
Fault Diagnosis of Manufacturing Processes via 
Genetic Algorithm Approach 

 
 

Stefania  GALLOVA 
 
 
 

 
Abstract—Instantaneous detection and diagnosis of various 

faults and break-downs in industrial processes is required to 
reduce production losses and damage to equipments. A solved 
knowledge-based system and developed techniques within 
artificial intelligence principles are showing its capability in 
assisting process operators to detect and diagnose faults and 
anomalies in industrial processes, especially in chosen machine 
tools environment. In this contribution, there is investigated 
a self-learning of diagnostic rules through genetic algorithms 
approach. A success of a genetic algorithm is crucially connected 
with the adaptive plan which controls „mutation“ and 
„crossover“ actions, and hence the production of the new 
solutions. The maximum entropy principle with minimum cross-
entropy updating, provides a way of making assumptions about 
the missing specification that minimises the additional 
information assumed. Solved genetic algorithm is also 
a stochastic computational model that seeks the optimal solution 
to an objective function.  
 

Index Terms—genetic algorithm, self-learning, probability, 
rule 
 

I.  INTRODUCTION 
A solved knowledge-based diagnostic system involves the 

measurements of machine tool vibrations to detect faults. 
When combining and propagating uncertain information, each 
inference systems must, at least by implication, make certain 
assumptions about correlations not explicitly specified. The 
maximum entropy principle with minimum cross-entropy 
updating, provides a way of making assumptions about the 
missing specification that minimises the additional 
information assumed, and thus offers a standard against which 
the other uncertain inference systems can be compared. From 
this point of view was solved, compared and designed an 
appropriate uncertain inference system for created diagnostic 
expert system for machine tools.  

 
 
 
Manuscript received March 22, 2007. This work was supported by the 

Slovak Republic’s Ministry of Education under Scientific Grant Projects: 
1. Diagnostic System Building of Machinery Equipment with Knowledge-

based System and Chaos Theory Applying (VEGA 1/1084/04). 
2. Intelligent Approach to Automated Diagnostic Problem Solving of 

Machinery Equipment (Number: VEGA 1/4133/07). 
Stefania GALLOVA. Author is with the Technical University of Kosice, 

Letna 9, SK-042 00 Kosice, Slovak Republic; phone: +421-904-584-426; 
e-mail:  stefania.gallova@zoznam.sk 

Both the inductively derived rules and the expert-derived 
rules were tested using the same testing events. The 
experiment involved the application of several genetic 
algorithm approaches techniques. There is investigated a self-
learning of diagnostic rules through genetic algorithms 
approach. The training data is divided into various sets 
corresponding to various faults and the normal operating 
conditions. These rules are evaluated by a genetic algorithm 
approach, with contains three basic operators: reproduction, 
crossover and mutation. This genetic methodology approach 
can be easily integrated with knowledge-based or expert 
systems [3], [4], [6], [9]. Self-learning process can facilitate 
knowledge acquisition effort and is more desirable in these 
cases where certain knowledge is unavailable. A genetic 
algorithm based learning can efficiently discover new rules 
fitted with the training data and provide a means for 
developing diagnostic rules without any deep knowledge 
about the process. 
 

II.  PROBLEM SOLVING 
A solved diagnostic knowledge-based system uses 

a combination of knowledge inference processes with genetic 
algorithm approach and maximum entropy principles for 
diagnostic rules handling within applied domain of deliberated 
machinery systems. Maximum entropy principles are used in 
these special cases, where some diagnostic rules are not 
suitable for direct using within genetic algorithm approach 
environment.  

