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Abstract—Quantum Boolean circuit synthesis issues are 
becoming a key area of research in the domain of quantum 
computing. For gate-level synthesis, minterm based and Reed-
Muller canonical decomposition techniques are adopted as 
common approaches. Physical implementation of quantum 
circuits have inherent constraints and hence nearest 
neighbour template of input lines is gaining importance. In 
this work, we present a brief analysis of the various Fixed 
Polarity Reed Muller (FPRM) expressions for a given 
quantum Boolean circuit and also introduce the rules for the 
nearest neighbour template-based synthesis of these forms. 
The corresponding circuit costs are evaluated. 

 
Index Terms—Quantum Boolean Circuit, Reversible 

Logic, Reed-Muller Expression, Nearest Neighbour Template 
 

I.  INTRODUCTION 
 The model of Quantum Computing stands on the 
understanding of quantum circuits and their application to 
solve computational problems. A quantum circuit is 
employed to process quantum bits (qbit). A qbit may be 
considered as the equivalent to a binary bit in a classical 
computer [1]. It can be taken as a particular spin state of an 
electron, or a certain polarization state of a photon. The spin 
state of an electron may be up (↑) or  (↓) down, or the 
polarization state of a photon may be vertical (↕) or 
horizontal ( ↔ ). The two quantum mechanical states are 
represented in standard quantum mechanics [2] by standard  
ket notation  |0> and |1>. The real difference between the 
classical and quantum states is that while in the former, the 
states are definite, in quantum computing the states are 
superposed. For example, a quantum state is represented by 
superposition of two states like ψ = a  0> + b  1> where a 
and b are the complex amplitudes representing the 
probabilities of state  0> and  1> respectively satisfying the 
condition  a 2  +  b 2    = 1. Unlike a classical computer in 
which a bit has exactly one value from the set {0, 1}, a qbit 
can represent both states simultaneously. The maximum 
number of possible states depends on the number of qbits 
i.e., n qbits can represent 2n states.  
 A 2-qbit vector can simultaneously represent the states 
|00>, |01>, |10>, |11> and the probability of their 
occurrence depends on the value of the complex amplitudes 
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c0, c1, c2 and c3. The superposed quantum state ψ is 
represented as ψ = c0 |00> + c1  |01> + c2 |10> + c3 |11>. 
Hence comes the concept of quantum register [6] of n qbits 
holding 2n simultaneous values. This also implies that if we 
perform an operation on the contents of a register, all 
possible values are operated on simultaneously, thus 
leading to quantum parallelism [5]. However, in practice it 
is quite complex to achieve quantum parallelism, and is 
dependent on the property of quantum decoherence [3], [7].  
 While Quantum Boolean circuit synthesis for Reed-
Muller expansion using CkNOT gates exists, this paper 
proposes a method for physically viable synthesis using 
nearest neighbour templates of quantum gates. 
 The organization of this paper is as follows. Preliminary 
concepts of reversible logic which is predominant in 
quantum gates appear in Section II. A brief introduction to 
quantum gate network is presented in Section III. 
Implementation of Quantum Boolean functions with Reed-
Muller decomposition and circuit construction based on 
physical realization is given in Section IV and concluding 
remarks in Section V. 

II. PRELIMINARIES 

A.  Reversible Logic 
 A Boolean function is reversible if each of the values in 
the input set can be mapped with a unique value in the 
output set. Landauer [8] proved that the usage of traditional 
irreversible circuits leads to power dissipation and Bennet 
[4] showed that a circuit consisting of only reversible gates 
does not dissipate power. Above all, some of the 
applications like digital signal processing, computer 
graphics, cryptography, reconfigurable computing require 
the preservation of input data. 

