
 
 

 

 
Abstract—The concept of ‘manipulability’ is particularly 

important to characterize the ability of  a serial kinematic chain – 
artificial manipulator or natural limb – to move quickly its 
end-effector in any direction of its operational space in response to 
given joint velocities. Yoshikawa’s manipulability definition has 
shown its benefit for robotics. According to him the robot 
manipulability can be measured, in any joint configuration q, by 

)]()(det[ qJqJ T where J(q) denotes the robot Jacobian matrix. 
From this specific manipulability criterion an original theorem is 
derived which helps to express in closed-form the manipulability 
of a redundant serial kinematic chain in resolving it into 
manipulability factors associated to non-redundant  subrobots of 
which the redundant original robot consists. The proposed 
approach is suitable for robotics but also for the analysis of 
naturally redundant biomechanical kinematic systems as 
illustrated in the study of a redundant 4R kinematic model 
defined as being the regional structure of a 7R anthropomorphic 
robot-arm.  
 

Index Terms—Manipulability, Redundant manipulators, 
Biomechanical kinematic systems.  
 

I. INTRODUCTION 
The development of advanced industrial robot-arms as 

humanoid robots leads robot designers to consider more and 
more spatial redundant robot limbs kinematic structures i.e. 
with more d.o.f than necessitated by the task. For example, the 
recent Mitsubishi PA-10 has 7 d.o.f. as all upper limbs of actual 
humanoid robots; some of them have even 9 d.o.f. to mimic the 
shoulder complex mobility and generating human-like gesture. 
This d.o.f. number defines the dimension of the robot joint 
space we will note ‘n’. The end-effector of the robot limb 
performs its task in a m-dimensional operational space. In 
redundant case – i.e. n > m – the robot Jacobian nm×  matrix  
J(q) – q denotes the robot joint vector – expressing the robot 
end-effector velocities in operational space as a function of the 
joint velocities is not a square matrix. A problem occurs in 
consequence to determine the inverse relationship necessary to 
the robot control in its operational space. The Moore-Penrose 
inverse J+(q) gives an elegant solution to this problem in the 
form : 

1)]()[(  )( −+ = qJqJqJqJ TT )(                        (1) 
so long as the matrix J(q)J(q)T is not singular.  
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Consequently )]()(det[ qJqJ T  can be regarded as the distance 
of any redundant configuration from singular ones. Yoshikawa 
[1], [2] has proposed to call manipulability this criterion  
denoted by ω (q).  

A zero-manipulability configuration – i.e. a singular 
configuration – expresses the impossibility for the robot 
end-effector to be moved in any direction of its working area, 
whereas a non-zero manipulability expresses the possibility for 
the robot end-effector to be moved in any direction of its 
working area with task velocities more higher for given joint 
velocities as the manipulability criterion is high.  

Manipulability analysis can be very useful to specify the 
kinematic possibilities of a given robot, particularly in 
comparison with simplified non-redundant versions it comes 
from. However, it is well known in redundant arms robotics 
that the matrix product J(q)JT(q) is often so complex that its 
inverse can be determined only by numerical computation. In 
particular the look for a closed-form expression of  J(q)JT(q) 
even helped by symbolic computation software, can be difficult 
to obtain for n > 3. Nevertheless a closed-form expression 
written in a simple way would be particularly interesting to 
found the robot manipulability analysis. In order to help its 
search for we propose in the framework of this paper an 
original resolution theorem of the manipulability criterion. This 
manipulability theorem presented in section 2 is the 
consequence of a fundamental resolution formula of  det(JJT); 
it is followed in section 3 by its application to a manipulability 
analysis of the a 4R redundant kinematic model of the regional 
joints of a 7R anthropomorphism robot upper limb.  