Further, we assume a concrete case, that probability values 
come in at the lowest level of the hierarchy. The initial 
problem is to propagate these probabilities upward. That is 
given a hypothesis hii, supported by evidence – „sub-
hypotheses“  h1, h2, ..., hn.  An idea is to compute  p(hjj).  There 
is an assumption, that hjj is at the  (m+1) – level of the 
hierarchy, and that the values  p(hi)  have already been accrued 
at the  (m-th) – level.  H  has been associated to the  hi , based 
on a prior model of  hjj , which requires  (n+k)  component 
hypotheses, of which  n  have been observed, namely the set  
(h1, h2, ... hn). Let  bm  be the number of  (m+1) – level 
hypotheses associated to each level  m hypothesis. It is done 
from mathematical reasoning, that this mentioned value is 
constant at level m.  There is defined: 

∑
=

















+
=

n

i
i

m
hp

bkn
Hp

1
)(11)(  (1) 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)

mailto:stefania.gallova@zoznam.sk


We claim, that this is a probability function on any set of 
level  (m+1) hypotheses supported by evidence at level m. 
This fact may be mathematically proved. Suppose the 
probabilities p for the concrete hypotheses: 

55.0)( 11 =hp    18.0)( 22 =hp    22.0)( 33 =hp    05.0)( 44 =hp  
These values correspond to evidences: 

h1  = 0.7 being relatively certain 
h2  = 0.1 being relatively uncertain 
h3  = 0.2 being relatively uncertain, 
then  bm  = 2. 

From this – following a „strongest hypothesis first“ strategy  
- we obtain a global interpretation of (h1, h2, h3, h4). Assume 
without loss of generality, that all the  hi  have precisely two 
components required in their model. Then we compute: 

p (h11)  =  (2/2) . (1/2) . (0.7 +1)      =    0.400 
p (h22)  =  (2/2) . (1/2) . (0.1 + 0.2)  =   0.150 
p (h33)  =  (1/2) . (1/2) . (0.7)            =   0.175 
p (h44)  =  (1/2) . (1/2) . (0.2)            =   0.050 

These values are normalising. Given a hierarchical 
hypothesis space with conflicts, we invoke the rule, that all 
conflicts must be propagated upward. This increases the 
generation of alternative hypotheses, which do not claim 
conflicting evidence. Conflicts should be searched for at the 
time of hypothesis generation AND/OR associations. All 
consistent interpretations of the hypothesis space should be 
computed and explicitly represented in the hypothesis space.  

There were made several experiments with the solved 
problem modelled. In order to evaluate the eventual 
dependence of the system’s performances on the number of 
the sensors and on the range of their possible output (discrete) 
values, we made various different simulations (from 3 to 9 
sensors) with specific output values. Trying to evaluate the 
system’s sensibility we ran some simulations for example with 
only one deteriorated sensor.  

A solved genetic algorithm starts to work with a set of 
domain knowledge structures which are coded into binary 
strings. The diagnostic rules, which are to be evaluated 
through genetic algorithm, should then be coded. A solved 
system used here has the diagnostic rules. Diagnostic rules are 
in the following form, which is easily realised within expert 
(knowledge-based) system environment. 
 

)()...( 21 in FTHENSSSIF ∧∧∧  (2) 
 

This formula states that if symptoms S1 to Sn are present 
then the ith fault (Fi) occurs. The used symptoms S1 to Sn  
correspond to „n“ different on-line information sources, 
which could be on-line measurements and controller outputs. 
Each symptom is considered to take one of the following 
values: - „increase“, „steady“, „decrease“, „neutral“. 
Symptom „neutral“ means that the corresponding symptom is 
not important.  

When applying a rule: „normal“ can match with any 
values. By introducing this symptom, the condition parts of all 
the diagnostic rules will be of the same length and the 
corresponding parts of the rules will represent the same 
observations.  

A genetic algorithm is also an adaptive problem. 
A researcher J.H.Holland [10] identified the main topics as 
requirements of an adaptive system: - an algorithm contains 
the system environment, a set of structures, an adaptive plan, 
and a some function for measuring the performance of each 
solved structure. A success of a genetic algorithm is crucially 
connected with the adaptive plan. The adaptive plan controls 
„mutation“ and „crossover“, and hence the production of the 
new solutions, i.e.“childs“, from old ones, i.e.“parents“. 
Created adaptive plan solves some problems about ensuring 
a constant population size, the number of times any particular 
solution can be used as a parent and so on. 

