1 0 2 1 0 2 2
2 0 0 2 0 1 2

Figure 2.3 Evaluation of the connectives ¬G3, ¬G’3 and →G3

Definition 3. [17] Let be P a normal program, M a set of
atoms. M is a G’3 stable model of P if only if M is a model of
P in classical logic and ¬(LP \ M) ∪ P M.

Engineering Letters, 15:2, EL_15_2_20
__

(Advance online publication: 17 November 2007)

IV. ADDING STRONG NEGATION
We extend the language adding strong negation (denoted by
“~”). Syntactically, the status of the strong negation operator $
“~” is different from the status of the operator “¬” the
difference is the following:

“¬p” can be denoted by “p → ⊥”, i.e., we use “¬” when
evidence doesn’t exist about p. In the same form, we use “~p”
when we know that p is false or it doesn’t happen. We can say
that pstable models are usually defined for logic programs
possessing this second kind of negation that as we mentioned
previously expresses the direct or explicit falsity of an atom.

A literal, L, is either an atom A (a positive literal) or a strongly
negated atom ~A (a negative literal). For a literal L, the
complementary literal, ~L, is ~A if L = A, and A if L = ~A, for
some atom A. For a set S of literals, we define ~S={~L⏐L∈
S}, and denote by LitA the set A ∪ ~A} for all literals over A.
A literal preceded ¬ is called a weakly negated literal.

The concept of modeling (I ╞P) is extended to include strong
negation as explained in [6]. The concept of pstable model can
be extended in a similar way, see [9].

V. ANALYSIS OF IRRELEVANCE OF SYNTAX
We show that the postulates (IS) and (WIS) fail for the update
operator ⊕ defined in [6]. Firstly, let us analyze an example
where given two equivalent programs P1 and P2 and P is
another program. The update P ⊕ P1 ≡ P ⊕ P2 fails.

Example 1: Let P1 and P2 be two equivalent programs and let
P be another program then P ⊕ P1 ≡ P ⊕ P2 is false. Let P1 =
{a ← b}, P2 = {a ← a, b ← b} and P = {b}
Both programs P1 and P2 have exactly one Pstable model,
namely the empty set.

U(P ⊕ P1) = {{a, b}} and U(P ⊕ P2) = {{b}}

therefore {{a, b}} ≠ {{b}}

Hence, P ⊕ P1 ≡ P ⊕ P2 fails.

It is necessary to point out that in [6] update programs do not
satisfy many of the properties defined in the literature. This is
partly explained by the nonmonotonicity of logic programs
and the causal rejection principle embodied in the semantics,
which strongly depends on the syntax of rules. Now, we
present an example where WIS also fails.

Example 2: Let P = {~d, d ← h}, let P1 = {h, d ← d} and let
P2 = {h}, clearly, P1 ≡ P2.

More specific, if the true of one sentence implies the true of
the other one, also call hypothesis [3].

VI. NEW PROPOSAL
As we have mentioned, the interpretation given in [6] of the
AGM postulates express a very demanding principle of
irrelevance of syntax, because the AGM postulates were
introduced for monotonic logics. We present our proposal
about update process based on Pstable model semantics..

Definition 4: Giving an update of two programs P⊗ = (P1, P2)
over a set of atoms A, we define the update program P⊗ = P1

⊗ P2 = over A* consisting of the following items:

 (i) all constraints in P1 ∪ P2;
 (ii) for each r∈P1, L ← B(r), ¬~L. if H(r) = L;
(iii) all rules r∈P2.

Considering example given in [6] and applying our definition
4 we obtain:

P1 ⊗ P2:

sleep ← ¬ tv-on, ¬~sleep.
night ← ¬~night.
tv-on ← ¬~tv-on.
watch-tv ← tv-on, ¬~watch-tv.
~tv-on ← power-failure, power-failure.

Observe that this program has the unique expected Pstable
model, namely {power-failure, ~tv-on, sleep, night}.

Now, considering example 2 again and applying our proposal
we obtain that:

P ⊗ P1:
~d ← ¬d.
d ← h, ¬~d, h.
d ← d.

notice that the rule ~d should be transformed to ~d ← ¬ ~~d
but, ~~d is equivalent to d. Furthermore, this program has the
Pstable models {h, ~d} and {h, d}.

On the other hand,

P ⊗ P2:
~d ← ¬d.
d ← h, ¬~d.
h.

this program has the same Pstable models {h, ~d} and {h, d}
as
P ⊗ P1.

Example 3: We analyze another interesting example.
Consider that you have an inconsistent program (say with a
fact for both a and ~a), and update it with an empty theory.
Then, the program surprisingly becomes consistent!. We have
two interpretations for this example. First, we are supposing
that we begin with a consistent program. Second, our proposal

Engineering Letters, 15:2, EL_15_2_20
__

(Advance online publication: 17 November 2007)

allows to make a reflection process, showing us that indeed, or
it happens a or ~a happens, but not both, what is correct.

