
Analysis of a Mixed-Signal Circuit in Hybrid Process Algebra ACPsrt
hs

K.L. Man and M.P. Schellekens ∗

Abstract— ACPsrt
hs is a hybrid process algebra obtained by

extending a combination of two existing extensions of Algebra
of Communicating Processes (ACP), namely the process alge-
bra with continuous relative timing and the process algebra with
propositional signals, for the formal specification and analysis of
hybrid systems. In addition to equational axioms, this hybrid
process algebra has rules to derive equations with the help of real
analysis. ACPsrt

hs is also closely related to the theory of hybrid au-
tomata, so ACPsrt

hs can be reasonable easily translated to hybrid
automata. This enables automatic verification of ACPsrt

hs specifi-
cations using existing hybrid automaton-based verification tools
(e.g. PHAVer and HyTech).

Since ACPsrt
hs is a well-developed algebraic theory from the field

of hybrid process algebras with the above-mentioned features, it
seems to allow rigorous the formal specification and analysis of
digital/analog/mixed-signal circuits. In order to explore this fact,
in this paper, we study a mixed-signal circuit: a half wave rec-
tifier in ACPsrt

hs . Some basic properties of the half wave rectifier
are analysed in a formal way and some correctness requirements
are also proven to be satisfied.

Keywords: hybrid process algebras, formal languages,
formal semantics, formal specification, formal analysis,
digital/analog/mixed-signal circuits

1 Introduction

Process algebras [1] are formal languages in Computer Sci-
ence that have formal syntax and semantics for specifying
and reasoning about different systems. They are also useful
tools for verification of various systems. Generally speak-
ing, process algebras describe the behaviour of processes and
provide operations that allow to compose systems in order to
obtain more complex systems. Moreover, the analysis and
verification of systems described using process algebras can
be partially or completely carried out by mathematical proofs
using equational theory. In simple words, process algebras
are theoretical frameworks for the formal specification and
analysis of the behaviour of various systems. Serious efforts
[2, 3, 9, 11, 13, 15, 17, 19] have been made in the past to deal
with various systems (e.g. discrete event systems, real-time
systems and hybrid systems) in a process algebraic way. Over
the years, process algebras have been successfully used in a
wide range of problems and in practical applications in both
academia and industry for analysis of many different systems.

∗K.L. Man and M.P. Schellekens are with the Centre for Efficiency-
Oriented Languages (CEOL), Department of Computer Science, Univer-
sity College Cork (UCC), Cork, Ireland, Email: pafesd@gmail.com,
m.schellekens@cs.ucc.ie

Recently, through novel language constructs and well-defined
formal semantics in a standard Structured Operational Seman-
tics (SOS) style [8], several process algebras/calculi (Hybrid
Chi [9, 10, 15], HyPA [11, 17], ACPsrt

hs [13], Behavioural Hy-
brid Process Calculus-BHPC [18, 19] and φ-Calculus [21])
have been developed for hybrid systems. Hybrid systems are
systems that exhibit discrete and continuous behaviour. Such
systems have proved fruitful in a great diversity of engineer-
ing application areas including air-traffic control, automated
manufacturing, and chemical process control.

On the other hand, mathematically, the behaviour of ana-
log circuits can be described by continuous variables and a
set of differential equations, whereas discrete variables and
switching-modes are also used to model mixed-signal circuits.
In simple words, analog and mixed-signal circuits are hybrid
systems by nature.

Several attempts [4, 5, 7] have been made over the last two
years to apply hybrid process algebras in the context of the for-
mal specification of analog and mixed-signal circuits. How-
ever, to the best of our knowledge, no case study of the formal
analysis of analog/mixed-signal circuits described in hybrid
process algebras has been reported yet to really show that it is
possible to analyse analog/mixed-signal circuits (in general) in
hybrid process algebras. Hence, in this paper, a mixed-signal
circuit: a half wave rectifier circuit is studied. We first give
the formal specification of the half wave rectifier circuit in hy-
brid process algebra ACPsrt

hs . Then some properties of such
a circuit are analysed in a formal way and some correctness
requirements are also proven to be satisfied.

ACPsrt
hs is a hybrid process algebra obtained by extending a

combination of two existing extensions of Algebra of Com-
municating Processes (ACP) [1], namely the process algebra
with continuous relative timing and the process algebra with
propositional signals (see [13] for details), for the formal spec-
ification and analysis of hybrid systems. In addition to equa-
tional axioms, this hybrid process algebra has rules to derive
equations with the help of real analysis. ACPsrt

hs is also closely
related to the theory of hybrid automata [24, 28] (see also
[14] for details), so ACPsrt

hs can be reasonable easily translated
to hybrid automata. This enables automatic verification of
ACPsrt

hs specifications using existing hybrid automaton-based
verification tools (e.g. PHAVer [26] and HyTech [28]). In this
paper, for illustration purpose, we choose the hybrid process
algebra ACPsrt

hs as the main reference process algebra for hy-
brid systems. This particular choice is immaterial and other
hybrid process algebras/calculi may be used as well.

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

1.1 Related works

Some comparisons and related works of the hybrid process
algebras/calculi (Hybrid Chi, HyPA, ACPsrt

hs , BHPC and φ-
Calculus) can already be found in [13, 15, 17, 19, 23]. HyPA
was shown to be useful for the formal specification of hard-
ware and analog circuits in [4]. Also, as reported in [5], ACPsrt

hs
could reasonably and effectively be used to give formal spec-
ifications of mixed-signal circuits. Note that this paper is the
extended and revised version paper of [6].