II. A THEOREM ON REDUNDANT ROBOT LIMB  
MANIPULABILITY RESOLUTION 

The proposed theorem is based on an important property of 
theory of determinants which, according to us, has been less 
used in robotics and particularly in the framework of robot 
manipulability theory : the Cauchy-Binet formula. This 
formula can be expressed as follows (Cauchy, 1815 [3]): let us 
consider two mn× matrices ][ 21 m .....   AAAA = and 

][ 21 m .....   BBBB = with iA , iB  vectors of the n-dimensional 

real space (naturally m<n) and let us define 
mii ....1

A and 

mii ....1
B as the mm× matrices formed by rows mii  ,...,1  of A and 

B respectively; we get : 

A Theorem on the Manipulability of Redundant 
Serial Kinematic Chains

B.Tondu

Engineering Letters, 15:2, EL_15_2_27
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



 
 

 

∑
≤<<<≤

=
n

T

  mi ... 2i  1i  1
mi...1imi...1i

))det(det(  )det( BABA                  (2) 

where the summation is over the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

 m-combinations of 

{ }  ..., ,2 ,1 n . Besides the original proof given by Cauchy [3], 
similar proofs can be found in classic algebra books [4], [5]. If 
A=B, the Cauchy-Binet formula comes to : 
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which is also called Lagrange’s identity [5]. This identity 
founds the generalization of the Pythagorean theorem [6]-[7] : 
in the n-dimensional real vector space the square of the volume 
of a m-dimensional parallelepiped can be determined as the 

sum of the squares of the volumes of its projections on the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

 

m-dimensional coordinates planes.  
In the case of a redundant robot, the robot Jacobian matrix J 

to be considered is a nm× matrix with m < n. In consequence JT 
is a mn× matrix and the Cauchy-Binet formula can be applied. 
If we note [ ]n21  .....    JJJJ = where n   i  1 i, ≤≤J designates the ith 

column of J, the rows mii  ,...,1 of JT are also the 

mii  ,...,1 columns of J. We get :  

∑
≤<<<≤

=
n

T

  mi ... 2i  1i 1
mi2i1i

2 ) ..., , ,(det  )det( JJJJJ                        (4) 

This relationship resolves the computation of det(JJT) into the 
sum of the m-minors of J. Furthermore, the interesting 
following corollary can indeed be deduced :  

{ }
   

(5)                               0  ) ...., , ,det(                            
, n ..., 2, 1,   ofn combinatio-m ) ,...., ,(     0  )det(

mi2i1i

m21
=

∀⇔=
JJJ

JJ iiiT

The robot in consequence becomes singular if and only if all 
m-minors of J are equal to zero.  

We are now going to adapt equ.(4) formula to the 
manipulability notion in introducing an original concept of 
subrobot of a redundant robot.   

A. Notion of subrobot of a redundant robot 
Let us consider a n-d.o.f. robot limb whose axes are 

numbered from 1 to n. Let us now consider a m-combination of 
{ }  ....,2 ,1 n  whose elements are numbered from the smallest to 
the biggest niii     ....       1 m21 ≤<<<≤ and let us define the 
kinematic structure derived from the n-d.o.f. robot whose 

m21  ...., , iii axes are supposed to be mobile and the other ones 
‘frozen’.  We propose to call m-order subrobot such kinematic 
structure derived from the original robot. When the original 
robot is composed of n mobile link n  i  1 , i ≤≤C defined by the 
common perpendicular to axis i and i+1 – expected the 
end-effector  nC – the m-order subrobot is composed in 
consequence of m mobile links resulting of the combination of 
proximal links jointed by frozen axis. A given n-d.o.f. has 

consequently ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

 m-order subrobots. 

Furthermore, it is well known that a given robot limb kinematic 
structure can be entirely characterized by its Jacobian matrix 
which constitutes its differential model. An important result in 
industrial robotics gives a general expression of the robot 
Jacobian matrix in associating a frame Ri to each robot link as 
illustrated in Fig. 1.a.  
 