There are many possible ways to determine the selection of 
solutions as effectively as possible.  
There is an Adaptive plan within a Genetic algorithm scheme: 
 
Genetic_Algorithm () 

1. Choose the multitude of population. 
2. Set t=0 and randomly select N possible solutions. 
3. Define evolution process end criterion. 

(   <Initialise population> 
    while<Not (stop condition)> do  
( 

4. Choose evaluation criterion and evaluate each 
elementary solution. 

5. For each solution kn(t), select at random a set of r 
solutions without replacement, Kr(t), from the current 
population, K(t), where 1<r≤N.   

              <Fitness Evaluation> 
              <Selection> 

6. Select the fittest solution, k*(t) ∈ Kr(t). 
              <Reproduction> 

7. Apply the crossover operator to kn(t) and k*(t), and 
store the result in the next generation as kn(t+1). 

<Crossover> 
8. Apply the mutation operator to kn(t+1) with 

probability Pm  
  <Mutation> 
9. Increment t by one. 
10. Identify the best (and the worst) solution. 
11. Repeat steps two to six until T=t, where T is the 

number of generation to be run.  
) 

   <Choose final solution> 
) 

 
A solved genetic algorithm was run with a population of 89 

over 96 generations with r=2. The crossover operator was 
allowed to operate over the full length of solutions and the 
probability of mutation was kept low at 0.01. The 
implementation does show that a genetic algorithm using 
adaptive plan can be successful.  

An analysis of the change in the relative proportions of 
schema instances leads to an explanation of the success of 
genetic algorithm. Since the adaptive plan controls the 
selection and recombination of solutions it is vital to the 
success of a solved genetic algorithm.  

Set of solutions is represented by a string of numbers. The 
use of a binary representation means that each point on the 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



string can be occupied by one of only two „alleles“. There are 
can e either a „1“ or „0“ at each point of the string.  

Measurement of the vibrations and temperatures, analysis of 
input signals and their processing is an important part of this 
work. Sensors are connected to a processing unit. In the 
second phase we transform based signal features, which will 
be used as the inputs to domain knowledge-based system. 
A basic used genetic approach is simply illustrated in Fig.1. 

 
 

Optimisation Criterion 

Crossover & Mutation 

Selection 

New Population 
Completion 

Criterion Change 

Search in Database 

Maximum Entropy 
Principle Update 

Terminating  
Conditions 

New Solution & Saving 
to database 

y e s  

no  

no n - a pp l ic ab l e  
a p p l i c a b le  

Case Data & Rule Set 

Init ialization 

Acceptable 
Solution 

Inference System 
Infering 

y e s  

no  

 
 

Fig. 1:  A basic used genetic approach 
 

An advantage of solved adaptive plan is fact, that each 
solution is guaranteed at least one share in the next generation 
regardless of how low its fitness value may be. This ensures 
that no solution is completely neglected during a single 
generation. The better solution donate more genetic material 
than the poorer ones. Since the environment is time 
independent, the information is invariant and need only be 
read in once at the beginning of a run of the genetic algorithm.  

Decision tree coding is introduced to improve efficiency 
and accuracy on large graphs.  

Genetic algorithm is also a stochastic computational model 
that seeks the optimal solution to an objective function. The 
search within clustering process is performed through an 

iterating procedure applied to a „population“ of „individuals“, 
i.e. a set of feasible solutions.  

The characteristic feature of genetic algorithm is that the 
searching strategy is similar to biological evolution. It means 
that the better solutions are reproduced. Worse solutions are 
discarded. The search strategy is based on the possibility to 
discriminate between elements in order to resolve which is 
a good solution of the fitness function and therefore has 
a good chance of reproducing and generating new elements 
with its genetic inheritance. 

There is the problem-dependent data structure 
representation, and cost function, i.e. fitness, evaluation, and 
the robust reproduction phase, which are functionally 
separated and may be common to each application. That′s 
reason for creating a good and relevant genetic model for 
clustering and adopting efficient operators for the 
optimisation. 