1.2 Outline

This paper is organised as follows. Section 2 provides a brief
overview of the hybrid process algebras ACPsrt

hs . A sample
(modelling a half wave rectifier circuit) of the application of
ACPsrt

hs is shown in Section 3. A variety of approaches that
can be used for the formal analysis of specifications described
in hybrid process algebras ACPsrt

hs is discussed in Section 4.
The model checker PHAVer and the formalism of hybrid I/O-
automata [25, 26] are presented in Section 5. Formal analysis
of the half wave rectifier circuit specification in ACPsrt

hs using
the model checker PHAVer is given in Section 6. To gain con-
fidence of the analysis results presented in Section 6, the half
wave rectifier circuit is further modelled using the Modelica
language [31] and analysed in the OpenModelica System [32]
environment. Finally, concluding remarks and future works
can be found in Section 8.

2 Hybrid Process Algebra ACPsrt
hs

In this section, we give a (very short) introduction of a small
subset (that is relevant for this paper) of the hybrid process
algebra ACPsrt

hs proposed in [13]. For an extensive treatment
of ACPsrt

hs , the reader is referred to [13]. ACPsrt
hs is defined

according to the following grammar for process P:

P = ˜̃a | σ r
rel(P) | P1 · P2 | P1 || P2

| ψ ∧N P | ψ :→ P | φ ∩HV P | χ uH P

In ACPsrt
hs , the atomic processes are undelayable actions ˜̃a. The

basic way of timing processes is relative delay. Let P be a pro-
cess and r be a non-negative unit of time, then σ r

rel(P) denotes
that the process idles for a period of time r and then behaves
like P .

The basic ways of combining processes are sequential compo-
sition and parallel composition. Let P1 and P2 be processes.
The sequential composition of P1 and P2, written as P1 · P2,
is the process that behaves as P1 until P1 terminates, and then
continues to behave as process P2. Then parallel composition
of P1 and P2, written as P1 || P2, is the process proceeds with
P1 and P2 in parallel with the possibility of communication
between processes P1 and P2.

Furthermore, signal emission operator and conditional pro-
ceeding operator are used to deal with propositions. Let ψ

be a proposition. Then P emitting signal ψ , written as ψ ∧N P ,
is the process that behaves like P and moreover emits signal
ψ . P proceeding conditionally on ψ , written as ψ :→ P , is
the process that behaves like P if proposition ψ holds at its
start, and otherwise behaves like an undelayable deadlock.

In order to deal with continuous state evolutions and instanta-
neous state transitions, the signal evolution operator and sig-
nal transition operator are defined. Let V , φ and χ be a set
of state variables, a state proposition and a transition propo-
sition respectively. Then P in evolution according to φ with
V smooth, written as φ ∩HV P , is the process P of which the
emitted signal changes continuously till it performs its first
action in such a way that φ is satisfied and without discontinu-
ities for state variables in V . Then P in transition according
to χ , written χ uH P , is the process P of which the emitted
signal changes instantaneously over performing its first action
in such a way that χ is satisfied.

ACPsrt
hs has an operational semantics in a SOS style (see [13]

for more details) that associates a hybrid transition system
with a process and a valuation of environment variables (i.e. a
state). Five kinds of transition relations are defined:

1. termination step;

2. action step;

3. time step;

4. signal relations;

5. discontinuity relations.

3 A Half Wave Rectifier Circuit

This section is a sample of the application of ACPsrt
hs . We give

a first impression of how one describes the behaviour of a
mixed-signal circuit (revised from [5]) using hybrid process
algebra ACPsrt

hs . Figure 1 shows the half wave rectifier circuit.
It consists of an ideal diode D, two resistors with resistance R0
and R1, respectively, a capacitor with capacity C0, a voltage
source with voltage v0 and a ground voltage vG . The specifi-
cation is a parallel composition (of processes) of all the above-
mentioned components of the half wave rectifier circuit. In the
specification, symbols C0, R0 and R1 denote constants.

i2i0 R0

C0

D

vG

i1

v2
v0

R1

v1

Figure 1: Half wave rectifier circuit.

An ideal diode can either be in the on mode (i.e. conducts the
current) or off mode. When it is in the off mode, the diode

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

voltage must be smaller than or equalled to zero and the diode
current equals to zero. When it is in the on mode, the diode
voltage equals to zero and the diode current must be greater
than or equalled to zero. The switching-mode behaviour of the
ideal diode (i.e. the process diode) can be formally described
using ACPsrt

hs by the following recursive equations:

Doff = (v2 ≥ v1 ∧ i0 = 0) ∩HV σ
∗
rel((i0 ≥ 0) :→

((i0
• = •i0) uH˜̃Dt−on · Don)),

Don = (v1 = v2 ∧ i0 ≥ 0) ∩HV σ
∗
rel((v2 ≥ v1) :→

((v1
• = •v1 ∧ v2

• = •v2) uH ˜̃Dt−off · Doff)).

The notation σ ∗rel(t) is to be read as the relative delay of t for
an arbitrary period of time and V = {i0, i1, i2, vG , v0, v1, v2}.
Two unimportant undelayable actions ˜̃Dt−on and ˜̃Dt−off are
purely introduced to satisfy the syntax required by ACPsrt

hs .
Also some predicates (e.g. i0

• = •i0) are needed to make pre-
cise that variables do not change during an instantaneous state
transition. Note that x• and •x denote the value of variable x
before and after (respectively) execution of an instantaneous
state transition.

Applying algebraic reasoning (see Section 4.1 for details),
we can obtain a simpler specification which is bisimilar (i.e.
equivalent to) the specification of the parallel composition of
the processes of all components of the half wave rectifier cir-
cuit excluding the ideal diode as follows:

P = ((v0 = Ftime) || ((v0 − v1 = i0 R0)∧
(C0(v̇2 − v̇G) = i1) ∧ (v2 − vG = i2 R1)

∧(vG = 0) ∧ (i0 = i1 + i2))) ∩H∅ σ ∗rel (̃̃δ).

