
 
 

 

  
Abstract—The benefits of collaborative manufacturing are 

widely recognized both by the industry and the academic world. 
However, the engagement of collaborative manufacturing for 
Small and Medium Manufacturing Enterprises (SMMEs) has 
proven to be a challenging task due to reoccurring complex 
decision-making processes toward the attainment of strategic 
objectives for collaborative manufacturing. The focus of this 
paper is thus to propose an Interactive Meta-Goal Programming 
(IMGP) based decision-support framework to facilitate the 
decision-making processes for collaborative manufacturing. The 
proposed framework will have a critical positive impact on the 
operation of SMMEs engaging in collaborative manufacturing, as 
the accuracy and efficiency of their collaborative decision-making 
processes will be significantly improved.  
 

Index Terms—Collaborative Manufacturing, Goal 
Programming, Meta-Goal, Multi-Criteria Decision-Making, 
Small and Medium manufacturing enterprises. 
 

I. INTRODUCTION 
Collaborative manufacturing is a strategic action that 

requires manufacturing enterprises to establish close 
relationships for the benefits of all participants. Forming 
Collaborative Manufacturing Network (CMN) enable 
manufacturers to exploit each other’s core competencies [1]. 
Further, collaborative manufacturing involves allocating 
specific manufacturing operations to the right enterprises, this 
results in the improvement of overall business performance [1]. 
Collaborative manufacturing enables participating 
manufacturing enterprises to stay lean on their core 
competencies and thus remain competitive in their own rights. 
Therefore, this strategy is fast gaining momentum in the 
manufacturing industry worldwide [2]. This trend is especially 
apparent in the Small and Medium Manufacturing Enterprise 
(SMME) sector, as collaborative manufacturing is a promising 
gateway for SMMEs to compete against larger enterprises [3]. 
Collaborative manufacturing however, presents critical 
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management challenges. Decision-makers of an enterprise 
engaged in collaborative manufacturing must continue to 
orchestrate the functional units within the enterprise. 
Furthermore, cross-organizational relationships and 
collaboration strategies between the business partners must be 
managed with similar effectiveness and efficiency. The essence 
of this challenge requires that each participant make decisions 
individually, and then these decisions are aggregated to achieve 
the best possible outcome for the enterprise and its business 
partners. To assist SMMEs to overcome this challenge, this 
paper proposes a decision-support framework based on 
Interactive Meta-Goal Programming (IMGP) be adopted. This 
would enable global optimal and efficient collaborative 
decision-making for a Small or Medium Manufacturing 
Enterprise (S/MME) and its business partners. In Section II, the 
background information on decision-making in collaborative 
manufacturing is discussed. In Section III, an IMGP-based 
decision analysis framework is proposed. In Section IV, a 
hypothetical example is given to justify the proposed 
framework.  

 

II. DECISION-MAKING IN COLLABORATIVE 
MANUFACTURING 

In collaborative manufacturing, the essence of 
decision-making is to identify the unique objectives, 
capabilities, constraints, and commitments of all entities in the 
CMN. The critical goal then is to decide on how to optimally 
dispose the available resources to fulfil the business objectives. 
Under such environment, decision-making is highly complex 
due to large number of distributed but interrelated 
manufacturing variables, contradicting objectives, as well as 
the large number of alternatives for achieving the objectives. A 
systematic decision-making process is required to address this 
overwhelming complexity. Simon [4]has proposed a 
four-phase decision-making  model, which has been claimed by 
Turban, Aronson, and Liang [5] as the most concise and yet 
complete characterization of a rational decision-making 
approach. The four decision-making phases are intelligence, 
design, choice, and implementation. The intelligence phase is 
used to simplify and make knowledgeable assumptions about 
the real world problem, so that decision-makers can 
comprehend the situations and correctly define the potential 
problems and/or opportunities. The design phase involves the 
selection of an appropriate model to analyse the decision and 
suggests the potential decision alternatives for the most likely 
scenario. The choice phase focuses on using algorithms to 
solve the model and find the best possible solution. Finally the 
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implementation phase is to continuously monitor 
manufacturing activities against performance achievements as 
anticipated by the corresponding decision outcome, and if 
variation exists, new decision-making process is activated to 
rectify the underlying issues. The IMGP model focused in this 
paper mostly coincides with research works that cover the 
second and third phase of Simon’s decision-making model. 

 

III. IMGP-BASED DECISION ANALYSIS FRAMEWORK 
The discussion of the IMGP-based decision analysis 

framework begins by recapping the fundamental concepts of 
Goal Programming (GP). GP is a mathematical multi-criteria 
optimisation technique that has been actively studied in the 
disciplines of Multi-Criteria Decision Making (MCDM) and 
Multi-Objective Programming. Furthermore, it is continuing to 
show promising future in theoretical developments and 
practical applications in industries [6]. Proposed in 1961 by 
Charnes and Cooper [7], GP was initially introduced as an 
extension to Linear Programming. Due to the simplicity in 
model formulation, the effectiveness in solving MCDM 
problems, and the suitability for conveying Simon’s philosophy 
on satisfying or sub-optimal solution, GP has received 
overwhelming responses from academics and the industry. As a 
result, GP is now an established new branch of study in 
Management Science and Operational Research. In one of its 
most general forms, GP is modelled by Equations (3.1) – (3.3).  
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r       Total number of goal functions 
s       Total number of decision variables 
t       Total number of hard constraints 
i       Goal function index, 1,...,i r=  
j       Decision variable index, 1,...,j s=  
k      Hard constraint index, 1,...,k t=  

n
iw , p

iw  Relative weighting factors assigned to the 
slack and surplus goal deviations of i th goal 
function respectively  

in , ip  Slack and surplus goal deviations of the i th 
goal function respectively  

jia ,   Technology coefficient for the j th decision 

variable of i th goal function 

jx      j th decision variable 

iT      Target value of i th goal function 

,k jb  Technology coefficient for the j th decision 

variable of the k th hard constraint 

kC      Constraint value of the k th hard constraint 
   

By applying a recently developed extended GP model, 
namely IMGP [8], this paper proposes a method to overcome 
the distributive decision-making challenges faced by SMMEs 
engaged in collaborative manufacturing. The IMGP model 
introduces the concepts of meta-goal and interactive process to 
further enrich the performance of conventional GP models. The 
following sub-sections discuss these two concepts, and 
illustrate their roles in the formulation of IMGP-based decision 
analysis framework. 