Definition 5: We say that P is tau-comp w.r.t. a signature A if
every rule of the form l← l belongs to P, where l is a literal
over A.

The following lemma shows that our approach is closely
related to [6]. The proof is based on results from [15, 16, 17].

Lemma 1: Let P and P1 be programs, if P1 is tau-comp then P
⊕ P1 ≡ P ⊗ P1.

Proof: The idea of the proof is to apply transformations to P
⊕ P1 with respect to Pstable models over the the A signature,
to obtain P ⊗ P1.
Consider a particular literal L. By construction of P ⊕ P1
(defined in point iv of definition 2 given in [6]) the program
include the formulas

L1 ← L2 and L1 ← L1. for the literal L.

Also, since P1 is tau-comp then it includes the rules L2 ← L
for the literal L.

Hence, L1 ↔ L2 ↔ L is derived by P ⊕ P1 .

So we can replace each literal L1 by L and L2 by L in the rest
of the program. Then, we can eliminate rules in point iv of
definition 2 given in [6] as well as rules of the form L2← L
(recall that L1 and L2 are temporal literals).

So, the rules become

L ← B(r), ¬rej(r) and
rej(r) ← B(r), ~L corresponding to program P and

 L ← B(r) corresponding to program P1.

Now, observe that the Pstable models of the program are the
same if we replace

rej(r) ← B(r), ~L by rej(r) ↔ (B(r) ∧ ~L)

because rej(r) occurs only once as a head of a rule and since
the original program is normal. Observe, that this
transformation creates a non normal rule, however this
situation is already considered in [16, 17]. Then we can
replace rej(r) in L ← B(r) ∧ ¬rej(r) to obtain

L ← B(r) ∧ ¬(B(r) ∧ ~L) (∗)

then we can delete the rule rej(r) ↔ (B(r) ∧ ~L) since rej(r) is
a temporal literal. Finally, the rule of the form (∗) can be
replaced by L ← B(r), ¬~L. We can repeat this process
iteratively for the rest of the literals, reaching program P ⊗ P1
as desired. The next theorem is a simple corollary of results in
[12].

Theorem 1. For any P1 and P2 programs, P1 ≡ '
3G P2 implies

that for every P program, P1 ∪ P and P2 ∪ P have the same
Pstable models.

Next, we present our main result with respect to our update
postulate.

Theorem 2. Our update operator ⊗ satisfies the following
postulate:

If P1 ≡ '
3G P2 then P ∗ P1 ≡ P ∗ P2 (WIS)

Proof: This postulate follows straightforward by construction
and theorem 1

We now show how the proposal in [6] almost satisfies WIS.

Corollary 1. Let P be a program and let P1 and P2 be tau-
comp programs.

If P1 ≡ '
3G P2 then P ⊕ P1 ≡ P ⊕ P2.

Proof: We have that P ⊕ P1≡ P ⊗ P1 by lemma 1

now, P ⊗ P1 ≡ P ⊗ P2 by theorem 2
finally, P ⊗ P2 ≡ P ⊕ P2 by lemma 1

Finally we present the following example shown in [7].

Example 4: Next, we present our codification in ASP using
our proposal.

Let P trap(a).

sweden(b).
swan(b).
white(X) ← swan(X), european(X).
swan(X) ← trap(X).
sweden(X) ← trap(X).
european(X) ← sweden(X)}

If we update P with next rule:

~white(a).

Applying our proposal we obtain:
trap(a) ← ¬~trap(a).
swan(b) ← ¬~swan(b).
sweden(b) ← ¬~sweden(b).
white(X) ← swan(X), european(X), ¬~white(X).
swan(X) ← trap(X), ¬~swan(X).
sweden(X) ← trap(X), ¬~sweden(X).
european(X) ← sweden(X), ¬~european(X).
~white(a).

Then, the Pstable model is, as desired:

{~white(a), trap(a), sweden(a), sweden(b), swan(a), swan(b),
white(b), european(a), european(b)}.

As we can see this proposal satisfies that all European swans
are white and the bird caught in the trap is a swan enunciated

Engineering Letters, 15:2, EL_15_2_20
__

(Advance online publication: 17 November 2007)

in [1]. Since, 'b' is swan and Sweden, therefore is white. While
'a' is the exception, because 'a' is in trap, therefore is not white.