Ftime is an arbitrary function of time and ˜̃δ represents an un-
delayable deadlock. For readability (see also Section 6), we
write v0 = Ftime as process generator and ((v0 − v1 =
i0 R0) ∧ (C0(v̇2 − v̇G) = i1) ∧ (v2 − vG = i2 R1) ∧ (vG =
0) ∧ (i0 = i1 + i2)) as process rectifier respectively.

Initially, the diode is in the off mode. The behaviour of the half
wave rectifier circuit can be formally described using ACPsrt

hs
as follows:

half wave =
(
(v1 = v2) ∧N Doff

)
|| P.

4 Formal Analysis of ACPsrt
hs Specifications

This section presents several formal approaches that can be
used for the analysis of specifications described in ACPsrt

hs .

4.1 Algebraic reasoning

The strength of the field of process algebras lies on the ability
to use algebraic reasoning (also known as equational reason-

ing) that allows rewriting specifications using axioms (e.g. for
commutativity and associativity) to a simpler form. This can
be advantageous for many forms of analysis.

ACPsrt
hs has a comprehensive set of axioms and lifting rules

which allow results from real analysis to be lifted to equations
about processes. Using the axioms and lifting rules of ACPsrt

hs ,
various non-trivial case studies of hybrid systems were already
analysed in [13, 23].

4.2 Relating ACPsrt
hs to the theory of hybrid au-

tomata

The theory of hybrid automata [24, 28] is the most well-known
formalism for modelling and analysis of hybrid phenomena.
Over the past years, various formal techniques (e.g. model
checking based on reachability analysis [26, 28]) and tools
(e.g. HyTech and PHAVer) have been successfully introduced
into the analysis of hybrid systems modelled as hybrid au-
tomata.

Since ACPsrt
hs and the framework of hybrid automata both

adopt the view that a hybrid system in which an instantaneous
state transition occurs on the system performing an action and
a continuous state evolution occurs on the system idling be-
tween performing successive actions. This makes the formal
translation from ACPsrt

hs to the theory of hybrid automata pos-
sible and straightforward.

Intuitively, another possibility to analyse ACPsrt
hs specifications

is to translate them formally into the corresponding hybrid au-
tomaton models that are the input languages of existing formal
verification tools (hybrid automaton-based). For instance, we
can use the model checker PHAVer as a verification engine for
ACPsrt

hs specifications, by translating them formally to the the-
ory of hybrid I/O-automata1 [25, 26] that is the input language
of PHAVer.

4.3 Analysis of the half wave rectifier circuit

Using the axioms and lifting rules of ACPsrt
hs to analyse ACPsrt

hs
specifications may not be intuitive to those who have not a
strong Computer Science background, because a lot of rewrit-
ing of the specifications (based on axioms) and equational
reasoning have to be made. Hence, in this paper, we intend
to analyse the half wave rectifier circuit in ACPsrt

hs using the
model checker PHAVer via the translation of such a specifica-
tion to the corresponding hybrid I/O automaton model that is
the input format of PHAVer. We believe that this analysis ap-
proach is more suitable and intuitive for architects, engineers
and researchers from the electronic design community.

One may argue that we should model the half wave recti-
fier circuit (directly) in the theory of hybrid I/O-automata for

1In the literature, many different hybrid automaton definitions already ex-
ist. Loosely speaking, the theory of hybrid I/O-automata is a dialect of the
(most common) theory of hybrid automata with two additional disjoint sets of
variables (in the syntax) representing input variables and output variables of a
hybrid automaton.

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

this analysis approach. However, the theory of hybrid I/O-
automata does not offer the possibility to use algebraic reason-
ing and the hybrid automaton-based verification techniques al-
ways suffer from the state space explosion problem. As we
can see from Section 3, algebraic reasoning has already been
applied to achieve a simpler and more elegant specification of
the half wave rectifier circuit in ACPsrt

hs . This also helps to ob-
tain (by translation) the corresponding hybrid I/O-automaton
model in a smaller size.

Generally speaking, analysis of specifications described in hy-
brid process algebras/calculi via formal translation to the the-
ory of hybrid (I/O)-automata (that enables automatic verifica-
tion of such specifications using existing hybrid automaton-
based verification tools) is one of many analysis possibilities
offered by hybrid process algebras/calculi.

4.4 Linearisation algorithms

Recently, linearisation algorithms (more sophisticated ap-
proach for analysis) have been developed for hybrid process
algebras HyPA and Hybrid Chi (see [12, 29] for details). In
process algebras, linearisation is a transformation of a recur-
sive specification into a linear representation, i.e. a kind of
normal form that is convenient for many forms of analysis.
Note that these linear representations are expressed as recur-
sive specifications as well, but they use only a small subset
of the full process algebra. In general, such linear representa-
tions can also be considered very compact representations of a
possibly infinite state space. The original recursive specifica-
tion and its transformation are required to be bisimilar, which
ensures that the relevant specification properties are preserved.

5 Hybrid I/O-Automata and PHAVer

In this section, we give a brief summary (that is relevant for
this paper) of the model checker PHAVer and the formalism
of hybrid I/O-automata. For a more extensive treatment, the
reader is referred to [26].

5.1 PHAVer

PHAVer (Polyhedral Hybrid Automaton Verifyer) is a tool for
analysing linear hybrid I/O-automata (i.e. a sub-class of hy-
brid I/O-automata which only allows linear dynamics) with
the following characteristics:

1. exact and robust arithmetic based on the Parma Polyhedra
Library;

2. on-the-fly over-approximation of piecewise affine dy-
namics;

3. conservative limiting of bits and constraints in polyhedral
computations;

4. supports for compositional and assume-guarantee rea-
soning.

5.2 Hybrid I/O-automata

In the definition of hybrid I/O-automata, some functions and
notations may be used.

• Given a set Var of variables, a valuation β: Var → R
maps a real number to each variable.

• Let V(Var) denote the set of valuations over Var.