(a) 
 

(b) 
 
Fig.1. Kinematic analysis for determining the Jacobian matrix 
components of a subrobot derived from a serial n-d.o.f. robot 
limb, (a) Classical kinematic scheme of a serial n-d.o.f. robot 
limb by associating to each link Ci a frame Ri placed on the 
common perpendicular to axis i and i+1: according to R.Paul’s 
notation [8] – preferred in this paper to J.Craig’s notation [9] – 
the frame Ri is placed on the axis i+1 and the last frame whose 
origin is noted P is attached to the end-effector Cn , (b) Effect of 
‘freezing’ the axis i mobility : the link Ci is now rigidly fixed to 
the link Ci-1 (see text).  
 

The robot Jacobian matrix associated to the point P of the 
end-effector can be written in a reference frame Rj as follows: 
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Let us consider the m-order sub-robot defined by the 
combination ) ...., , (  m21 iii . The same relation (6) can be applied 
to any considered subrobot. Let us assume, for example, that 
the axis i is frozen. As illustrated in Fig.1.b, the frame Ri 
associated to link i joining axis i to axis i+1 must now be 
considered as the frame associated to ‘link (i-1) + link i’ joining 
axis (i-1) to axis (i+1) : the new jzi axis is the same but the new 
origin – denoted O’i in Fig. 1.b – has shifted. Concerning the 
robot Jacobian matrix the ith column disappears and the i+1th 
column is now composed of the same jzi component and a new 

→
PO i' 

j
i

j ×z
 component but this last one is equal to the original 

one since →
iOO i' 

is collinear to zi as illustrated in Fig. 1.b. Let us 

note 
mi...2i1isubrobot J the Jacobian matrix of the considered 

subrobot. It results that its determinant can be directly derived 
from the knowledge of the corresponding 

mi2i1i
 ..., , , JJJ  

column vectors of the J matrix as follows (since the robot 
Jacobian determinant is independent from any frame choice no 
reference frame is mentioned) : 

 ) ..., , ,det(  det
mi2i1imi ... 2i ,1isubrobot JJJJ =          (7) 

In other terms, the determinant of any considered subrobot of 
the original robot is the corresponding minor of the robot 
Jacobian matrix. 

Let us now interpret the notion of subrobot in the case of a 
task performed by a n-d.o.f. robot in a m-dimensional 
operational space – i.e. a task needing only m of the n available 

d.o.f. of the considered robot. In this case, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

m-order 

subrobots can be defined. We think that the existence of these 
subrobots characterize in some way the robot redundancy. To 
perform its m-dimensional task, the redundant robot can use 
everyone of these sub-robots. Without trying to demonstrate it 
rigorously we think that the optimal character of  
Moore-Penrose pseudo-inverse physically corresponds to 
choose the ‘best’ subrobot minimizing at any time of the 
redundancy control the velocity norm in the robot operational 
space. The resulting non-cyclicity property would come from 
this ‘blind’ choice of a non-redundant inverse kinematic 
solution in the form of a subrobot choice independently of the 
closed character of the performed operational path. Inversely, 
cyclic methods as Seraji’s configuration control method [10] 
imposes in some way a given subrobot or a fixed subrobots 
combination.  

Let us go back now to our manipulability problem. Thanks to 
this subrobot notion, we are now able to derive from 
fundamental relationship (4) an original theorem on redundant 
robot manipulability. 

B. Resolution theorem of redundant robot limbs 
manipulability 
Let us note by robotω the manipulability of the considered 

redundant robot limb and by 
mi ... 2i 1isubrobot ω the manipulability 

of the sub-robot ) ,....,  ,( 21 miii . Since each of the considered 
subrobots is non-redundant, we get : 

) ..., , ,det(det 
mi2i1imi ... 2i 1isubrobot mi ... 2i 1isubrobot JJJJ ==ω (8) 

The following relationship results in consequence : 

∑ ∑
≤<<<≤

−==
n  mi ...  2i  1i  1

2
subrobotm

2
m...i2i 1isubrobot 

2
robot  ωωω      (9) 

In other terms, the manipulability squared of a redundant robot 
limb in a m-dimensional operational space is equal to the sum 
of manipulability squared of all m-order subrobots. The equ. (5) 
corollary can now be explained as follows : a redundant robot is 
singular in the performance of a m-dimensional task if and only 
if all its m-order subrobots are singular. 