B.  Reversible Logic Gates  
 A reversible logic gate implements a reversible Boolean 
function and necessarily has equal number of input and 
output wires. Next we discuss about a few reversible gates. 
 CkNOT Gates: In general, a CkNOT gate has k+1 input 
and output wires. It has k control inputs and the k+1 th input 
is inverted at the output only if all the k control inputs are at 
logic high. For k=0, it is equivalent to a NOT gate which 
maps the input x → x ⊕ 1, i.e., classical XOR of input with 
logic 1, as shown in Fig.1(a). For k=1 it is termed as 
controlled NOT (CNOT) gate which maps the two inputs (x, 
y) →.(x, x⊕  y) as shown in Fig. 1(b). The C2NOT gate, also 
termed as TOFFOLI gate, maps the three inputs top-
control, bottom-control and target qbits (x, y, z) → (x, y, x ⊕ 
x.y) as shown in Fig. 1(c), where the classical XOR and 
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AND operations are involved. A CkNOT gate with k control 
qbits and a single target qbit, shown in Fig. 1(d), maps 
(x1,…,xk-1,xk, y) → (x1,…,xk, y⊕ x1.x2…xk). The control and 
the target qbits are indicated by • and ⊕ respectively.  
 Swap Gates: A swap gate is a 2x2 reversible gate. It 
interchanges the values of two input qbits at the output. Fig. 
2 illustrates the internal architecture of a swap gate. 

C. Reversible Quantum Boolean Circuits 
 The synthesis of Quantum Boolean Circuits (QBCs) 
can be done if we define a set of transformation rules for 
reversible QBCs. A QBC is a quantum system of n qbits 
specified by |x1>|x2>……….|xn> and a number of 
reversible quantum gates. In QBC the convention for circuit 
representation is to have the input qbits at the extreme left, 
which interact with a sequence of reversible quantum gates 
as desired and finally the output appears at the extreme 
right where all the input values are restored at the output. 
The desired function is obtained with the help of a set of 
ancillary bits which are initialized at the input with |0>. 

D. Previous Work  
Younnes and Miller have introduced in their work [9], 
techniques for representation of quantum Boolean circuits 
using Reed-Muller expansions and have mainly focused on 
generalized CkNOT based circuit synthesis. Though CkNOT 
gates are acceptable in logic design, the technology based 
implementation of quantum circuits demands the usage of 
only one, two and three qbit quantum logic gates like NOT, 
CNOT, SWAP and C2NOT. Hence there is a need for 
defining efficient synthesis techniques in quantum circuits 
involving only quantum gates with small fan-in. 

III. QUANTUM GATE NETWORK 
A classical logic operation is a Boolean operation on a set 
of inputs and resulting to a single output. So a logic 
function f can be generalized as f: {0,1}n→{0,1}, where n is 
the number of inputs. A logic function is expressed by its 
minterms for implementation. A minterm corresponds to an 
input combination corresponding to which the value of the 
logic function is logic high and is represented by the 
equivalent decimal integer of the n-bit binary value.  
 In quantum computing, the realization of Boolean logic 
needs the implementation of reversible logic operations and 
hence the CNOT gates provide us a possible solution. We 
need to build a circuit utilizing reversible CNOT gates for 
the implementation of Boolean function in the quantum 
domain. The circuit for a n qbit single valued Quantum 
Boolean function can be represented as a network with n+1 
input and output qbits, as shown in Fig. 3. The n control 
qbits are represented as  |ai> for i= 0,1,2…,n-1 and the 
extra target output qbit as |f> to  store the result qbit, as 
shown in Fig.3. The extra input qbit is  initialized to |0>.  
 It should be noted that in quantum domain, there is no 
feedback and fanout. Also for reversibility we have to 
restore all the input values after each quantum gate 
operation, hence classical synthesis from minterms are not 
directly applicable. The choice of proper gate  library for 
synthesizing a quantum gate network affects the total circuit 
cost in terms of technology based implementation. For this 
purpose, we evaluate the gate cost for synthesizing the 
Quantum Boolean function using the Reed Muller 
canonical decomposition technique utilizing a quantum gate 
library with  NOT, CNOT, SWAP and C2NOT gates only. 

          
 
 
 
 
         

 
          
                
   
         (a)                                      (b)                                     (c)                                                      (d) 
                                            

Figure 1: (a) NOT gate,  (b) CNOT gate,  (c) C2NOT or TOFFOLI gate,  (d) CkNOT gate. 
 