• An activity is a function f : R≥0 → V in C∞ (i.e. a
function is C∞ if the n-th derivative exists and is con-
tinuous for all n) and describes the change of valuations
over time.

• Let Act(Var) denote the set of activities over Var.

• Let f + t for f ∈ Act(Var) and t ∈ R≥0 be defined by
(f + t)(d) = f (d + t), d ∈ R≥0.

• A set S ⊆ Act(Var) of activities is time invariant if for
all f ∈ S, t ∈ R≥0 f + t ∈ S.

A hybrid I/O-automaton HIOA=(Loc,VarS,VarI,VarO,Lab,→,
Act,Inv,Init) consists of the following components:

• a finite set Loc of locations;

• a finite and disjoint sets of state and input variables, VarS
and VarI, and of output variables VarO ⊆ VarS, and let
Var = VarS ∪ VarI;

• a finite set Lab of labels;

• a finite set of discrete transitions →⊆ Loc × Lab ×
2V(Var)×V(Var) × Loc;

• a transition (l, a, µ, l ′) ∈→ is also written as l
a,µ−−→ H l ′;

• a mapping (a labelling function) Act: Loc → 2Act(Var)

from locations to time invariant sets of activities;

• a mapping Inv: Loc → 2V(Var) from locations to sets of
valuations;

• a set Init ⊆ Loc× V(Var) of initial states.

The semantics of a hybrid I/O-automaton is de-
fined in terms of a time transition system. Let
HIOA =(Loc,VarS,VarI,VarO,Lab,→,Act,Inv,Init) be
a hybrid I/O-automaton. A state of HIOA is a pair
(l, v) ∈ Loc×V(Var) of a location and a valuation. The transi-
tion system interpretation of HIOA, written [HIOA], is the time
transition system (Loc,VarS,VarI,VarO, 6

′,→L H , Init),
where 6′ = Lab ∪ R≥0 ∪ {ε} and→L H is the union of

a−→ ,
for a ∈ 6′. The transition relations of such a time transition
system are defined as follow:

1. (l, v)
a−→ L H (l ′, v′) iff l

a,µ−−→ H l ′, (v, v′) ∈ µ, v ∈
Inv(l), v′ ∈ Inv(l ′) (discrete transitions);

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

2. (l, v)
t−→ L H (l ′, v′) iff l = l ′ and there exists f ∈ Act(l),

f (0) = v, f (t) = v′, and ∀t ′, 0 ≤ t ′ ≤ t f (t ′) ∈ Inv(l)
(timed transitions);

3. (l, v)
ε−→ L H (l ′, v′) iff l = l ′, v ¹ VarS = v′ ¹ VarS, and

v, v′ ∈ Inv(l) (environment transitions).

These three kinds of transition relations are differentiated by
their label, the time elapse involved, and a special label ε that
represents changes in the input variables by the environment.

6 Analysis Strategy and Results

This section shows how to analyse the half wave rectifier cir-
cuit specification in ACPsrt

hs using PHAVer through the transla-
tion to hybrid I/O-automata. For brevity, in what follows, we
may refer to hybrid I/O-automaton/a as hybrid automaton/a.

6.1 Translation

Defining the formal translation scheme from ACPsrt
hs to the the-

ory of hybrid I/O automata and studying the correctness of the
translation at the semantical level are far beyond the scope of
this paper. Nevertheless, related works in this direction can be
found in [15]. For simplicity, we briefly describe the informal
translation from the half wave rectifier circuit specification in
ACPsrt

hs to the corresponding hybrid automaton model as fol-
lows:

• The recursive equations Doff and Don are translated to
the two locations of a hybrid automaton diode (with two
locations only). Also, the state propositions of recur-
sive equations are translated to the activities of the cor-
responding locations with appropriated initial conditions
that are assumed for the analysis. The emitting signals
associating to the recursive equations are translated to
the corresponding discrete transitions associating to the
hybrid automaton diode. Two unimportant undelayable

actions ˜̃Dt−on and ˜̃Dt−off are translated to two unimpor-
tant synchronisation labels. Figure 2 captures the main
ideas of this translation as explained previously (due to
the reason of space, only the graphical representation of
hybrid automaton diode, i.e. the translation of recursive
equations Doff and Don representing the process diode,
is shown). Note that some variables/labels are renamed
(e.g. ˜̃Dt−off to jump), because they are preently required
by the parser of PHAVer.

• In a similar way, process rectifier is translated to the cor-
responding hybrid automaton rectifier with two locations.

• The translation of the process generator will be discussed
in Subsection 6.2.

Off
v2 ≥ v1
i0 = 0

On
v1 = v2
i0 ≥ 0

i0 = 0, v1 = v2 = 4

i0 ≥ 0, jump

v2 ≥ v1, jump

Figure 2: A hybrid automaton model of the process diode.

6.2 Approximation and refinement

Since most of the formal verification tools (including PHAVer)
only allow linear dynamics for analysis using such tools, we
have to approximate/refine the behaviour of the half wave rec-
tifier circuit specification in ACPsrt

hs as follows:

1. We apply the same approximation used in [30]2 for Ftime
in the process generator as a sinusoidal voltage source.
So, see [30] and the PHAVer code of the generator (as the
translation of the process generator) in Subsection 6.3 for
details.

2. We refine the predicate C0(v̇2 − v̇G) = i1 in the pro-
cess rectifier to C0(v̇2) = i1. This is allowed, because
the predicate vG = 0 must always hold in the process
rectifier.