A. Meta-Goals 
Meta-goal is a simultaneous cognitive evaluation on the 

degree of achievements for original decision goals considered 
in a GP model. Expresses as the utility function of the model, 
the meta-goal evaluates undesired deviation of every existing 
goal function id  to concisely communicate with 
decision-makers the overall status of decision outcome. 
Depending on the decision objective that the goal function 
models, the undesired deviation can be ip  (goal that needs to 
be equal or less than the target), in  (goal that needs to be equal 
or larger than the target), or both ip  and in  (goal that needs to 
be attained exactly). Conventionally, a GP model such as the 
one depicted by Equations (3.1) – (3.3) consists of only one 
meta-goal variant, where the utility function is to minimise the 
aggregated undesired deviations of all the goals under 
consideration. Different goals in fact, contribute differently to 
the final outcome of a decision, and thus their corresponding 
sensitivity for deviations is represented by appropriate 
weighting factors. Furthermore, normalisation is one of the 
most popular techniques applied to ensure all goal functions are 
analysed using the same scale, so that trade-offs between 
different decision goals can be more accurately justified [9]. 
Although feasible for solving simple problem models, a 
singular meta-goal variant model is unable to effectively and 
accurately portray decision-makers’ perspective preferences 
for decisions that consist of relatively higher number of goals, 
and which are entangled in complex relationships spanning 
different operational contexts of a CMN. For decisions of such 
complexity, decision-makers must be presented with a model 
that can easily gain cognitive insights to the decision situation, 
and input appropriate searching parameters without extensive 
knowledge of the original decision model, so that the analysis 
process can quickly converge to the most satisfying solution 
within the vast solution space. 

Supporting Rodriguez Uria et al. [10] and Caballero et al.’s 
[8] work, our study suggests that an analysis approach that 
incorporates multiple meta-goal variants to build a high level 
objective satisfying GP model for the original decision problem 
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GP model is an effective approach to overcome the decision 
analysis challenges as described. This is known as the 
meta-goal programming multi-objective optimisation 
approach. In this approach, each meta-goal variant type offers a 
unique way of expressing and manipulating the overall 
achievement of all concerning decision goals. Through the use 
of collective meta-goal variants, there is no need to directly 
manipulate the underlying original GP model when searching 
for the optimal solution. This is particularly important as in 
CMN, the operational goals are usually proposed by managers 
of different functional units to represent the desirable 
performance targets for their corresponding manufacturing 
contexts. Decision-makers of cross-functional analysis are not 
as well informed, or lacking the knowledge even, to make 
sound changes to the operational goal functions without 
possibilities of introducing errors to the model. Furthermore, 
the meta-goal deviations allow the CMN to more swiftly 
identify an overall picture on the strengths and the weaknesses 
of the manufacturing process under consideration. Depending 
on the decision-makers’ preferences, the meta-goal targets can 
be adjusted to achieve solution that nominate better balance for 
those strengths and weaknesses, so that overall business 
performance can be improved to a desirable level. Different 
meta-goal variants are discussed in the following sub-sections.  
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Figure 1. Meta-goal variants 

 
1) Meta-goal variant-1 

   As introduced during the discussion of the conventional 
GP model earlier this section, the first meta-goal variant is the 
optimisation of aggregated undesired goal deviations modelled 
by Equation (3.4). Every undesired deviation considered id , is 
normalised by dividing its value by the corresponding target. 
This ratio can be verbally described as the percentage of 
un-achievement for the concerning decision goal. As 
mentioned earlier in this section, normalisation is necessary to 
ensure all deviations are measured under the same scale. 
Weighting factors iw , are used to represent the relative 
importance between all undesired deviations considered. The 
value 1Q  is the meta-goal target that suggests the sum of the 

normalised undesired goal deviations must be at least equal or 
smaller. In term of manufacturing decision-making, this 
meta-goal is particular effective when analysing multiple 
contradicting goals that consume the same resources. 
Decision-makers can rank the original decision goals and let 
the model anticipate the best achievable manufacturing 
outcome with the available resources. Furthermore, 
decision-makers can continuously modify tradeoffs and 
establish new ranking scheme until the desired outcome is 
achieved.  The solution of this particular meta-goal analysis is 
depicted using Figure 1.a. This figure is a bar graph with the 
height of every bar representing the corresponding weighted 
undesirable deviation of a particular goal. Consider every bar 
has a width of one unit, it can be concluded that the total area 
under the graph is equal to the result of meta-goal variant-1.  

1
1
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≤∑                                                                      (3.4) 

 
2) Meta-goal variant-2  

   The second meta-goal variant considered in this paper is 
optimisation for the maximal of the undesired goal deviations, 
and it is mathematically modelled by Equation (3.5). Meta-goal 
variant-2 identifies the largest normalised and weighted 
deviation amongst all the goals considered, and ensures this 
value is kept at minimum. The meta-goal target value 2Q , 
conveys the decision-maker’s preference on the degree of 
fulfilment that every considered goal must achieve exactly or 
better. In term of manufacturing decision-making, this 
meta-goal is highly effective for analysing a set of 
manufacturing operations where their particular performance 
parameters must be maintained at a critical level. For example, 
a manufacturer has five different market regions for one of its 
products, and a successful order fulfilment target of 99% is 
required. Consider if all market sectors are of equal priority, 
thus jw  is omitted from Equation (3.5), 2Q  would take the 
value of 0.01. A typical analysis output is depicted by Figure 
1.b, which shows all undesirable deviations fall below the 
meta-goal target.  