VII. CONCLUSIONS
In this paper, we considered a formalization of an update
operator for Pstable model semantics. Also, we use in our
examples the implementation of Pstable models presented in
[20]. Different from other approaches we considered a view of
Pstable models based on G3 and G’3 logic. This allowed us to
reconsider the AGM postulates in a more solid framework.
We also tried to stay as close as possible to the well-known
proposal for updates given in [6]. Our main contribution is our
postulate called WIS but, now in G3 and G’3 logics. Also, we
extend Pstable with strong negation. This is supported by our
theorem 2, and it opens new opportunities in the update and
belief revision field.

As a future work, we consider to extend all our work related
with updates and presented in [21] to Pstable model
semantics.

REFERENCES
[1] C.E. Alchourron, P. Gardenfors, and D. Makinson. On the logic of

Theory Change,Partial Meet Functions for Contraction and Revision
Functions. Journal of Symbolic Logic, vol. 50 pp. 510-530, 1985.

[2] J. Alferes, J. Leite, P. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic Logic Programming. In A. Cohn and L. Schubert, editors.
Proc. KR98, pp. 98-109. Morgan Kaufmann, 1998.

[3] G. Brewka. Declarative Representation of Revision Strategies. In Proc.
Fourteenth European Conference on Artificial Intelligence (ECAI 2000),
2000.

[4] G. Brewka, J. Dix, and K. Knonolige. Nonmonotonic Reasoning: An
overview. CSLI Publication Eds. Leland Stanford Junior University,
1997.

[5] A. Darwiche and J. Pearl. On the Logic of Iterated Belief Revision.
Artificial Intelligence, vol.89(1-2): pp. 1-29, 1997.

[6] T. Eiter, M. Fink, G. Sabattini, and H. Thompits. Considerations on
Updates of Logic Programs. In M.O. Aciego, L.P. de Guzmßn, G.
Brewka, and L.M. Pereira, editors, Proc. Seventh European Workshop
on Logic in Artificial Intelligence JELIA 2000, vol. 1919 in LNAI,
Springer 2000.

[7] P. Gardenfors. Belief Revision : An Introduction. Cognitive Science,
Department of Philosophy, Lund University, S-223, 50 Lund, Sweden,
1995.

[8] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programs. Proceedings of the Fifth International Conference on Logic
Programming 2 MIT Press. Cambridge, Ma. pp.1070-1080.

[9] M. Gelfond and V. Lifschitz. Clasical negation in logic programs and
Disjunctive databases, New Generation Computing.pp. 365-387, 1991.

[10] H. Katsumo and A.O. Mendelzon. Propositional knowledge base
revision and minimal change, Artificial Intelligence vol. 52, pp. 263-
294, Elsevier, 1991.

[11] R. Kowalski. Is logic really dead or just sleeping. In Proceedings of the
17th International Conference on Logic Programming, pages 2-3, 2001.

[12] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic
programs. ACM Transactions on Computational Logic, 2:526-541,
2001.

[13] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic
reasoning. In proc. Of IJCAI-91, 1991.

[14] W. Marek and V. Subrahmanian. The relationship Between Logic
Program Semantics and Non-monotonic Reasoning, in G. Levi and M.
Martelli (eds.), Proc. of the 6. Int. Conf. on Logic Programming. MIT,
600-617, 1989.

[15] M. Osorio, J.A. Navarro, and J. Arrazola. Equivalence in Answer Set
Programming (extended version), Proceedings of LOPSTR 01, LNCS
2372, pp.57-75, Springer-Verlag, Paphos, Cyprus, November 2001.

[16] M. Osorio, J.A. Navarro, and J. Arrazola. Applications of Intuitionistic
Logic in Answer Set Programming, Journal of TPLP , 2003.

[17] Mauricio Osorio Galindo and Juan Antonio Navarro Pérez and José R.
Arrazola, Rodríguez and Verónica Borja Macías”. Logics with common
weak completions. Journal of Logic and Computation, 2006. URL doi:
10.1093/logcom/exl013

[18] D. Pearce. From Here to There: Stable negation in Logic Programming,
in D. Gabbay, H. Wansing Eds. What is Negation? Kluwer Academic
Publishers, Dordrecht, forthcoming. 1999.

[19] Minari, Pierluigi; A note on £ukasiewicz three-valued logic. Annali del
Dipartimento di Filosofia dell’Università di Firenze. Florencia, 2003.

[20] Uceda P. Fernando and Zacarias F. Fernando. Pstable tool and its
implementation. Submitted to special issue on Artificial Intelligence and
Computer Science in Journal of Engineering letters, Spain, 2007.

[21] Zacarias Flores F. Ph. D thesis presented in UDLAP, 2004.
[22] Zakharyaschev, M.; Wolter, F.; Chagrov, A.; Advanced Modal Logic. In

D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Kluwer Academic Publishers, Dordrecht. 2001.

Engineering Letters, 15:2, EL_15_2_20
__

(Advance online publication: 17 November 2007)