6.3 PHAVer codes of the half wave rectifier circuit

The input language of PHAVer [27] is a straightforward textual
representation of linear hybrid I/O-automata. Using such an
input language of PHAVer to describe the hybrid I/O-automata
diode, rectifier and generator, we obtain PHAVer codes (i.e.
the translations of the processes diode, rectifier and generator)
as follows:

// -------------------
// Half wave rectifier
// -------------------
// ---------
// Constants
// ---------
C0:=0.01; R0:=10; R1:=100;
al:=0.01272; au:=0.01274;
bl:=4; bu:=4; cu:=1.4143;
v0min := -bu; v0max := bu;
x0min := -au; x0max := au;
// -----------
// System description
// -----------
automaton diodo
state_var: v1, v2, i0;
synclabs: jump;
loc off: while v2>=v1 & i0==0 wait {true}
when i0>=0 sync jump do {i0’==i0} goto on;

2It is worth mentioning that a full wave rectifier was analysed using
PHAVer in [30]. However, this analysis was done by leveraging abstraction to
build system with few variables (only the input voltage source and the output
voltage of the circuit were modelled).

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

loc on: while v1==v2 & i0>=0 wait {true}
when v2>=v1 sync jump do

{v1’==v1 & v2’==v2} goto off;
initially: on & v1==4 & v2==4 & i0==0;
end

automaton rectifier
state_var: v0, v1, v2, vG, i0, i1, i2;
synclabs: jumpp;
loc rect: while v0-v1==i0*R0 & v2-vG==i2*R1

& vG==0 & i0==i1+i2
wait {C0*v2’==i1} when true sync
jumpp do {true} goto dead;

loc dead: while false wait {false}
when true sync jumpp do {true} goto dead;
initially: rect & v0==0 & v1==4 & v2==4

& vG==0 & i0==0 & i1==0
& i2==0;

end

automaton generator
state_var: x0, v0;
synclabs: B;
loc CC: while x0min <= x0 & x0 <= x0max &

v0min <= v0 & v0 <= v0max &
v0 >= bl-bl/al*x0&
v0 <= cu*bu-bl/au*x0max &
0 <= x0&v0 <= x0max &
0 <= v0 & v0 <= v0max

wait {x0’==v0 & v0’== -98596*x0};
when true sync B goto DD;
when true sync B goto FF;

loc DD: while
x0min <= x0 & x0 <= x0max &
v0min <= v0 & v0 <= v0max &
v0 >= bl-bl/al*(-x0)&
v0 <= cu*bu-bl/au*(-x0)&
x0min <= x0 & x0 <= 0 &
0 <= v0 & v0 <= v0max
wait {x0’==v0 & v0’== -98596*x0};
when true sync B goto CC;
when true sync B goto EE;

loc EE: while
x0min <= x0 & x0 <= x0max &
v0min <= v0 & v0 <= v0max &
-v0 >= bl-bl/al*(-x0)&
-v0 <= cu*bu-bl/au*(-x0)&
x0min <= x0 & x0 <= 0 &
v0min <= v0 & v0 <= 0
wait {x0’==v0 & v0’== -98596*x0};
when true sync B goto DD;

loc FF: while
x0min <= x0 & x0 <= x0max &
v0min <= v0 & v0 <= v0max &
-v0 >= bl-bl/al*x0&
-v0 <= cu*bu-bl/au*x0&
0 <= x0 & x0 <= x0max &
v0min <= v0 & v0 <= 0
wait {x0’==v0 & v0’== -98596*x0};
when true sync B goto EE;

initially: $ & x0== -0.01273 & v0==0;
end

In order to increase the readability of the system description,
some simplifications are introduced in the PHAVer codes and
also some unimportant labels are used.

6.4 Analysis by means of model checking

For illustration purposes, we analyse (by means of model
checking) the half wave rectifier circuit specification in ACPsrt

hs
using PHAVer through the translation to hybrid I/O-automata.
We want to verify two basic properties (for safety) of the half
wave rectifier circuit as follows:

1. the voltage v2 is never negative;

2. for a given v0 = 4sin(2π(50)t)V and the initial condition
v2(0) = 4V (as already indicated in the PHAVer codes),
v2(t) does not drop below a threshold 1.5V for any time
t .

The following PHAVer analysis commands were used to spec-
ify the two safety properties as forbidden states:

sys = diodo&rectifier&generator;
reg = sys.reachable;
reg.remove(x0);
reg.print;
forbidden = sys.{$&v2<0|v2<1.5};
echo "";
reg.intersection_assign(forbidden);
echo "intersection with forbidden states:";
reg.is_empty;

PHAVer reported that these two safety properties held in all
locations of the system (i.e. the parallel composition of hybrid
automata diode, rectifier and generator).

7 Further Analysis

To gian confidence of the analysis results shown in Subsec-
tion 6.4, in this section, we further model the half wave recti-
fier circuit using the Modelica language and analyse the same
propoerties presented in Subsection 6.4 in the OpenModelica
System enviroment.

7.1 OpenModelica system and Modelica language

The OpenModelica System is an efficient interactive computa-
tional environment for the Modelica language. The Modelica
language is primarily a modelling language that allows one
to specify mathematical models of complex physical systems.
It is also an object-oriented equation based programming lan-
guage, oriented towards computational applications with high
complexity requiring high performance. The four most im-
portant features (taken from [31] and [32]) of the Modelica
language are:

1. It is based on equations instead of assignment statements.
This allows acausal modelling that gives better reuse of

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

models since equations do not specify a certain data flow
direction. Thus a Modelica model can adapt to more than
one data flow context.

2. It has multi-domain modelling capability, meaning that
model components corresponding to physical objects
from different domains including hybrid systems.

3. It is an object-oriented language with a general class con-
cept that unifies classes, generic - known as templates in
C++, and general sub-typing into a single language con-
struct. This facilitates reuse of components and evolution
of models.

4. It has a strong software components model, with con-
structs for creating and connecting components. Thus it
is ideally suited as an architectural description language
for complex physical systems and to some extent for soft-
ware systems.