Each symptom in the condition part of a rule is coded by a 
„2-bit“binary, where „00“ stands for symptom „decrease“, 
„01“ stands for symptom „“steady“, „10“ stands for 
symptom „increase“ and „11“ stands for „neutral“. By such 
a means, a rule whose condition part includes „n“ symptoms 
will be coded into a „2n-bit“binary string consisting of „0s“ 
and „1s“. Each set of training data represents the qualitative 
states of the process under the corresponding non-normal state 
or fault with different severities. A set of training data 
representing normal operating conditions is also required. 
Training data could be obtained from simulation studies or 
from previous operating experience of the process. The fitness 
of an individual structure is a measure indicating how fitted 
the structure is. In the self-learning of diagnostic rules, a better 
rule should have more applications when tested by the training 
data corresponding to this rule and fewer incorrect 
applications when tested by the other training data.  

The fitness „FIT“ of the rule is calculated by following 
way: 
 

Qk
Pk
OkFIT 3

2

1

1
+

+
=  (3) 

 
where „O“ .....................is a number of successful 

applications of a rule when tested 
by the training data corresponding 
to this rule, 

„P“......................is a number of incorrect 
applications of the rule when 
tested by the rest of the training 
data, 

„Q“ .....................is a number of „neutral‘s“  in the 
condition part of the rule.  

„k1, k2, k3“ ...........are positive weighting 
coefficients, 

 
The requirement that „FIT“ should not be negative is 

determined by the genetic algorithm, which is used here in 
solved problem. In the case of the reproduction phase, an 
individual rule is selected with a probability, which is equal to 
the ratio of the fitness of the rule and the sum of the fitnesses 
of all the rules in the generation. This is also the reason for 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



conclusion, that the fitness of a rule should not be less than 
zero.  

This fitness function (3) is not a linear function. By 
inspecting the first order partial derivatives, if we suppose that 
„O, P, Q“ could change continuously, it is found that the 
fitness function (3) is preferable to the first one. 
Differentiating fitness function (3) provides following 
equations: 

 

1
1

+∂
=

∂
∂

P
k

O
FIT

 (4a) 

O
FIT

Pk
Ok

Pk
Okk

P
FIT

∂
∂

⋅
+

−
=

+
−

=
∂

∂
1)1( 2

2
2

2

21  (4b) 

3k
Q

FIT
=

∂
∂

 (4c) 

 
A non-linear fitness function is more sensitive to changes in 

„O, P“ when a rule is close to the desired rule, with large „O“ 
and small „P“. The values of the parameters „k1, k2, k3“ in 
relation (3) can affect the result of learning. The choices of 
„k1, k2, k3“ are determined by the quantity of training data and 
the user’s objectives.  

Relation (4b) shows that a large „k2“ will impose a larger 
penalty on incorrect applications. The experiments have 
shown that a large „k2“ will produce rules, which are more 
„cautious“ in that they rarely have incorrect applications, but 
they could miss some faults, while a small „k2“ will produce 
rules, which generally will not miss the corresponding faults 
but could produce incorrect diagnoses [2], [5]. 

The probability of a rule being selected is defined as 
follows: 

 

∑
=

= n

j
jFIT

iFITiP

1
)(

)()(  (5) 

 
where P(i) is the probability that the „ith“ rule will be selected.  
 „FIT(i)“ is the fitness of the „ith“rule, 
 „N“  is the total number of rules in the 

  current generation, 
„j“  is a running index taking values 
   from 1 to N. 

 
By such means, more fitted rules will be selected more 

frequently and produce more copies in the new generation. 
After the reproduction phase, the rules are randomly mated to 
undergo the crossover operations. Through the crossover 
operation with the probability, which is often large (about 
0.8), the 2 rules in a pair will exchange a certain amount of 
knowledge (information). This procedure produces new 
knowledge structures. Then is realised the mutation operation, 
which performs bit by bit changes in the coded rules – from 
„0“ to „1“ or from „1“ to „0“ with a probability which is 
typically small (0.001 to 0.01). 

The clustering problem within genetic algorithm approach 
may be characterised as follows. 