 
 
 
 
 
 
 
 

Figure 2: SWAP Gate 
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                                                                                                       Table 1: Truth Table for f1 (x0, x1, x2) 

 
 
 
 
 
 
 
 
 
 

 Figure 3: A Generalized Quantum Boolean Circuit 
 
 

IV. IMPLEMENTATION 
A boolean function f of n variables can be expressed in the 
Reed Muller form as (Akers 1959):  

f (
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iϕ  are known as product terms and bi determines whether a  
a product term is present or not.  The XOR operation is 
indicated by ⊕ and multiplication is assumed to be the 
AND operation. The canonical Reed Muller expression can 
be classified as Positive Polarity Reed Muller (PPRM), 
where the variables are un-complemented. For each 
variable ix in the given expression if we use the un-

complemented literal ( ix ) or the complemented literal ( ix ) 
throughout, then it is Fixed Polarity Reed Muller (FPRM)  
expression.  
 Consider the realization of the function f1 (x0, x1, x2) = Σ 
(1,5,6,7) as given in Table 1. The PPRM expression for it 
and the seven (23 - 1) FPRM forms are given next. 
 
 
 
 

  
 
f1(x0,x1,x2) = m1 + m5 + m6 + m7 = x2.x1⊕ x1.x0⊕ x0       (1)                       
 
f1(x0,x1,x2) can also be expressed in different FPRM forms 
as : 

1),,( 0101122101
⊕⊕⊕⊕= xxxxxxxxxf   (1 polarity)           (2) 

 

01212210 ),,(
1

xxxxxxxxf ⊕⊕=     (2 polarity)            (3) 
 

101212210 ),,(
1

xxxxxxxxxf ⊕⊕⊕=   (3 polarity)           (4) 
 

001112210 ),,(
1

xxxxxxxxxf ⊕⊕⊕=   (4 polarity)           (5) 
 

1),,( 001122101
⊕⊕⊕= xxxxxxxxf   (5 polarity)          .(6). 

 
1),,( 1201122101

⊕⊕⊕⊕= xxxxxxxxxf   (6 polarity)          ( 7) 
 

1),,( 201122101
⊕⊕⊕= xxxxxxxxf    (7 polarity)          (8) 

The position index of a ‘1’ in the 3-bit binary equivalent of 
the decimal integer value of a polarity corresponds to the 
index of the complemented variable. For example, only 
variable x2 is complemented in 4 polarity FPRM above. 
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Figure 4: Quantum gate networks for all possible Reed Muller expressions of the function f1 in Table I: 
(a) PPRM, (b) 1 polarity FPRM , (c) 2 polarity FPRM, (d) 3 polarity FPRM,  

 (e) 4 polarity FPRM, (f) 5 polarity FPRM, (g) 6 polarity FPRM, (h) 7 polarity FPRM. 
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 As seen in Figure 3, SWAP gates play a key role in 
bringing the control and the target qbits of any quantum 
gate on adjacent lines in a quantum gate network which is 
called the nearest neighbor configuration. The 
requirement of nearest neighbour relationship between the 
control and the target qbits is truly justified due to the 
limitation of the J-coupling force [10] required to perform 
multi-qbit logic operations and this works effectively only 
between the adjacent qbits.  
 We present below a set of circuit templates for non-
adjacent qbit controlled CNOT and C2NOT in our nearest 
neighbor based synthesis approach. We introduce the circuit 
templates for CNOT, and C2NOT gates utilizing the SWAP 
gates. In Fig. 5, for a C2NOT we use the notation 
(ctrl1,ctrl2,target) where the integers ctrl1, ctrl2 and target 
are respectively the indices of the input qbits of the circuit 
for the top-control, bottom-control and the target qbit of this 
C2NOT gate. The same convention is also followed for 
CNOT gate which is represented as CNOT(ctrl,target). 
According to the convention for index values of input qbit 
lines mentioned earlier, we assign index 1 to the 
bottommost control qbit input of the circuit, and the 
successive index values are assigned as we go upwards to 
the topmost qbit line. Thus, C2NOT(4,3,1) represents a 
C2NOT gate with its top-control on the 4th input qbit line, its 
bottom-control on the 3rd line  and its target is on the lowest 
(1st) input qbit line. The exact number of SWAP gates 
required for nearest neighbor configuration is determined 
by the differences in the index values of the two control 
qbits with the target qbit, which can be calculated by the 
following rules: 
 
Rule 1: For a C2NOT gate, we require st pairs of SWAP 
gates if the difference between the index values of the top-
control and the target qbit is st  with  st  greater than 2, and 
sb pair of swap gates if the difference between the index 
values of the bottom-control and the target qbit is sb with sb 
greater than 1.  
  
Example: In C2NOT(4,3,1) (Fig. 5(a)) the difference in 
index value between the top-control and target is 4-1=3 and 
that between the bottom-control and the target is 3-1=2, 
hence we require two pairs of SWAP gates, one each to 
make the top-control and bottom-control as the nearest 
neighbor of the target qbit. 