Beyond the meaning that this theorem opens about the 
passage from non-redundancy to redundancy in robotics it 
offers also a great practical advantage : it allows to substitute to 
the complex manipulability computation of a redundant 
robot-limb a sum of factors much more simple to express in 
closed form because they correspond to manipulability criteria 
of non-redundant kinematic structures. In a one hand, 
singularity analysis is indeed helped through the look for 
singular configuration of each concerned subrobot; in a second 
hand, the look for maximum manipulability configuration is 
helped as follows. From  

robotrobot
2
robot d2  d ωωω =                      (10) 

we get indeed in all non-singular configuration the equivalence 
: 

0  d      0  d robot
2
robot =⇔= ωω                                                            (11) 

The maximum manipulability configuration according to a 
given joint variable qi can be in consequence determined from 
the equivalence : 

∑
−

=∂
∂

⇔=∂
∂

subrobotsorder  m i

2
mi ... 2i 1isubrobot 

i

2
robot 0             0    qq

ωω          (12) 

The look for the robot maximum configuration can so be led as 
follows : a joint variable is chosen and the value of this variable 
maximizing the manipulability criterion can be determined 
from relation (12). The corresponding optimal value is 
integrated in general manipulability expression and the process 
is repeated until all optimal joint values have been obtained. In 
a similar way, the optimization of the studied redundant 
structure can be made in order to determine the specific robot 
geometric parameter ratios maximizing the robot 
manipulability. We illustrate now this approach in the case of a 
4R redundant regional structure of a anthropomorphic upper 
limb model.  
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III. APPLICATION TO MANIPULABILITY ANALYSIS OF 
ANTHROPOMORPHIC ROBOT UPPER LIMB 

The 4R kinematic model of the upper limb regional structure 
illustrated in Fig. 2 is considered : the shoulder is reduced to a 3 
d.o.f. spherical joint and the elbow is a revolute joint; the arm 
length is noted A and B the ‘forearm + hand’ length. From a 
previous study about the kinematic modeling of a 7R 
anthropomorphic robot upper-limb [11] whose the 4R 
considered structure is the “regional structure”, the following 
expression of the robot Jacobian in frame R4 is as follows : 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−+−

++
=

00
0)(

0)()(
  

43432

4434324232

43432
4

SACSSAC
BSBCASCCBCSBSCAC

BBACCBACSC
J      (13) 

where θ1 )     0 ( 1 πθ ≤≤  designates the shoulder 
abduction-adduction, θ2 )     2/ ( 2 πθπ ≤≤−  the shoulder 
flexion-extension, θ3  ) 2/    /2 ( 3 πθπ ≤≤− the internal/external 
arm rotation and θ4 )     0 ( 4 πθ ≤≤  the elbow flexion-extension. If 
the concerned task consists in positioning the point P, the 
operational space is a 3-dimensional space when the joint space 
is a 4-dimensional space. 

 

 
Fig.2. Kinematic model of the considered anthropomorphic 
redundant 4R structure (the frame notations Rbase to R4 are 
similar to the ones used in our study about the kinematic 
modeling of a 7R anthropomorphic upper-limb robot [11]). 
 