21,...,
max{ }i

ii r
i

dw Q
T=

≤                                                              (3.5) 

 
3) Meta-goal variant-3 

   The third meta-goal variant is optimisation of the number 
of unattained goals, which is mathematically modelled using 
Equations (3.6) – (3.7). Two new variables are introduced in 
the equations. First, iy  is a binary variable that indicates 
whether a goal is satisfied, and second iM  is an arbitrary 

number that is considerably larger than id . To keep 
consistency between all meta-goal variants, the number of 
unattained goals are normalised by dividing against the total 
number of original decision goals considered in the model. 
Inherently the meta-goal target 3Q , is simply the total 
percentage of unattained goals for all the goals considered. 
Meta-goal variant-3 does not consider optimisation of 
undesired deviation factors id , but only interested in 
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identifying goals that are fully satisfied. In term of 
manufacturing decision-making, this meta-goal analysis is 
useful when all goals are of same priority and a decision-maker 
prefers to optimise the overall decision outcome by maximising 
the number of fully attained goals. For example, several 
customer orders are received within a particular time window, 
and since every customer is equally valuable, the manufacturer 
achieves optimal customer satisfaction if maximum number of 
customer orders can be fulfilled over the next production cycle. 
Figure 1.c describes a goal can either be attained ( iy = 0), or 
unattained ( iy  = 1). Compare our model to the model proposed 
by Rodriguez Uria and et. al. [10], it is noticed that Equation 
(3.6) is slightly modified with the introduction of a lower bound 
parameter iM− . During our experiment, we have found that 
this lower bound parameter is necessary to guarantee iy  to 

have a value of 0 when a goal is achieved (when id  is 0).    

0, 1,..., , {0,1}i i i i iM d M y i r y− < − ≤ = =                          (3.6) 
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4) Other meta-goal variants  

   The three meta-goal variants discussed in the previous 
sub-sections provide the fundamental tools for decision-makers 
to analyse decision alternatives at an abstract level that is easier 
to convey by decision-makers. These tools effectively improve 
the accuracy of the decision outcome. Our study though, has 
convinced us that moreover, other meta-goal variants may be 
developed to further enrich the analytical features of the 
framework. One such example is a meta-goal that aims to 
minimise the differences between all the undesired goal 
deviations under consideration. This analysis is especially 
important in our work, as collaborative manufacturing often 
requires operational commitments, profits, risks, and other 
performance attributes to be shared as equally as possible 
between all the business partners of the CMN. The meta-goal 
variant must portray performance sacrificing of some goals for 
the improvement of other goals, and maintaining the balance in 
performance for all functional units. Figure 1.d depicts an 
expected outcome for this type of meta-goal. The formal 
mathematical definition of the meta-goal however, is to be 
considered in our future work.  
 

B. INTERACTIVE PROCESS 
   In decision-making, we define interactive process as a 
communication algorithm between the decision-makers and the 
problem model in an attempt to efficiently explore the solution 
space and eventually towards the discovery of best possible 
decision outcome as desired by the decision-makers. Three 
stages of the interactive process used in the formulation of the 
IMGP-based decision analysis framework are discussed in the 
following sub-sections.  
   

1) Goal function proposal 
   In collaborative manufacturing, a decision potentially has 
extensive impacts on the operation of multiple functional units 

spanning the enterprise, and indeed the impacts are equally 
sensed crossing enterprise boundaries namely the business 
partners. To ensure an accurate meta-goal model be built for the 
concerning decision problem, all entities affected by the 
decision are given opportunities to analyse the decision 
problem definition using their local analysis technique, and 
thus to nominate their desired local objective(s). Depending on 
their unique perspectives, the overall nominated local 
objectives would present dramatic variations. Nevertheless, the 
varying objectives can be largely categorised into two 
contradictory classes. They are the minimisation of local 
resource utilisation, and the maximisation of local output and 
service performance. The collaborative problem though is 
further complicated since large number of objectives can be 
collected from different entities, which usually compete for 
scarce resources and rewarding benefits, must be attained at the 
same time. Thus, all objectives must be concisely represented 
in the same fashion and then analysed together by the meta-goal 
functions, discussed earlier this section, to find the optimal 
balance as preferred by the decision-makers.   

Conforming to the composition requirements of the model, 
every decision objective is represented by a unique linear goal 
function as depicted by Equation (3.2). Every technology 
coefficient of a goal function jia , , represents the degree of 

contribution that a decision variable put toward the 
corresponding decision objective. Depending on what 
manufacturing aspect the decision objective measures, the 
coefficient may anticipate the utilisation of a certain resource, 
production output, service quality, or other manufacturing 
measurements associated with the decision variable. 
Respectively, the right hand side of the equation 

iT , represents 
the manufacturing performance target that the decision-makers 
desired to attain. Positive or negative offsets of actual 
achievements from desired achievements are measured by the 
deviation factors, in  and ip . They are indicators for how well 
each objective is attained. An entity must also supply 
meta-information on the goals that it proposed, which include 
the relative weighting factors of the goals, and if positive, 
negative, or zero offset is desired for every goal. This 
meta-information determines some of the controlling 
parameters that dictate how the meta-goal model is searching 
for the optimal decision within the properly restrained solution 
space. Furthermore, maximum allowable deviation for each 
goal function and other resource capacities are usually 
represented using hard constraint equations.  

 
2) Iterative decision-maker preference entry 

   Interactive processes are critical to the study of MCDM. 
Interactive processes is an art, as it is not entirely formally 
scientifically based, rather the intuitions that a decision-maker 
has on the model and his/her ability to make correct judgments 
when requested upon by the model is of main focus. With the 
solution-searching algorithm, the decision-maker assigns 
priority and relative weighting factors for all the objectives, and 
set other controlling parameters that allow the objectives to 
aspire toward global optimisation. The decision-maker’s 
preferences for the controlling parameters of every subsequent 
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iteration is established based on the criterion matrix, which is a 
performance trade off summary derived from the outcomes of 
all previous iterations. This process is repeated until the 
decision-maker is satisfied with the solution. In Gardiner and 
Steuer’s work [11], a unified interactive process algorithm is 
proposed for GP. This algorithm is modified for the purpose of 
solving meta-goal programming based decision models that our 
study concerns. The steps for the modified algorithm are stated 
as below. 