We have: - „n“-dimensional feature space named „S“  
- „B“, which is subset of „S“ with „N“ elements 

„Xj“ represented with „n“ coordinates in „S“. 
 
B ⊆ S 
B = {XjXj ∈ S, j=1,...,N} (6) 
 

We solve the problem to search the best „T“ partition of 
„B“ in „m“ clusters, such as: 

 
T = {Ci, i=1 ,..., m} 
Ci = {XjXj ∈ B, j=1,..,Ni} 
∩ Ci = 0 
∪ Ci = B or Σ(i=1,...,m)Ni =N (7) 
 
and the „best“ idea is correlated to the concept of „similarity“ 
between objects „Xj“. 

Coding is realised as the first step, which is efficient data 
representation with a binary code. Each „T“ solution is coded 
as a chromosome, composed of a set of variables or genes. 
A first formulation can consider N genes (one to each object) 
which can assume a district value between „1“ and „m“ to 
indicate the belonging cluster. The „m“ could be fixed or 
indicate the maximum group number. Therefore the binary 
code needs „N“multiply „Int(log2(m))“ bits. As example we 
divide 30 objects into 5 classes. Each chromosome has a 60-
bit length. The code call to modify the reproduction task in 
order to generate only consistent solutions.  

In phase selection the reproducible solutions are selected. It 
is convenient to search for a good compromise between 
selecting only the best elements to increase the algorithm 
convergency and avoid a block around local minima of the 
cost function. The classical „Monte Carlo“ statistic selection 
has been adopted for problem solving. A sort of „elitist 
selection“ has been investigated to conserve the best solutions 
achieved in each generation by introducing a given number of 
„clones“ in the new generation. The clonation percentage has 
to be carefully detected in order not to limit the genetic model 
and concentrate the research only in one direction. The best 
percentage seems to be 24% maximum because a higher value 
demonstrates an average fitness of more than one, suggesting 
that several tests do not find the best solution and are trapped 
in local optima. Variable clonation could be a good proposal 
but depends also on the application domain characteristic.  

Reproduction method approach has the „crossover“ as 
a basic operator to reproduce new solutions from those 
selected in a given generation. A proposal could be to mix two 
approaches, using the standard coupled reproduction with 
clones and “asexual“ generation. In all reproduction phases the 
mutation operator has been applied with an experimentally set 
value from 0.01 to 0.001 variable percentages to permit an 
alternative manifold hyperplane exploration and avoid 
premature convergence. 

Then, there is the fitness model, which must exalt the 
difference between applicable and less applicable solutions in 
order to converge to the optimum solution, accepting also 
unbalanced clusters or clusters with a single element. On the 
contrary, in some applications, there are may be many 
acceptable solutions. In this case the goal could be to promote 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Cycle Number

A

S

P

a balanced distribution of objects in a given number of 
clusters. In this context the „fuzzy theory approach“ may be 
combined with the genetic model, for example by putting 
a value between „0“ and „1“ in the Boolean cluster code to act 
as object belonging probability. 

The problem searches the best feasible solution named „U“ 
in „m“ clusters. The „cost function“ to be minimised was 
experimentally given by (see relations (6) and (7)): 
 

),(1)(
11

∑∑
==

=
iN

j

i
j

m

i
i XXd

N
Uf  (8) 

 
This problem aims exploit the effectiveness of the solved 

genetic algorithm mostly in clustering, especially in a context 
where the data dimensions have not been supported by 
exhaustive solutions and the problem generality does not 
always find a usable solution with heuristic techniques. The 
aim is to create a robust model for good clustering in analysis 
related to the application goals.  