 The manipulability of this redundant robot will be denoted 
by ω4R and we will note ω123 , ω124 , ω134 and ω234 the 
corresponding 3-order subrobots manipulabilities. We get : 

⎪
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and : 
2
234

2
134

2
124432

2
4   ) , ,( ωωωθθθω ++=R                                               (15) 

A. Singularity analysis 
The singularities of our redundant 4R kinematic structure 

correspond to the joint configurations making zero the 4 
subrobot manipulabilities. The first subrobot ‘123’ is always 
singular since the subset of mobiles axes 1, 2 and 3 is not able to 
position the point P in a volumic area. The joint conditions 
making zero each of three other subrobot manipulabilities can 
be gathered in a table as the following one where each minor is 
resolved into elementary factors (Table I). 
 

minor  Factors 

ω124 S4 C2(A+B C4) − BS2C3S4

ω134 S4 S3 C2 
ω234 S4 C3 

  Table I. Factors making zero each subrobot manipulability   
 
A simple factor analysis leads to highlight two singular 
configurations : 

- S4=0 , corresponding to the well-known elbow 
singularity occurring when the elbow is in full flexion 
or extension ; 

- C2=0 and C3=0 , corresponding to a shoulder-type 
singularity : arm and forearm are placed in the 
horizontal plane (Obase , Xbase , Ybase). 

 
This result is in accordance with Kreutz-Delgado et alia classic 
work on the kinematic analysis of 7R robots [12] but our 
approach leads to a rigorous proof when the mentioned paper 
deduces the 7R robot singularities from a qualitative study of 
the robot Jacobian columns.  

B. Manipulability analysis 
 We pursue our study by a more global analysis of the robot 
manipulability in order to determine and quantify the 
contribution of the redundancy. Let us start from the subrobot 
‘124’ : it corresponds to the regional structure of the 
fundamental non-redundant anthropomorphic 6R robot. If we 
put θ3 = 0 in ω124 expression, we get indeed the corresponding 
manipulability expression of this 3R regional structure we will 
denote ω3R : 

2424423     ) ,( BCACABSR +=θθω                                                (16) 
The two conditions making zero the 3R model manipulability 
corresponds to the two well-known singularities [13] : 

- elbow singularity, occurring when S4 = 0 i.e. when the 
elbow is in full flexion or extension ; 

- shoulder singularity, occurring when (AC2 + BC24) = 0 
i.e. when the end point P is located on the Ybase axis as 
indicated by the corresponding robot direct kinematic 
model : 
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Let us try now to determine the robot maximum manipulability. 
We start optimizing the θ2 angle : 

)  )(  (2  ) ,(
242242

2
4

22

2
42

2
3 BSASBCACSBAR ++−=∂

∂
θ

θθω         (18) 

leading to the optimal relationship between θ2 et θ4 angles :  
0    242 =+ BSAS .                        

(19)  
If we reintegrate this relation inside the manipulability 
expression, we can pursue the optimization process according 
to the angle θ4 . From  

4
22

44
2opt

3R 2      )( ABCBAABS
θ

++=θω                    (20) 
we get :   
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)]([d
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Solving the second order equation in C4 leads to the following 
maximum manipulability : 

ABBABABAC

ABCBAABSopt
R

6/]12  )()([  

   with          2      

2222222
4

4
22

43

++++−=

++=ω
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corresponding to the optimal configuration : 

))/((atan     and  ) ,1(atan2  4424
2
44 BCABSCC +−=−= θθ                  (23) 

It can be asked finally if a privileged A/B ratio can be selected. 
Let us consider the λ-ratio between 0 and 1 defined as follows : 

)/(  BAA +=λ                    (24) 
The new manipulability expression function of  λ is then : 

4
22

4
3

3 )1(2)1()1()(  )( CSBAopt
R λλλλλλλω −+−+−+=                       (25) 