1. Establish initial weighting factors: From our literature 
review, we have identified that Analytical Hierarchy 
Process (AHP) is an effective method that uses 
pair-wise comparison analytical techniques to derive 
numerical representation on relative weighting factors 
for up to fifteen items at a time. Satisfying consistency 
ratio however can be better achieved when the item size 
is limited to eight [12]. Considering the business 
characteristics of an S/MME operating in a CMN, a 
decision cluster that consists of more than eight 
objective functions are logically dissected into 
multi-level of sub-clusters to improve comparison 
consistency. Thus, the AHP model as depicted by Figure 
2 is used to calculate the weighting factors for all the 
objectives proposed within the CMN. The actual 
step-by-step AHP algorithm is not described here, as it 
has been very well established by Satty [12], the pioneer 
of AHP. Furthermore, the process has been applied in 
problems similar to the one presented in this paper, such 
as the work done by Yu [13]. 

 
Relative weighting factors

for all proposed goals

CMN entity 1 CMN entity 2 CMN entity 3

Local Goal
Cluster 1

Local Goal
Cluster 2

Local Goal
Cluster 1

Local Goal
Cluster 2

Local Goal
Cluster 3

Local Goal
Cluster 1

Local Goal 1 Local Goal 2 Local Goal 3 Local Goal 4 Local Goal 5 Local Goal 6

 
Figure 2. AHP for evaluating relative weighting factors 

 
2. Construct initial criterion matrix: This step is to 

calculate an initial criterion matrix that provides the 
decision-maker achievement boundary information for 
all the existing meta-goals. Based on this information, 
decision-maker can make more coherent and 
knowledgeable selection on the target values and 
relative weighting factors for the meta-goals used. 
Inherently, more accurate trade-offs can be reinforced 
on existing local decision goals for the attainment of 
global optima. The algorithm for constructing the initial 
criterion matrix is presented toward the end of this 
sub-section.  

3. Verify initial solution: Present the initial criterion matrix 
to the decision-maker for verification. This interactive 
algorithm is terminated if the decision-maker is satisfied 
with any of the solutions presented on the matrix. 

Otherwise the algorithm moves to step 4 for further 
analysis. 

4. Establish priority levels: Depending on their 
contribution toward the overall performance of the 
decision, some decision goals must be satisfied before 
the others. In this step, decision-maker classifies all 
existing decision goals into sub-clusters, and each 
cluster is then assigned to a unique priority level. Cluster 
of higher priority level must be satisfied first. If the 
algorithm re-iterates from this step as satisfying result 
could not be found in the previous iteration, the current 
goal classification scheme and the corresponding 
priority scores can be refined to exploit better decision 
outcomes. This task requires decision-makers making 
references to the up-to-date criterion matrix, in order to 
achieve better trade-offs between the concerning 
decision goals. 

5. Re-establish weighting factors: If desired by the 
decision-maker, the relative importance of all decision 
goals within their respective priority level is analysed 
again using AHP. Inherently every decision goal 
function’s relative weighting factor within the model is 
re-established. 

6. Assign meta-goal: Depending on the nature of the 
decision goals and how these goals should be attained, a 
suitable meta-goal variant is selected for each priority 
level to analyse the respective decision problem. The 
analytical strength of the four meta-goal variants used in 
our study has been clearly classified in Section III.A, 
thus it is relatively straightforward to select the most 
appropriate meta-goal for each priority level. 
Furthermore, multiple meta-goal variants maybe 
selected to analyse a single priority level to improve its 
analytical robustness. 

7. Solve current meta-goal model: The decision problem 
model for any given priority level is solved using a Web 
Services based meta-goal programming solver that the 
authors have developed. The underlying optimisation 
engine used to build the meta-goal programming solver 
is called Lindo API, a product developed by Lindo 
System Inc’s [14]. The mathematical model of the 
IMGP decision problem is introduced later in this 
sub-section, and the steps taken to solve multi priority 
level decision problems are further clarified with a 
hypothetical example in Section IV.  

8. Present current solution and criterion matrix: The 
current solution and the criterion matrix, which is 
derived from all previous solutions, are presented to the 
decision-maker in a concise manner.  

9. Verify current solution: If the current solution is 
successfully verified and accepted by the 
decision-maker, this solution is confirmed and the 
decision analysing process is ceased. Otherwise the 
current solution is added to the criterion matrix and the 
process advances to the next iteration from step 4. 

 
To mathematically model IMGP based decision problems, 

the following notations are introduced to represent the 
parameters and variables involved in the model. 
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l l  th highest priority level, index for the 

current sub-problem of the overall 
meta-goal programming decision problem   

ρ  Priority level index for all levels of higher 
priority than the l  th level, 1,..., 1lρ = −  

,lr r ρ  Total number of goal functions in the l  th 
and ρ  th priority level respectively  

s        Total number of decision variables 
t        Total number of hard constraints 
i  Goal function index for every existing 

priority level, 1,..., li r= ; and 

1,...,i r ρ=  
j        Decision variable index, 1,...,j s=  
k       Hard constraint index, 1,...,k t=  