Loosely speaking, a Modelica model (also called class) con-
tains variable declarations (possibly with initial values) and
equation sections containing equations. For illustration pur-
poses, below is a sample of a Modelica model:

model Sample
Real x(start = 1); // variable declarations,

x starts at 1
parameter Real a = 1;

equation
der(x) = -a*x; // equation sections
end Sample;

To handle large models, in Modelica, a model can be built
up from connections. Various components can be connected
using the “connect” statement. Furthermore, Modelica has a
electrical component library which consists of many electrical
components (e.g. resistor, capacitor, inductor and ideal diodo).
Such components can be freely instantiated for reuse and are
also the key to effective modeling complex systems. For il-
lustration purpose, we provide a resistor model in Modelica as
follows:

model Resistor
Pin p, n; // "Positive" and "negative"

pins parameter Real R
"Resistance"

equation
n.i = p.i; // assume both n.i and p.i to

be positive
// when currents flows from p

to n
R*p.i = p.v - n.v;
end Resistor;

7.2 Modelica half wave rectifier circuit model

Below is the half wave rectifier circuit described in Modelica:

model HalfWaveRectifier
Modelica.Electrical.Analog.Basic.

Resistor R0(R=10);
Modelica.Electrical.Analog.Basic.

Resistor R1(R=100);
Modelica.Electrical.Analog.Ideal.

IdealDiode DD;
Modelica.Electrical.Analog.Basic.

Capacitor C0(C=0.01);
Modelica.Electrical.Analog.Sources.

SineVoltage AC(V=4);
Modelica.Electrical.Analog.Basic.

Ground G;

equation
connect(AC.p, R0.p);
connect(R0.n, DD.p);
connect(DD.n, C0.p);
connect(C0.p, R1.p);
connect(C0.n, AC.n);
connect(R1.n, AC.n);
connect(AC.n, G.p);

end HalfWaveRectifier;

7.2.1 Interactive session in OpenModelica system

Following the OpenModelica System commands loadFile,
simulate, instantiateModel and plot, the Modelica half wave
rectifier model was loaded into the system, was instantiated
with appropriated parameters and was simulated. OpenMod-
elica System reported all these as follows:

>>loadFile("C:/OpenModelica1.4.2/testmodels
/HalfWaveRectifier.mo")
true
>> simulate(HalfWaveRectifier,startTime=0.0,
stopTime=100.0)
record
resultFile = "HalfWaveRectifier_res.plt"
end record

>> instantiateModel(HalfWaveRectifier)

"fclass HalfWaveRectifier
Real R0.v "Voltage drop between the two
pins (= p.v - n.v)";
Real R0.i "Current flowing from pin p to
pin n";
Real R0.p.v "Potential at the pin";
Real R0.p.i "Current flowing into the pin";
Real R0.n.v "Potential at the pin";
Real R0.n.i "Current flowing into the pin";
parameter Real R0.R = 10 "Resistance";
Real R1.v "Voltage drop between the two pins
(= p.v - n.v)";
Real R1.i "Current flowing from pin p to
pin n";
Real R1.p.v "Potential at the pin";
Real R1.p.i "Current flowing into the pin";

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

Real R1.n.v "Potential at the pin";
Real R1.n.i "Current flowing into the pin";
parameter Real R1.R = 100 "Resistance";
Real DD.v "Voltage drop between the two pins

(= p.v - n.v)";
Real DD.i "Current flowing from pin p to pin

n";
Real DD.p.v "Potential at the pin";
Real DD.p.i "Current flowing into the pin";
Real DD.n.v "Potential at the pin";
Real DD.n.i "Current flowing into the pin";
parameter Real DD.Ron(min = 0.0) = 1e-05
"Forward state-on differential resistance
(closed diode resistance)";
parameter Real DD.Goff(min = 0.0) = 1e-05
"Backward state-off conductance(opened
diode conductance)";
parameter Real DD.Vknee(min = 0.0) = 0
"Forward threshold voltage";
Boolean DD.off(start = true)
"Switching state";
Real DD.s "Auxiliary variable: if on then
current, if opened then voltage";
Real C0.v "Voltage drop between the two pins
(= p.v - n.v)";
Real C0.i "Current flowing from pin p to
pin n";
Real C0.p.v "Potential at the pin";
Real C0.p.i "Current flowing into the pin";
Real C0.n.v "Potential at the pin";
Real C0.n.i "Current flowing into the pin";
parameter Real C0.C = 0.01 "Capacitance";
Real AC.v "Voltage drop between the two pins
(= p.v - n.v)";
Real AC.i "Current flowing from pin p to
pin n";
Real AC.p.v "Potential at the pin";
Real AC.p.i "Current flowing into the pin";
Real AC.n.v "Potential at the pin";
Real AC.n.i "Current flowing into the pin";
parameter Real AC.offset = 0
"Voltage offset";
parameter Real AC.startTime = 0
"Time offset";Real AC.signalSource.y
"Connector of Real output signal";
parameter Real AC.signalSource.amplitude
= AC.V "Amplitude of sine wave";
parameter Real AC.signalSource.freqHz =
AC.freqHz "Frequency of sine wave";
parameter Real AC.signalSource.phase =
AC.phase "Phase of sine wave";
parameter Real AC.signalSource.offset =
AC.offset "Offset of output signal";
parameter Real AC.signalSource.startTime =
AC.startTime "Output = offset for
time < startTime";
constant Real AC.signalSource.pi =
3.14159265358979;
parameter Real AC.V = 4 "Amplitude of sine
wave";
parameter Real AC.phase = 0 "Phase of sine
wave";