A simple graphical simulation leads to determine the optimal 
λ-ratio : λ = 0.5, which corresponds to a ‘forearm + hand’ 
length equal to the arm length. Fig. 3 illustrates the 
manipulability variation in function of both the shoulder 
flexion-extension angle and the elbow flexion-extension angle 
(the A+B sum is normalized to 1 with numerical values for A 
and B equal to 0.5). The zero-manipulability sides correspond 
to the bound elbow singularity when the middle ‘singular 
valley’ bottom corresponds to the internal shoulder singularity. 
The tops of the ‘hills’ corresponds to the manipulability 
maxima. Let us compare this surface with the corresponding 
one derived from the redundant 4R kinematic manipulability 
illustrated in Fig. 4.a in the case  θ3 = 0. The benefit of the 
redundancy clearly appears : the 3R ‘singularity valley’ is now 
markedly raised. The same manipulability simulation 
performed with  θ3 = +/− π/2 is given in Fig. 4.b : an internal 
singularity re-appears corresponding to the double condition 
previously highlighted :  θ2 = +/− π/2 and θ3 = +/− π/2. These 
two graphs emphasize in which way the adding of the 
internal-external arm rotation (θ3   angle) improves the 
kinematic behaviour of the non-redundant arm : thanks to it, 
and if we consider a human-like θ3   joint range limited to 

[− 90°, + 90°] the internal shoulder singularity is now removed 
at bounds of the robot workspace. 
 It can also be observed that, as in the non-redundant 3R 
case, points of maximum manipulability exist in the redundant 
case and, in consequence, an optimum A/B ratio optimizing the 
manipulability in those points can be determined.  Let us try to 
do it in comparison with the non-redundant case. Let us 
privilege the case θ3 = 0, which appears like a middle and 
partic- 

 
Fig.3. Manipulability of the fundamental non-redundant 3R 
anthropomorphic kinematic structure. 
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(b) 
Fig.4. Manipulability of the considered redundant 4R 
kinematic structure at constant θ3 joint angle (A = B =0.5), (a) 
θ3 = 0 case, (b) θ3 = +/− pi/2 case. 
 
ularly  favourable  value of   this  joint  and  let us look for 
corresponding optimal θ2  and θ4 values. We get first : 

) ,(    ) ,0 ,(  42
2

2
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432
2

2
4 θθθ

ωθθθθ
ω

∂
∂==∂

∂ RR                                                   (26) 

and, in consequence, the same relationship (19) occurs between 
θ2  and θ4 to maximize the manipulability function of  θ2 . It 
results the final expression of the manipulability as a function 
of 
both θ4 and  the  λ-ratio : 

2
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4

22
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4

2
 03 ,4 )1()1(2)1()1()(  ) ,( SCSBAopt

R λλλλλλλλθω
θ

θ −+−+−+−+==  

                       (27) 
Fig. 5.a illustrates the variation of this criterion in function of θ4  
and λ : it appears clearly that in the elbow flexion-extension 
physiological-like range [0, +180°] and since λ  belongs to 
[0,1] only one optimal solution in θ4  and λ exists which 
maximizes the robot manipulability. Because it also appears 
difficult to solve in closed-form the search for the optimum θ4  
configuration, we propose to do it numerically, from the 
graphical variation of the manipulability with θ4  angle at 
constant λ – ratio, as illustrated in Fig. 5.b.  

(a) 

(b) 
Fig.5. Maximum manipulability in  θ2 of the considered 4R 
redundant kinematic structure (for θ3 = 0), (a) Manipulability as 
a function of the elbow flexion-extension  angle θ4 and the λ 
-ratio, (b) Corresponding constant curves λ -ratio.    
 For each value of the λ – ratio it is possible to determine 
the corresponding θ4-angle optimum value, from knowledge of  
which the maximum manipulability can be deduced, as 
illustrated in Fig. 6. First it appears (Fig. 6.a) that the optimum 
λ value maximizing the robot manipulability is now about 0.4 
instead of 0.5 in the case of the non-redundant robot. It is 
interesting to note that this ratio is relatively well in accordance 
with human biometric data. If we measure A like the distance 
between the glenohumeral joint center and the elbow pivot, and 
B like the distance between the elbow pivot and the hand center 
of mass, we get from New Orleans’s Naval Biodynamics 
Laboratory data concerning a mid-size male aviators 
population ([14], page 44) the following mid experimental 
estimations of A and B and the corresponding λ – ratio value : 