,k jb  Technology coefficient for the j th 

decision variable of the k th hard 
constraint 

kC       Constraint value of the k th hard constraint 

jx       j th decision variable 

,
l

i ja , ,i ja ρ   Technology coefficient for the j th 

decision variable of i th goal function in 
the l th and ρ th priority level respectively 

l
iT , iT ρ  Target value of i th goal function in the l th 

and ρ th priority level respectively 
l

iw , iw ρ  Relative weighting factors assigned to the 
undesired goal deviations of i th goal 
function in the l th and ρ th priority level 
respectively  

l
in , in ρ   Slack goal deviations of the i th goal 

function in the l th and ρ th priority level 
respectively  

l
ip , ip ρ   Surplus goal deviations of the i th goal 

function in the l th and ρ th priority level 
respectively 

l
id , id ρ  Undesired goal deviations of i th goal 

function in the l th and ρ th priority level 
respectively 

1,2,3
lα , 1,2,3

ρα  Slack deviation of meta-goal variant-1, 2, 

or 3 in the l th and ρ th priority level 
respectively 

1,2,3
lβ , 1,2,3

ρβ  Surplus deviation of meta-goal variant-1, 

2, or 3 in the l th and ρ th priority level 
respectively 

1,2,3
lQ , 1,2,3Q ρ  Target value of meta-goal variant-1, 2, or 3 

in the l th and ρ th priority level 
respectively 

lD , Dρ  Constraining variable for meta-goal 
variant-2 in the l th and ρ th priority level 
respectively, they represent the maximum 
allowed goal deviations 

l
iM , iM ρ  Constraining variable for meta-goal 

variant-3 in the l th and ρ th priority level 
respectively, their purpose in the model is 
discussed in Section III.A 

l
iy , iy ρ  Constraining variable for meta-goal 

variant-3 in the l th and ρ th priority level 
respectively, their purpose in the model is 
discussed in Section III.A 

1,2,3
lδ , 1,2,3

ρδ  Undesirable deviation of meta-goal 

variant-1, 2, or 3 in the l th and ρ th 
priority level respectively  

1,2,3
lμ , 1,2,3

ρμ  Relative weighting factors assigned to the 
undesired deviations of meta-goal 
variant-1, 2, or 3 in the l th and ρ th 
priority level respectively, within a priority 
level, the weights of all meta-goal variants 
must add up to 1, a weighting value of 0 
represents the corresponding meta-goal is 
not considered  

1,2,3R ρ  Undesirable deviations for meta-goal 

variant-1, 2, or 3 accepted by 
decision-makers in a higher level, ρ  

 
Equations (3.8) – (3.24) represent the meta-goal 

programming decision problem for priority level l . To solve 
the entire decision problem model, priority levels are analysed 
one at a time, from the highest prioritised to the lowest. 
Meta-goal solutions obtained from levels higher than   are 
converted into hard constraints during the analysis of level l . 
This ensures higher prioritised goals can be best achieved 
before the lower ones. 

 
1 1 2 2 3 3Minimise : l l l l l lZ μ δ μ δ μ δ= + +                                  (3.8) 

Subject to: 
hard constraints  

,
1

, for 1,...,
s

k j j k
j

b x C k t
=

≤ =∑                                      (3.9) 

thgoal functions for l priority level  

,
1

, for 1,...,
s

l l l l l
i j j i i i

j
a x n p T i r

=

+ − = =∑             (3.10) 

1 thmeta goal variant for l priority level−  

1 1 1
1

l lr
l l l li

i l
i i

dw Q
T

α β
=

+ − =∑                               (3.11) 
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2 thmeta goal variant for l priority level−  

0, 1,...,
l

l l li
i l

i

dw D for i r
T

− ≤ =                       (3.12) 

2 2 2
l l l lD Qα β+ − =                                     (3.13) 

3 thmeta goal variant for l priority level−  
< 0, 1,...,l l l l l

i i i iM d M y for i r− − ≤ =                            (3.14) 

1
3 3 3

lr
l

i
l l li

l

y
Q

r
α β= + − =

∑
                               (3.15) 

goal functions belonging to all higher priority levels  

,
1

for 1,..., , 1,..., 1

s

i j j i i i
j

a x n p T

i r for l

ρ ρ ρ ρ

ρ ρ
=

+ − =

= = −

∑                                          (3.16) 

1meta goal variant constraints
established in higher priority levels

−  

1 1 1
1

r
i

i
i i

dw Q
T

ρ ρ
ρ ρ ρ ρ

ρ α β
=

+ − =∑                                (3.17) 

 
  

1 1 11,..., 1, > 0R for l and ifρ ρ ρδ ρ μ= = −                  (3.18) 
2meta goal variant constraints

established in higher priority levels
−  

0, 1,...,i
i

i

dw D for i r
T

ρ
ρ ρ ρ

ρ − ≤ =                            (3.19) 

  
2 2 2D Qρ ρ ρ ρα β+ − =                                (3.20) 

2 2

21,..., 1, > 0

R

for l and if

ρ ρ

ρ

δ
ρ μ
=

= −
                                    (3.21) 

3meta goal variant constraints
established in higher priority levels

−  

< 0, 1,...,i i i iM d M y for i rρ ρ ρ ρ ρ− − ≤ =              (3.22) 

1
3 3 3

r

i
i

y
Q

r

ρ

ρ

ρ ρ ρ
ρ α β= + − =

∑
                            (3.23) 

3 3 31,..., 1, > 0R for l and ifρ ρ ρδ ρ μ= = −                 (3.24) 

{ }

1,2,3 1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

, , , , , , 0

, , , , , 0
0 , , , 1

, 0,1

l l l l
j i i

l l l

l l
i i

l
i i

variableconstraints
x n p

D D A A B B
w w

y y

ρ ρ

ρ ρ ρ

ρ ρ

ρ

α α β β

μ μ

≥

≥
≤ ≤

∈

     

 
The calculation of initial trade-off criterion matrix 

mentioned in Step 2 of the interactive algorithm is a special 
case of the model depicted above. The trade-offs model 
consider all existing goals are clustered in a single priority level 
and thus, it is not constrained by meta-goal solutions from any 
higher priority level. Inherently, Equations (3.16) – (3.24) are 
omitted from the model. To offer a decent initial trade-off 

reference, the matrix is made up of best possible solutions 
obtained when full weight is given to one meta-goal variant at a 
time for the modified utility function as depicted using 
Equation (3.25).  Since the aim of the trade-off model is to help 
decision-makers identify the appropriate meta-goal targets, 
meta-goal Equations (3.11), (3.13), and (3.15) are also omitted. 