parameter Real AC.freqHz = 1 "Frequency of
sine wave";
Real G.p.v "Potential at the pin";
Real G.p.i "Current flowing into the pin";
equation
R0.R * R0.i = R0.v;
R0.v = R0.p.v - R0.n.v;
0.0 = R0.p.i + R0.n.i;
R0.i = R0.p.i;
R1.R * R1.i = R1.v;
R1.v = R1.p.v - R1.n.v;
0.0 = R1.p.i + R1.n.i;
R1.i = R1.p.i;
DD.off = DD.s < 0.0;
DD.v = DD.s * if DD.off then 1.0 else
DD.Ron + DD.Vknee;
DD.i = DD.s * if DD.off then DD.Goff else
1.0 + DD.Goff * DD.Vknee;
DD.v = DD.p.v - DD.n.v;
0.0 = DD.p.i + DD.n.i;
DD.i = DD.p.i;
C0.i = C0.C * der(C0.v);
C0.v = C0.p.v - C0.n.v;
0.0 = C0.p.i + C0.n.i;
C0.i = C0.p.i;
AC.signalSource.y = AC.signalSource.offset
+ if time < AC.signalSource.startTime
then 0.0 else AC.signalSource.amplitude *
Modelica.Math.sin(6.28318530717959 *
AC.signalSource.freqHz *(time -
AC.signalSource.startTime) +
AC.signalSource.phase);
AC.v = AC.signalSource.y;
AC.v = AC.p.v - AC.n.v;
0.0 = AC.p.i + AC.n.i;
AC.i = AC.p.i;
G.p.v = 0.0;
R1.n.i + C0.n.i + AC.n.i + G.p.i = 0.0;
R1.n.v = C0.n.v;
C0.n.v = AC.n.v;
AC.n.v = G.p.v;
DD.n.i + C0.p.i + R1.p.i = 0.0;
DD.n.v = C0.p.v;
C0.p.v = R1.p.v ;
R0.n.i + DD.p.i = 0.0;
R0.n.v = DD.p.v;
AC.p.i + R0.p.i = 0.0;
AC.p.v = R0.p.v;
end HalfWaveRectifier;
"

>> plot({DD.n.v})
true
>>

7.2.2 Analysis by means of simulation

The waveform shown in Figure 3 was obtained by simulat-
ing the Modelica half wave rectifier model with OpenModel-

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

Figure 3: Simulation results of the Modelica half wave recti-
fier model.

ica System. It is not hard to see that the value of DD.n.v in
the Modelica half wave rectifier model (i.e. the voltage v2 as
shown in Figure 1) is never negative and is always above 1.5V .
These are also the two properties of the half wave rectifier cir-
cuit analysed in Subsection 6.4.

Clearly, the analysis results of the half wave rectifier circuit
by means of model checking and simulation are correlated to
various properties.

8 Conclusions and Future Works

We were not surprised to find out that it was possible to specify
and analyse the half wave rectifier circuit in ACPsrt

hs . In order
to illustrate our work clearly, only a simple mixed-signal cir-
cuit was given in this paper. Nevertheless, the use of ACPsrt

hs
is generally applicable to all sizes and levels of mixed-signal
circuits even for analog and digital circuits.

It is also worth mentioning that there are tools for other hy-
brid process algebras/calculi. Below is a summary for hybrid
process algebras/calculi tools:

1. Hybrid Chi Python simulator [33]: a symbolic simulator
for Hybrid Chi specifications;

2. Chi2HA translator [33]: Chi2HA translates (a subset of)
Hybrid Chi specifications into corresponding hybrid au-
tomata (with urgency) that can be verified directly by the
model checker PHAVer;

3. HyPA linearisation tool [12]: a number of HyPA specifi-
cations can be linearised using this tool;

4. HyPA simulator [16]: a simulator for HyPA specifica-
tions;

5. BHAVE [34] : a prototype of BHPC simulation tool;

6. BHPC2MOD [20]: an automatic translator which accepts
a BHPC specification (restricted to a subset of BHPC)
as input and translates it to the corresponding Modelica
specification.

7. SPHIN [22]: SPHIN is a hybrid model checker for φ-
calculus specifications.

Our future work will focus on a comparative study of hybrid
algebras/calculi for the formal specification and analysis of
analog and mixed-signal circuits. We are also interested to
survey performance and to investigate the theoretical founda-
tions behind of the above-mentioned tools for the analysis of
analog and mixed-signal circuits.

Acknowledgements

K.L. Man wishes to thank Jos Baeten, Bert van Beek, Moham-
mad Mousavi, Koos Rooda, Ramon Schiffelers, Pieter Cui-
jpers, Michel Reniers, Kees Middelburg, Uzma Khadim and
Muck van Weerdenburg for many stimulating and helpful dis-
cussions (focusing on process algebras for distinct systems) in
the past few years.

He also would like to thank Rolf Theunissen for some helpful
discussions to master the use of the model checker PHAVer.

Availability

For research purposes, we would be pleased to receive in-
teresting case studies on formal specification and analysis
of analog/mixed-signal (AMS) and hardware system circuits
from anyone working in these areas.

For more information, please send mail to pafesd@gmail.com
or visit the Process Algebras for Electronic System Designs
(PAFESD) homepage in [35].

References

[1] J.C.M. Baeten, W.P. Weijland, Process Algebra, Num-
ber 18 in Cambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press, 1990.

[2] J.C.M. Baeten, C.A. Middelburg, Process Algebra with
Timing, in EATCS Monographs Series, Springer-Verlag,
2002.

[3] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda,
R.R.H. Schiffelers, Syntax and Semantics of Timed Chi,
in Technical Report CS-Report 05-09, Eindhoven Uni-
versity of Technology, The Netherlands, 2005.

[4] K.L. Man, M.A. Reniers, P.J.L. Cuijpers, Case Studies in
the Hybrid Process Algebra HyPA, in International Jour-
nal of Software Engineering & Knowledge Engineering,
15(2):299-305, 2005.

[5] K.L. Man, M.P. Schellekens, M. Boubekeur, Formal
Specification and Analysis of Analog and Mixed-Signal
Circuits Using Process Algebras for Hybrid Systems
(with a focus on hybrid process algebra ACPsrt

hs), in Pro-
ceedings of the IEEE International SoC Design Confer-
ence (ISOCC), Seoul, Korea, October, 2006.