 0.45   cm, 34.6   cm, 28.6  expexpexp ≈≈≈ λBA            (28) 

A more accurate estimation of the optimal theoretical λ-ratio 
value would necessitate to take into account each specific joint 
velocity performance. This is not made in our analysis which is 
essentially dedicated to highlight the potentiality of our 
manipulability theorem. 
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  (a) 

  (b) 
Fig.6. Determination and comparison of maximum 
manipulabilities and corresponding optimal elbow 
flexion-extension (θ4) angle of the non-redundant 3R kinematic 
model and the redundant 4R kinematic model (for  θ3 = 0), (a) 
Maximum manipulability versus λ-ratio, (b) Corresponding 
optimum θ4 angle versus λ-ratio. 
   
 If we pursue now our theoretical analysis, it results in the 
case of  our 0.4 optimum λ value a 20 % manipulability 
increase of the maximum manipulability in comparison with 
the non-redundant 3R kinematic structure. Moreover it is 
interesting to note that, due to the global bell-shape of the 
maximum manipulability/λ-ratio curve, the choice of the λ  
value maximizing the maximum manipulability increases all 
the ‘manipulability surface’ as illustrated in Fig. 7 determined 
for A=0.4, B=0.6 which can be compared with Fig. 4.a 
determined for A=0.5, B=0.5.  
 Furthermore, as illustrated in Fig. 6.b., the optimal elbow 
flexion-extension angle maximizing the manipulability is close 
to 80° when the corresponding 3R model optimal θ4 
flexion-extension angle is close to 70°. It is interesting to 
compare this result with the manipulability expression of the 
very simple model of the human arm limited to shoulder and 
elbow flexion-extension defining a end-point movement in the 
vertical plane (0base, Xbase, Zbase) : 

)1()(    4
2

42 λλω −+== SBAABSR                (29) 

 
In this plane model, the elbow joint optimal value is evidently 
equal to 90°; this value corresponds in appearance to our 
day-life use of machine control lever or wheel. Now this value 
surprisingly decreases to 70° in the non-redundant spatial 3R 
model but the redundant 4R model leads to a more ‘natural’ 80° 
optimal value. 
 

 
Fig. 7. Manipulability of the redundant 4R kinematic structure  
with ‘optimal’ λ-ratio equal to 0.4 (A = 0.4, B = 0.6) determined 
at θ3 = 0 : in comparison with Fig. 4.a graph all points are raised 
until 20%. 

IV. CONCLUSION 
We have proposed a new approach for helping the 

manipulability analysis of redundant serial kinematic chains – 
artificial manipulators as natural limbs. From a closed-form 
resolution of the det(JJT) computation we have proposed to 
interpret, according to Yoshikawa’s manipulability notion, any 
redundant n d.o.f. robot operating in a m-dimensional 

operational space (m < n) as the set of the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

non-redundant 

m d.o.f. kinematic chains obtained in freezing (n − m) d.o.f. of 
the original redundant robot. If we call subrobots of the 
redundant robot these subkinematic structures - whose 
determinants of their corresponding Jacobian matrices are the 
m-minors squared of (JJT) – the following theorem results : the 
manipulability square of a redundant robot is the sum of the 
manipulabilities squares of the subrobots constituting it. It is 
then substituted to the  n-dimensional manipulability problem 

associated to a n d.o.f. redundant robot ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n

m-dimensional 

manipulability problems associated to m d.o.f. non-redundant 
robots. This substitution can largely help the manipulability 
analysis of redundant kinematic serial structure in particular to 
determine their singularities and the optimal geometric 
parameters maximizing the robot manipulability.     
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