 

( ) 1
1 2 3

1
Minimise :

l

l

r
l

l ir
l l l l li i

i l l
i i

y
dZ w D
T r

μ μ μ =

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

∑
∑

 (3.25) 

3) Networked Delphi Process 

ConductArgument

Provide

Resolution

Create Delphi instance
and nominate coordinator

Define group DM
problem and

corresponding objectives

Evaluate nominated
goals, and cross-verify
their importance and

validity

Obtain group view on
goals, and end Delphi

process

Coordinator satisfied
with outcome?

Nominate desirable or
feasible local goals with
supporting comments

Yes

No

Concerned Decision-making
individual within the CMN

 
Figure 3. A networked Delphi process 

 
So far in our discussion about the IMGP decision analysis 

framework, we only considered a single decision-maker’s 
interaction with the model from the establishment of relative 
weighting factors to the attainment of global optimal solution. 
Collaborative manufacturing however requires inputs from 
multiple decision-makers across different entities of the CMN, 
whose perspectives are usually different due to their ambitions 
to pursue maximum performance for the corresponding 
manufacturing processes that they manage. These differences 
must be efficiently identified and eliminated to produce a group 
view on weighting factors and controlling parameters for the 
model. From our literature review, we identified that Delphi 
Process [15] is a suitable method to address this need. Figure 3 
is a flow chart that depicts a networked Delphi Process that 
enables a group of decision-makers to anonymously and 
asynchronously participate in the IMGP-based decision 
analysis framework.  
 

C.  IMGP-BASED DECISION ANALYSIS WORKFLOW 
In this section thus far, we have discussed the components 

that are required to setup an IMGP-based problem. Here, we 
demonstrate the superposition of these components to form a 
complete IMGP-based decision analysis framework. The 
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process and the flow of information among each step are 
described in Figure 4.  Each step is denoted by a numeral code 
above the workflow. 

• Step 1 - Decision-makers retrieve important operational 
and performance information, identify environment and 
manufacturing parameters, and assigns a desired target 
for each parameter. A rule is then imposed on each 
parameter where a certain degree of deviation from its 
target would trigger a decision-making process. It is 
important that the entire set of parameters monitored 
could aggregate to convey the real manufacturing 
environment of the CMN, and that any real potential 
problem and or opportunity could be detected from the 
observation of these parameters.  

• Step 2 – Upon the detection that a decision is required in 
Step 1, this step generates a formal statement for the 
decision-problem to be solved. The definition would 
include gathering all the associated data and information 
required for analysing the decision, the objectives of the 
CMN, the uniqueness of the decision, the knowledge 
domains the decision belongs to, and who is responsible 
to the success of the decision. 

• Step 3 – Based on the decision-problem statement, the 
most expected scenario is defined, and a set of decision 
alternatives is selected for consideration. This 
information is then forwarded to all the entities that 
would be affected by the decision. 

• Step 4 – The IMGP-based decision analysis framework 
assumes that every entity has the capabilities to analyse 
its local decision variables and parameters using the 
information received from Step 3, and then evaluate the 
decision with respect to the local objectives. For 
example, in our previous research work, a Genetic 
Algorithm tool [9] is used perform task scheduling, and 
a Game model [3] is used to select production plants to 
process the customer orders. The work involved in this 
step has been discussed in detail in Section III.B (Goal 
Function Proposal). 

• Steps 5 to 7 – These steps constitute the IMGP model. 
The algorithm involved in these steps has been given in 
Section III.B (Iterative Decision-Maker Preference 
Entry).  

• Step 8 – If a group decision-making environment is 
required, a Delphi process is activated. The Delphi 
process is discussed in Section III.C (Networked Delphi 
Process). 

• Step 9 – The best possible solution is evaluated and 
confirmed. This solution is forwarded to the 
decision-maker in charge of the decision for 
confirmation. If not satisfied, the algorithm re-iterates 
from Step 7 to further refine existing model parameters 
and variables. Otherwise the current most satisfying 
solution is passed to Step 10. 

• Step 10 – The decision outcome is confirmed and 
forwarded to all concerning entities so that all necessary 
resources are appropriately planned. Subsequently, 
manufacturing actions are performed in strict 
accordance to the decision outcome.   

• Step 11 – As the decision is being implemented, its 
performance is constantly monitored, so that any 
negative deviation from the desired target can be 
detected and addressed at the earliest possible time. 

 

Scan CM
environment

Construct formal
decision statements

Select decision
alternatives and

set scenario

Propose goal
functions for entity 1

Propose goal
functions for entity 2

Propose goal
functions for entity n

Establish initial
weighting factors

Evaluate and
summarise decision

model solutions

Outcome
satisfied?Implement decision

No

Yes

Evaluate initial
criterion matrix

Activate networked
Delphi process

1 2

3

4.1 4.2 4.n

5 6

7

8 9

10

Refine aspiration
criteriaDelphi?

No

Yes

Collect
performance

feedbacks

11

Figure 4. IMGP-based decision analysis workflow 

IV. EXAMPLE 
In this example, we used a hypothetical decision-making 

problem frequently encountered by the industry partner of this 
project that is a suture manufacturer, to demonstrate the 
strength of our method. We consider four different functional 
units of the manufacturer participating in a collaborative 
manufacturing decision-making process. These units are the 
Sales unit that set goals on customer demands; the Finance unit 
that set goals on business profits and production costs; the 
Operational planning unit that set goals on the utilities of the 
available production capacity; and the Scheduling unit that set 
goals on the utilities of the current machine group formation. 
Furthermore, both the needle and thread suppliers are also 
participating in this process. The problem is to decide the 
production quantity for four different types of suture for the 
next production cycle. The suture production steps consist of 
swaging (joining the thread to the needle), packaging, and 
quality checking. The production lead-time for different types 
of suture varies, as finer needles are more difficult to handle 
than the coarse ones. The available swaging machines are 
equally divided into two groups to accommodate the two 
different needle sizes. Although any machine can set-up to 
produce the other needle size, it is not desirable by the 
production workers, as setting up is a time consuming process, 
and the slightest miss-set-up would destroy the costly die in the 
swaging mechanism. Table 1 summarizes the goal functions 
proposed by each decision-making entity. 