After the learning and testing phases, „n“ rules are 
probabilistically selected according to their judged „strength“. 
The „crossover operator“ generates two children from each 
pair of selected parents. It is a one-point crossover. The 
resulting offsprings are added to the population in case they 
were not. The „parent rules“ are not deleted – reproduction 
operator. The „crossover probability P“ is in the form: 
 
P = pS  “multiply“ (1- p) (9) 
 

There is a system′s parameter „pS“, which has in our 
experiment the value: „0.77“. From this reason, the „crossover 
probability“ decreases as the success rate increases. To 
determine the „strength“ of new rules, we bear in mind the 
„strength“ and the specificity of the „parents“. We will obtain 
the „children strength“ by the following way. We assume two 
„parent“ rules „R1“ and „R2“. Next, we consider a „one-point 
crossover operator“ randomly set in condition part of solved 
parent rules. For each „parent rule“ we consider the two parts 
„L“ and „R“, which correspond to left and right position, on 
both sides of the crossover point (random mating). There are 
„specificities“ of the left and right position. The left side 
specificity of „R1“ or „R2“ is marked by „cL(R1)“ or „cL(R2)“. 
The „cR(R1)“ or „cR(R2)“ is the specificity of right side of „R1“ 
or „R2“.The „S(R1)“ or „S(R2)“ is „strength“ of „R1“ or „R2“. 
We also consider „RF1“ and „RF2“, which are the two 
„offspring rules“. The below mentioned relations allow a 
„child rule“ to inherit the „parent rule′s strength“ 
proportionally to the specificity of the inherited part, i.e. 
number of instanced attributes to divide with number of 
attributes of left or right part. It caused this fact, that the new 
rule′s strength is all the higher as the rule inherits of a high 
specificity (10).  
 

)("")(
)("")("")("")()(

21

2211
1 RcplusRc

RSmultiplyRcplusRSmultiplyRcRS
RL

RL
F =  

 (10) 

)("")(
)("")("")("")()(

21

2211
2 RcplusRc

RSmultiplyRcplusRSmultiplyRcRS
LR

LR
F =  

Similarly, above mentioned form is equal for others rules in 
solved generations.   

We carried out several series of tests to study the best 
choices. For each test, used genetic operators are turned off. 
A test is evaluated mostly on a single cycle, i.e. one „learning“ 
and „testing“, by examining the success rate, the partial failure 
rate, the total failure rate, the final population size, the 
maximal strength of the rules, the maximal specificity of the 
rules and the average specificity of the rules. The partial 
failure on a testing set example is when the best rule in the 
matching set does not have the correct consequent, and the 
total failure is when the matching set is empty.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  System evolution experiment 1 

Fig. 3  System evolution experiment 2 
 

Fig. 2 shows the solved system evolution experiment over 
twenty-four cycles. Twenty rules used in the testing phase are 
created during the first 5 or 6 cycles. The success rate 
decreases as the specificity of the rules used increases. From 
cycle about seven, the create operator is ineffective. For this 
reason the new rules cannot be created and the population size 
remains equal to 399. More rules have been created in the case 
of crossover operator with the „pS“ value equal to 0.77. The 
success rate and average specificity have lower values than in 

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19

Cycle Number

A

S

P

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Cycle Number

A
S

P

the case of above mentioned experiment, but we have more 
rules (455). Eleven rules were used during the last testing 
phase. Three rules were created by he create/specialise 
operator and eight rules by crossover operator. In the case of 
experiment with thirteen used rules during the last cycle, six 
rules were created with create operator and seven by crossover 
operator (see Fig. 2 and Fig. 3, curves „A“,“P“,“S“). The 
strength of the new created rules is updated during the 
following cycles by reinforcement algorithm. Fig. 3 shows 
experimental results with create operator and crossover 
operator application.  

Fig. 4  System evolution experiment 3 
 

„Crossover“ in the first experiment is turned off and special 
operator is invoked at each cycle, and also the crossover 
approach is involved every 9 cycles. The whole number of 
rules is 555, the average specificity over all the rules is 0.41. 
The success rate is 39%. The „crossover“ in the second 
experiment (pS=0.77) and special operators are used every 9 
cycles. The whole number of rules is 998, the average 
specificity over all the rules is 0.56. The average specificity of 
the used rules is 0.44 and the success rate is 41%. 