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

[6] K.L. Man, M.P. Schellekens, Analysis of a Mixed-Signal
Circuit in Hybrid Process Algebra ACPsrt

hs , in Proceed-
ings of the International MultiConference of Engineers
and Computer Scientists, Hong Kong, March, 2007.

[7] K.L. Man, M.P. Schellekens, Interoperability of Per-
formance and Functional Analysis for Electronic Sys-
tem Designs in Behavioural Hybrid Process Calculus
(BHPC), invited book chapter, to appear in Springer
edited book: Current Trends in Intelligent Systems and
Computer Engineering.

[8] Gordon D. Plotkin, A Structural Approach to Opera-
tional Semantics, in Report DAIMI FN-0.59, Computer
Science Department, Aarhus University, 1981.

[9] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda,
R.R.H. Schiffelers, Syntax and Consistent Equation Se-
mantics of Hybrid Chi, in Journal of Logic and Algebraic
Programming, 68(1-2):129-210, 2006.

[10] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda,
R.R.H. Schiffelers, Relating Hybrid Chi to Other For-
malisms, to appear in Electronic Notes in Theoretical
Computer Science.

[11] P.J.L. Cuijpers, M.A. Reniers, Hybrid Process Alge-
bra, in Journal of Logic and Algebraic Programming,
62(2):191-245, 2005.

[12] P.C.W. van den Brand, M.A. Reniers, P.J.L. Cuijpers,
Linearization of Hybrid Processes, in Journal of Logic
and Algebraic Programming, 68(1-2):54-0.504, 2006.

[13] J.A. Bergstra, C.A. Middelburg, Process Algebra for
Hybrid Systems, in Theoretical Computer Science,
335(2/3):215-280, 2005.

[14] J.A. Bergstra, C.A. Middelburg, Continuity Controlled
Hybrid Automata, in Journal of Logic and Algebraic
Programming, 68(1/2):5-53, 2006.

[15] K.L. Man, R.R.H. Schiffelers, Formal Specification and
Analysis of Hybrid Systems, in Ph.D. thesis, Eindhoven
University of Technology, The Netherlands, 2006.

[16] R.A. Schouten, Simulation of Hybrid Processes, in Mas-
ter’s thesis, Eindhoven University of Technology, The
Netherlands, 2005.

[17] P.J.L. Cuijpers, Hybrid Process Algebra, in Ph.D. thesis,
Eindhoven University of Technology, The Netherlands,
2004.

[18] Ed Brinksma, Tomas Krilavic̆ius, Behavioural Hybrid
Process Calculus, in CTIT Technical Report TR-CTIT-
05.45, University of Twente, The Netherlands, 2005.

[19] Tomas Krilavic̆ius, Hybrid Techniques for Hybrid Sys-
tems, in Ph.D. thesis, University of Twente, The Nether-
lands, 2006.

[20] A. van Putten, Behavioural Hybrid Process Calculus
Parser and Translator to Modelica, in Master’s thesis,
University of Twente, 2006.

[21] W. Rounds, H. Song, The φ-Calculus: A Language
for Distributed Control of Reconfigurable Embedded
Systems, in Lecture Notes in Computer Science, vol.
2623:435-449, Springer-Verlag, 2003.

[22] W. Rounds, H. Song, K.J. Compton, SPHIN: A Model-
checker for Reconfigurable Hybrid Systems Based on
SPIN, in Electronic Notes on Theoretical Computer Sci-
ence, vol. 145:167-183, 2006.

[23] U. Khadim, A Comparative Study of Process Algebras
for Hybrid Systems, in Technical Report CS-06.23, Eind-
hoven University of Technology, The Netherlands, 2006.

[24] T.A. Henzinger, The Theory of Hybrid Automata, in
Proceedings of the 11th Annual Symposium on Logic in
Computer Science, New Brunswick, NJ, USA, 1996.

[25] N.A. Lynch, R. Segala, F.W. Vaandrager, H.B. Weinberg,
Hybrid I/O Automata, in Lecture Notes in Computer Sci-
ence 1066, Springer-Verlag, pp. 496-510, 1996.

[26] Goran Frehse, PHAVer: Algorithmic Verification of Hy-
brid Systems Past HyTech, in Lecture Notes in Computer
Science 3414, Springer-Verlag, pp. 258-273, 2005.

[27] Goran Frehse, Language Overview for PHAVer version
0.35, available at http://www.cs.ru.nl/ goranf/.

[28] T.A. Henzinger, P.H. Ho, H. Wong-Toi, HyTech: A
Model Checker for Hybrid Systems, in Journal of Soft-
ware Tools for Technology Transfer, 1:110-0.522, 1997.

[29] J.C.M. Baeten, D.A. van Beek, J.E. Rooda, Handbook of
Dynamic System Modeling (chapter process algebra), in
CRC Press LLC, 2006.

[30] L.P. Carloni, R. Passerone, A. Pinto, A.L. Sangiovanni-
Vincentelli, Language and Tools for Hybrid Systems De-
sign, in Journal of Foundation and Trends, vol. 1:1-177,
2005.

[31] Modelica, A Unified Object-Oriented Language for
Physical Systems Modeling, Modelica homepage:
http://www.Modelica.org.

[32] OpenModelica System is available at
http://www.ida.liu.se/ pelab/modelica/.

[33] Tools and manuals for Hybrid Chi are availabe at
http://se.wtb.tue.nl/sewiki/chi/.

[34] BHAVE prototype of BHPC simulation tool can be
found at http://fmt.cs.utwente.nl/tools/bhave/.

[35] PAFESD Homepage: http://digilander.libero.it/systemcfl/
pafesd/.

Engineering Letters, 15:2, EL_15_2_21
__

(Advance online publication: 17 November 2007)