 
Table 1. Goals proposed by individual collaborative manufacturing entity 
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Goals1 x1 2TC x2 3TC x3 4TC x4
5TC6 Tgt7 Description 

G1 1 0 0 0 ≥300 
G2 0 1 0 0 ≥350 
G3 0 0 1 0 ≥420 
G4 0 0 0 1 ≥325 

Production 
quota for each 

product 

G5 58 51 47 41 ≥70000 Sales target 
G6 30 26 25 21 ≤50000 Costs 
G7 0.2 0.18 0.16 0.15 ≤350 Swaging 
G8 0.05 0.05 0.025 0.025 ≤70 Packing 
G9 0.025 0.025 0.025 0.025 ≤35 QC8 

G 10 0.2 0.18 0 0 ≤175 
G11 0 0 0.16 0.15 ≤175 

Schedule for 
MG9 1 and 2 

G12 12 12 0 0 ≤8000 
G13 0 0 12 12 ≤8000 

Needles to be 
supplied 

G14 4.8 0 4.8 0 ≤3000 
G15 0 4.8 0 4.8 ≤3000 

Thread to be 
supplied 

1. Goal proposed by a particular collaborative manufacturing entity,  
2. Production quantity for product 1 – Fine needle and absorbable thread,  
3. Production quantity for product 2 – Fine needle and non-absorbable thread, 4. 
Production quantity for product 3 – Coarse needle and absorbable thread,  
5. Production quantity for product 4 – Coarse needle and non-absorbable  
    thread,  
6. Technical coefficient,  
7. Goal target,  
8. Quality Check,  
9. Machine Group 

 
Based on the goal targets, it is determined that the following 
deviation factors are undesirable: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15, , , , , , , , , , , , , ,n n n n n p p p p p p p p p p  
 
The model represented by Equations (4.1) – (4.46) is 
formulated to calculate the initial trade-off criterion matrix. As 
mentioned in Section III.B.2, three unique solutions will be 
obtained as the model configures to give strict preference to 
meta-goal variant 1 achievement ( 1 1μ = , 2 3 0μ μ= = ), 

meta-goal variant 2 achievement ( 2 1μ = , 1 3 0μ μ= = ), and 

meta-goal variant 3 achievement ( 3 1μ = , 1 2 0μ μ= = ) 
respectively.   
 

( )

3 51 2 4
1

6 7 8 9 10 11

13 1512 14
2

3 5 6 7 81 2 4
3

9 10 1311 12 14

Minimise : (
300 350 420 325 70000

50000 350 70 35 175 175

)
8000 8000 3000 3000

(
15 15 15 15 15 15 15 15

15 15 15 15 15 15

n nn n nZ

p p p p p p

p pp p D

y y y y yy y y

y y y yy y y

μ

μ

μ

= + + + + +

+ + + + + +

+ + + + +

+ + + + + + + +

+ + + + + + 15 )
15

 (4.1) 

Subject to: 
1 1 1 300x n p+ − =  (4.2) 

2 2 2 350x n p+ − =  (4.3) 

3 3 3 420x n p+ − =  (4.4) 

4 4 4 325x n p+ − =  (4.5) 

1 2 3 4 5 558 51 47 41 70000x x x x n p+ + + + − =       (4.6) 

1 2 3 4 6 630 26 25 21 50000x x x x n p+ + + + − =       (4.7) 

1 2 3 4 7 70.2 0.18 0.16 0.15 350x x x x n p+ + + + − =      (4.8) 

1 2 3 4 8 80.05( ) 0.025( ) 70x x x x n p+ + + + − =       (4.9) 

1 2 3 4 9 90.025( ) 35x x x x n p+ + + + − =       (4.10) 

1 2 10 100.2 0.18 175x x n p+ + − =  (4.11) 

3 4 11 110.16 0.15 175x x n p+ + − =  (4.12) 

1 2 12 1212( ) 8000x x n p+ + − =  (4.13) 

3 4 13 1312( ) 8000x x n p+ + − =  (4.14) 

1 3 14 1412 0.4( ) 3000x x n p× + + − =       (4.15) 

2 4 15 1512 0.4( ) 3000x x n p× + + − =       (4.16) 

1 300 0n D− ≤  (4.17) 

2 350 0n D− ≤  (4.18) 

3 420 0n D− ≤  (4.19) 

4 325 0n D− ≤  (4.20) 

5 70000 0n D− ≤  (4.21) 

6 50000 0p D− ≤  (4.22) 

7 350 0p D− ≤  (4.23) 

8 70 0p D− ≤  (4.24) 

9 35 0p D− ≤  (4.25) 

10 175 0p D− ≤  (4.26) 

11 175 0p D− ≤  (4.27) 

12 8000 0p D− ≤  (4.28) 

13 8000 0p D− ≤  (4.29) 

14 3000 0p D− ≤  (4.30) 

15 3000 0p D− ≤  (4.31) 

1 13000 3000 0n y− ≤ − ≤  (4.32) 

2 23500 3500 0n y− ≤ − ≤  (4.33) 

3 34200 4200 0n y− ≤ − ≤  (4.34) 

4 43250 3250 0n y− ≤ − ≤  (4.35) 

5 5700000 700000 0n y− ≤ − ≤  (4.36) 

6 6500000 500000 0p y− ≤ − ≤  (4.37) 

7 73500 3500 0p y− ≤ − ≤  (4.38) 

8 8700 700 0p y− ≤ − ≤  (4.39) 

9 9350 350 0p y− ≤ − ≤  (4.40) 

10 101750 1750 0p y− ≤ − ≤  (4.41) 

11 111750 1750 0p y− ≤ − ≤  (4.42) 

12 1280000 80000 0p y− ≤ − ≤  (4.43) 

13 1380000 80000 0p y− ≤ − ≤  (4.44) 

14 1430000 30000 0p y− ≤ − ≤  (4.45) 

15 1530000 30000 0p y− ≤ − ≤  (4.46) 

{ }
1,...,4 1,...,5 6,...,15

1,2,3 1,...,15

, , , 0

0 1; 0,1

variableconstraints
x n p D

yμ
≥

≤ ≤ ∈

 

 
The result of trade-off calculation is summarized in Table 2. 