Fig. 4 shows experimental results achieved with mutation 
operator application. The mutation operation has been applied 
in these cases, where the create operator was ineffective. The 
new rules can be created with new quality. Each hidden unit is 
susceptible with a small probability (from 0.01 to 0.1) to 
a random perturbation in its weights with each generation. 
This procedure was implemented in two ways. A small 
random change to each weight was realised, and then 
a rerandomisation of a single weight in the hidden unit was 
raised. The mutation activity was realised by mostly 
experimentally tested methodology. This approach may be 
considered more reliable.  

Experiments and the performance of the solved system have 
been studied on a complex diagnostic environment, which is 
also uncertain. To better know the learning data used, we will 
make use of classical classification techniques over the data 
(first of all some statistical approaches), and we will compare 
the obtained data by various methodologies approaches. The 
developed system gives us a lot of information not only on the 

solved system′s behaviour, but also on the component of each 
rule.  
 

III.  PROCESS OF LEARNING AND SELF-LEARNING OF 
DIAGNOSTIC RULES 

There is as an example of measurements, which determines 
that the condition part of a diagnostic rule should contain nine 
symptoms each corresponding to an on-line information 
source. The training data are obtained by simulating the 
process under various faults and abnormalities and with noisy 
measurements. Rules are coded as binary strings. There are 
some relevant values: - „the probability of crossover „(for 
searched diagnostic system) was set to 0.91, „the probability 
of mutation“(0.002), „fitness function parameters“ („k1“= 
5.15, „k2“=0.22, „k3“=2.). These parameters are chosen 
through trial and error but are roughly guided by relations 
(6a), (6b), (6c). The performance of the realised learning 
system is illustrated in Table I. Experiments have shown that 
in many cases have been obtained significant improvements. 
There are best and average fitness of rules in initial and final 
generations (Table 1). 
 
 
 

 
 

Fig.5:  Characteristic learning rule with average and best 
fitness 

 
The learnt rules have been tested on the real process. A 

sample of the results of approximation on training data from 
sensors placed on machine tool equipment and the results of 
approximation on testing data (i.e. on unknown data) are 
shown in fig.5. The approximation by genetic algorithm gives 
the acceptable accuracy. The determination of machinery 
equipment state and manufacturing or technological 
conditions states, which is done first of all in prediction of 
relevant signal course and its analysis by solved predictive 
methodology on genetic algorithm basis will be sufficiently 
more accurate, correct and precise than others used 
approaches. Using of the artificial genetic algorithms for 
predictive machine tool equipment maintenance 
approximation seems to have better performance than the 
classical approach. 

The rules could be improved by filtering out the bad 
training data prior to learning. The rules could also be 
improved by including additional features, such as the 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



magnitudes of deviations in measurements, in their condition 
parts to increase their resolution.  
 

Table I.  Fitness of rules in initial and final generations 
 

Rule Generations Average Best 
1 0 19 65 
2 1 27 79 
3 2 36 99 
4 3 42 100 
5 4 51 100 
6 5 53 103 
7 6 70 104 
8 7 77 103 
9 8 75 103 

10 9 76 102 
11 10 78 103 
12 11 93 103 
13 12 94 103 
14 13 94 103 
15 14 95 103 
16 15 93 103 
17 16 94 103 
18 17 96 103 
19 18 96 103 
20 19 93 103 
21 20 94 103 

 

IV.  CONCLUSION 
The aim of solved system is to develop an effective system, 

which is able first of all to provide intelligent advice for 
solving complex technical (diagnostic) problems efficiently 
and precisely with its relevant domain expertise or skills. 
Performance of the approach was verified on a real process of 
machine tool conditioning. Real-time diagnostic results show 
that each component correctly represents examined states or 
faulty states of the system. 