 
In C2NOT(4,2,1) (Fig. 5(b)) the difference between the top- 

control and target is 4-1=3 and that between the bottom-
control and the target is 2-1=1 , hence we require only one 
pair of SWAP gate. 
 
Rule2: For a CNOT gate we require sc pairs of SWAP 
gates if the difference between the index values of the 
control and the target qbit is sc  with  sc  greater than 1.  
 
Example: In CNOT(4,1) (Fig. 5(c)) the difference in index 
value between the control and the target qbit is 4-1 = 3, 
hence we require 2 pairs of SWAP gates, and similiarly we 
require a single pair of SWAP gate for  CNOT(3,1).                            

 
 The circuit in Fig. 6(a) corresponds to the 1 polarity 
FPRM of the function f1. Using the nearest neighbour 
template C2NOT(4,3,1) in Fig. 3(b), the circuit shown in 
Fig. 6(b) is obtained. We can observe an increase in the 
gate count and circuit level due to the usage of the extra 
SWAP gates. Hence we need to focus on the minimization 
of gate count and number of levels in the QBC, in order to 
reduce the quantum circuit cost.  
 The Reed-Muller form of quantum Boolean circuits 
typically involves generalized CkNOT gates depending on 
the number variables and hence we have to convert each of 
the  CkNOT  gates to equivalent C2NOT based  representa-
tion. Figure 7 shows a C2NOT equivalent circuit for a 
C4NOT gate involving two ancillary qbits. The number of 
C2NOTgate required for a single CkNOT is 2(k-2)+1 and the 
number of ancillary qbits required is k-2, where k is the 
number of control qbits in the CkNOT gate.  
 
Observation: Any Quantum Boolean Circuit (QBC) can be 
synthesized using C2NOT, CNOT, NOT and SWAP  gates. 
 
 The cost of the C2NOT gate and the 2*2 gates like CNOT 
and SWAP can be taken from the basis of technology based 
implementation of these gates. The related works [11,12] in 
NMR  based quantum computing hardware development 
suggest that the cost of  
 

• a 1*1 gate is 1 ,  
• a 2*2 gate is 5, and  
• a 3*3 gate is 5 times that of a 2*2 gate, i.e., 25.  
 

 Based on this, we calculate the gate requirement and the 
quantum gate cost for the different polarities of Reed-
Muller circuits in Table 2. 
 

 
 
 
 
 
 

                 (a)                                     (b)                                  (c)                                             (d) 
 

Figure 5: Nearest neighbour configuration templates for 
 (a) C2NOT(4,3,1),  (b) C2NOT(4,2,1), (c) CNOT(4,1), (d) CNOT(3,1) 
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Figure 6: (a) An example QBC  (b) Synthesis using nearest neighbor templates 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: A C4NOT gate and its equivalent nearest neighbour circuit with C2NOT gates 
 
 

Table 2: Gate Count and Quantum Gate cost for different FPRM circuits for f1(x0,x1,x2) 
 

Polarity # C2NOT 
Gates 

# CNOT  
Gates 

# SWAP 
Gates 

# NOT 
Gates 

Quantum Gate 
Cost 

PPRM 2 1 4 0 75 
1 polarity FPRM 2 2 6 3 93 

2 polarity FPRM 2 1 8 2 97 

3 polarity FPRM 2 2 10 6 116 

4 polarity FPRM 2 2 6 2 92 

5 polarity FPRM 2 1 4 5 80 

6 polarity FPRM 2 2 10 5 115 

7 polarity FPRM 2 1 8 6 101 

 

V. CONCLUSION 
 Our work focuses on defining the nearest neighbour 
synthesis techniques for quantum Boolean circuits utilizing 
the Reed-Muller logic decomposition. The proposed circuit 
synthesis technique utilizes a library of fundamental 
quantum logic gates consisting of NOT, SWAP, CNOT, 
C2NOT gates. The rules for converting general CNOT,  
 

 
 
 
C2NOT gates into their nearest neighbour equivalent form 
can be utilized for the development of low-level circuit 
synthesis automation tools in the quantum computing 
domain. Our future work will be defining an advanced 
search technique, which will evaluate the best circuit for a 
given Reed-Muller based quantum Boolean circuit in terms 
of quantum gate cost. 
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