The shaded cells indicate the best achievement for their 
corresponding meta-goal variant. Based on this result, the 
decision-makers nominate a target value for each of the 
meta-goal variant considered in order to analyse the decision 
problem further. In the new model, the meta-goal functions 
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expressed by Equation (4.48) – (4.53) are included to the 
trade-off calculation model. In the current analysis, all decision 
goals are clustered into a single priority level, and the goals are 
equally weighted. Furthermore, the objective now is to 
minimise undesired deviations of the meta-goal functions. 
Thus, the objective function of the trade-off calculation model, 
Equation (4.1), is now replaced by Equation (4.47). The chosen 
meta-goal targets and their corresponding solution of this new 
model is summarised in Table 3. The shaded cells indicate 
meta-goal and original decision goals that have not met their 
targets. 
 
Table 2. Initial trade-off criterion matrix 

MG: Meta-Goal 
 
 ( )1 1 2 2 3 3Minimise : ( ) ( )Z μ β μ β μ β= + +        (4.47) 

3 5 6 71 2 4
1

8 9 10 13 1511 12 14

(
300 350 420 325 70000 50000 350

) 0
70 35 175 175 8000 8000 3000 3000

n n p pn n n

p p p p pp p p

ζ − + + + + + + +

+ + + + + + + =

       (4.48) 

1 1 1 0.38ζ α β+ − =  (4.49) 

2 0Dζ − =  (4.50) 

2 2 2 0.09ζ α β+ − =  (4.51) 

3 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

(
) 0

y y y y y y y y
y y y y y y y

ζ − + + + + + + + +
+ + + + + + =

     (4.52)

3 3 3 0.33ζ α β+ − =  (4.53) 

1,2,3 1,2,3, 0
variableconstraints
α β ≥

 

 
According to the interactive algorithm discussed in Section 

III.B, decision-makers can continue their analysis by categorise 
all the decision goals into prioritised sub-clusters, and then 
each cluster is analysed by a particular meta goal from the 
highest to the lowest. This would allow decision-makers to 
satisfy the more important goals before the less important ones, 
which would have less impact on the achievement of business 
objectives. An example of such decision model could have the 
following parameters: 

  
Priority level 1:  Goal 5 and 6, analysed by meta-goal 

variant 3, with a meta-goal target of 0   
Priority level 2: Goal 12, 13, 14, and 15, analysed by 

meta-goal variant 2, with a meta-goal 
target of 0.09   

Priority level 3: Goal 1, 2, 3, and 4, analysed by 
meta-goal variant 1, with a meta-goal 

target of 0.4 
Priority level 4: Goal 7, 8, 9, 10, and 11, analysed by 

meta-goal variant 2, with a meta-goal 
target of 0.1 

 
 For the current decision problem however, it is clear that the 

constraining factors are the availability of components. Both 
the needle and thread suppliers are unable to supply adequate 
quantities to fulfil production targets. Considering these 
constraints, the single level analysis has provided satisfying 
results. If the suture manufacturer has access to other suppliers, 
or the current suppliers have indicated that they are capable of 
delivering more goods, a possible new multi priority level 
decision model can be constructed with the following 
parameters:  

 
Priority level 1: Goal 5 and 6, analysed by meta-goal 

variant 3, with a meta-goal target of 0 
Priority level 2: Goal 1, 2, 3, and 4, analysed by 

meta-goal variant 1, with a meta-goal 
target of 0.09 

Priority level 3: Goal 7, 8, 9, 10, and 11, analysed by 
meta-goal variant 2, with a meta-goal 
target of 0.1 

Priority level 4: Goal 12, 13, 14, and 15, analysed by 
meta-goal variant 3, with a meta-goal 
target of 0 

 
The construction and evaluation of multi level meta-goal 

programming decision model is not discussed in this paper. 
However, one should appreciate this methodology allows 
decision-makers to accurately convey their perspective 
preferences in the model, and thus efficiently towards the 
discovery of most desired solution.   

 
Table 3. Single priority level, equally weighted 

x1 x2 x3 x4 Decision 
variable 
solution 299 350 382 315 

Goal type Current achievement Goal target 

1 0.38 ≤0.38 

2 0.09 ≤0.09 Meta-goal 
solution 

3 0.47 ≤0.33 

1 299.05 ≥300 
2 350.00 ≥350 
3 382.20 ≥420 
4 314.70 ≥325 
5 66061.03 ≥70000 
6 34235.22 ≤50000 
7 231.17 ≤350 
8 49.88 ≤70 
9 33.65 ≤35 
10 122.81 ≤175 
11 108.36 ≤175 
12 7788.60 ≤8000 
13 8362.81 ≤8000 
14 3270.00 ≤3000 

Decision 
goal 

solution 

15 3190.56 ≤3000 

 x1 x2 x3 x4 
MG 

variant 1 
result 

MG 
variant 2 

result 

MG 
variant 3 

result 
Strictly 
favours 

MG 
variant 1 

300 350 342 325 0.37 0.19 
4

15
 

Strictly 
favours 

MG 
variant 2 

279 356 390 302 0.45 0.07 
7

15

 

Strictly 
favours 

MG 
variant 3 

300 350 342 325 0.37 0.19 
4

15
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V. CONCLUSION 
This paper introduced an IMGP-based decision-analysis 
method. The method allows individual decision-maker to first 
propose goals for the problem toward his/her benefits, and then 
the goals are cross-verified using a Delphi process before they 
are analysed by the IMGP model to obtain the final solution. 
Our work has determined that this method is suitable for 
handling distributed decision-making nature such as presented 
in collaborative manufacturing, and this suitability is verified 
using an example. The future work is to develop a web-based 
software system that allows decision-makers to utilize this 
system irrespective to their physical location, and engage the 
collaborative decision-making process through the automated 
procedures.    
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