A dynamic model and dynamic simulation of this system is 
capable of investigating the operation of the process under 
normal conditions as well as various faulty conditions. There 
are can be distinguished also the following possibilities. In the 
case of a dangerous process state the system automatically 
initiates an appropriate counteraction. Features are determined 
and a fault diagnosis is performed in advanced part of solved 
knowledge-based system. The purpose of the solved system is 
to detect and localize in time possible abnormalities and faults 
of machinery equipment and thus prevent the damage of 
technological process. A solved system will be extended in 
future to include various complicated forms of rules, for 
example with more complicated condition parts of the rules, 
which will include combined qualitative deviations in on-line 
information with various features such as the magnitudes of 
the deviations, the shapes in measurement curvatures and so 
on. There are will be investigated self-learning approaches of 
diagnostic rules through more advanced genetic and 

evolutionary algorithms and modified chaos theory principles. 
Nowadays, some achieved results seem to be very interesting. 

The developed system gives us a lot of information not only 
on the solved system′s behaviour, but also on the component 
of each rule. Genetic algorithm will have been the main rule 
discovery algorithm. It will concern to obtain self-organisation 
of a kind of communication protocol among a solved 
population.   

The main feature of genetic algorithm is that the searching 
strategy is similar to biological evolution, i.e. better solutions 
are reproduced,  

The quality of a genetic algorithm approach seems to be 
dependent on a few important parameters and operator 
variants. There are a number of others issues for future 
research, such as improving the runtime performance of our 
implementation, including other genetic operators in the 
architecture. The fuzzy theory may be combined with the 
genetic model, for instance by putting a value between „0“ and 
„1“ in the Boolean cluster code to act as object belonging to 
probability.  

The research reported on this paper is supported by 
following scientific projects of Slovak Grant Agency VEGA 
(Ministry of Education):  

1. Diagnostic System Building of Machinery Equipment 
with Knowledge-based System and Chaos Theory 
Applying.  (Number: VEGA 1/1084/04) 

2. Intelligent Approach to Automated Diagnostic 
Problem Solving of Machinery Equipment. 
(Number: VEGA 1/4133/07). 

REFERENCES 
[1] S. K. Anderson, K. G. Olesen, F. V. Jensen, Hugin – a Shell for 

Building Bayesian Belief Universes for Expert Systems. In: Shaffer, W 
& Pearl, J. (eds.) Readings in Uncertain Reasoning, Morgan Kaufma, 
USA, 1990. 

[2] S. A. Goldman, R. L. Rivest: A Non-iterative Maximum Entropy 
Algorithm. In: Koval, L. N. & Lemmu, F. J. (eds.) Ucertainty in 
Artficial Intelligence, Vol.2, pages 133-148, North-Holland, 1988. 

[3] R. L. Chilausky: An Experimental Comparison of Several Many-
valued Logic Inference Techniques in the Context of Computer 
Diagnosis of Soybean Disease. International Journal of Man-Machine 
Studies. Department of Computer Science, pages 178-162, University 
of Illinois, Illinois, 1980. 

[4] P. A. Cohen: A Theory of Heuristic Reasoning about Uncerainty. The 
AI Magazine, Summer 1983, Report 84. 

[5] R. W. Hamming, Coding and Information Theory. Prentice Hall Inc., 
Englewood Cliffs, N.J., 1980 

[6] E. Nissan, Intelligent Technologies for Nuclear Power Systems. 
Heuristics and Neural Tools. In: Expert Systems. 1998 

[7] J. A. Shore, R. W. Johnson, Axiomatic Derivation of the Principle of 
Maximum Entropy and the Principle of Minimum Cross-entropy. 
IEEE Transactions on Information Theory, pages 26-37, Vol.IT-26, 
1980. 

[8] K. Watanabe, I. Matsura, M. Abe, M. Kubota, D. Himmelbian, 
Incipient Fault Diagnosis of Chemical process via Artificial Neural 
Network's. AIChE Journal Vol 35 No 11, 1989 

[9] J. Zhang, P. D. Roberts, J. E. Ellis, Fault Diagnosis of a Mixing 
Process Based on Qualitative Representation of Physical Behaviours. 
In: Journal of Intelligent and Robotic Systems, 1987. 

[10] J. H. Holland, Adaptation in Naturaland Artificial Systems. University 
of Michigan Press, 1975  

 

Engineering Letters, 15:2, EL_15_2_25
______________________________________________________________________________________

(Advance online publication: 17 November 2007)


