
 
 

 

  
Abstract—A Lagrangian-Eulerian numerical scheme for the 

investigation of bubble motion in turbulent flow is developed.  The 
flow is analyzed in the Eulerian reference frame while the bubble 
motion is simulated in the Lagrangian one.  Finite volume scheme 
is used, and SIMPLEC algorithm is utilized for the pressure and 
velocity linkage.  The Reynolds stresses are modeled by the RSTM 
model of Launder.  Upwind scheme is used to model convective 
fluxes. The Results obtained of flow field simulation were 
compared with the experimental results and was shown good 
agreement with experimental data.  The Gaussian Filter White 
Noise is incorporated to simulate the turbulent fluctuation 
velocities.  The bubble diameter is found by the use of 
Rayleigh-Plesset equation.  Various forces in the equation of 
motion of the bubble are considered. The Buoyancy, Saffman lift, 
drag, pressure, and change of volume forces are carefully applied. 
The effects of all of these forces on bubble path are also examined. 
The bubbles are created in the low pressure zones, and then 
traced in the flow field.  It is observed that the bubble diameter is 
highly dependent on the mean stream pressure, and its location.  
The results are compared with the other published works, and 
have an acceptable accuracy. 
 

Index Terms—Two-phase flow, bubble, gate slot, 
Lagrangian-Eulerian approach, cavitation.  
 

I. INTRODUCTION 
   The first intensive study on outlets and gates was 

conducted by Kohler[1]. He reviewed criterions of gate 
selection at different condition. Use of Computational Fluid 
Dynamics (CFD) in hydraulic works was limited Because of 
difficulty of numerical simulation and common of experimental 
method and model test. CFD has a great potential to predict 
flow details, turbulent intensity and pressure disterbution in the 
gate. Among accomplished studies for numerical simulation of 
gate slot, can mention to Raoufi and shams [2]. Because of 
abrupt pressure drop in gate slots, probability of creation of 
cavitation is high. 

In the liquid flow, cavitation generally occurs if the pressure 
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in certain locations drops below the vapor pressure and 
consequently the negative pressure are relieved by the 
formation of gas-filled or gas and vapor-filled cavities. 
Cavitation occurs by the sudden expansion and the volumetric 
oscillation of bubble nuclei in the water due to the ambient 
pressure change. The size of bubble nuclei is in the order of 
O(10 )[3]. Formation and collapse of bubble in liquids are used 
in many technical applications such as lithotripsy, ultrasonic 
cleaning, bubble chambers, and laser surgery [4].  Bubble 
dynamics has been the subject of intensive theoretical and 
experimental studies since Lord Raleigh (1917) found the 
well-known analytic solution of this problem for inviscid 
liquids. The advanced theory of cavitation developed by Plesset 
(1949) who found the differential Rayleigh – Plesset (RP) 
equation for the bubble radius [5]. The RP equation described 
the dynamics of a spherical void or gas bubble in viscous 
liquids and is also used as a first approximation in more 
complex problem such as cavitation near solid boundaries. 
Cavitation could be observed in a wide variety of propulsion 
and power systems like pumps, nozzles, injection, marine 
propellers, hydrofoils and underwater bodies.   

The usual approach for predicting the cavitation inception 
pressure for a hydraulic device is to build and evaluate a 
small-scale model. While within certain restricted classes of 
turbomachines, the empirical scaling procedure may work 
satisfactorily, a physics-based predictive capability which 
integrates the known variables affecting the cavitation 
inception problem has not been developed. 

Two-phase flow could be analyzed as two fluids in the 
Eulerian/Eulerian approach, or as a continuum phase and 
another bubble phase in the Eulerian/Lagrangian or trajectory 
approach.  The bubble equation of motion is solved 
simultaneously with the RP equation to determine its trajectory 
(Eulerian/Lagrangian method) [6]. 

Meyer et al correlated a numerical simulation of the 
cavitation on a Schiebe headform.  They developed a computer 
code to statistically model cavitation inception, consisting of a 
numerical solution to the RP equation coupled to a set of 
trajectory equations. Using the code, trajectories and growths 
were computed for bubble of varying initial sizes. An off-body 
distance was specified along the , and the bubble was free to 
follow an off-body trajectory. They also showed that the 
cavitation inception is sensitive to nuclei distribution [7]. 

Chahine [8] has pursued a different approach to study the 
dynamics of traveling cavitation inception bubbles using 
inviscid potential flow, but including the modifications of the 
flow by the nucleus, and allowing the nucleus to deform. These 
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calculations have provided detailed information about the 
capture, growth, and collapse of a single bubble in a Rankine 
vortex.  

Hsiao and Pauley [9] completed a Reynolds-averaged 
Navier-Stokes computation of a tip vortex flow from a 
finite-span hydrofoil. The Rayleigh-Plesset equation for bubble 
growth was coupled with Johnson and Hsieh’s [10] trajectory 
equation to track single microbubbles through the steady-state 
flow field and thereby infer cavitation inception. The larger 
bubbles controlled the cavitation index, and their likelihood of 
cavitation was less dependent on the release location than for 
the smaller bubbles. The present work builds on this type of 
soft coupling, yet includes a spectrum of nuclei sizes, the effect 
of turbulence on trajectory and pressure, and some additional 
forces. 

Kevine J. Farrell developed an Eulerian/Lagrangian 
computational procedure for the prediction of the cavitation 
inception.  The trajectories were computed using Newton’s 
second law with models for various forces acting on the bubble. 
The growth was modeled using RP equation. Cavitation 
inception data show that inception indices generally decrease 
with increasing velocity, which is contrary to expectations 
based on the increased flux of nuclei to the minimum pressure 
region [11].   

Can F. Delate and et al [12] considered 
quasi-one-dimensional steady-state cavitating nozzle flows by 
taking into account the effect of bubble nucleation. The 
nonlinear dynamics of cavitating bubbles is described by the 
classical RP equation where a polytropic law for the partial gas 
pressure is employed by taking into account the effect of 
damping mechanisms by an effective viscosity.  

3D Reynolds-averaged Navier-Stokes equations were used 
to investigate flow around tip of a finite-span hydrofoil by 
Hsiao and Chahine (2004) [13]. They studied the behavior of a 
bubble inside tip vortex using coupling Navier-Stokes 
equations, Rayleigh-Plesset equation and trajectory equation of 
bubble. Rayleigh-Plesset equation with considering term of slip 
velocity was solved.  

 Zhang and Ahmadi recently computed an 
Eulerian-Lagrangian computational model for simulations of 
gas-liquid-solid flows in three phase slurry reactors. They used 
a two-way interaction between bubble-liquid and 
particle-liquid are included in the analysis. But, they did not 
consider the bubble growth in their analysis [14]. 

In this study, an Eulerian–Lagrangian method for liquid–gas 
flows in gate slot is developed. In this model, the liquid is the 
continuous phase and the bubbles are treated as the dispersed 
discrete phases. The microbubbles are assumed to remain 
spherical and their shape variations are modeled using the 
Rayleigh-Plesset equation. The volume-averaged, 
incompressible Navier–Stokes equation is solved for the liquid 
phase. A two dimensional model is create to simulate gate slot 
of bottom outlet of karoon3 dam located in Khuzestan region. 
A bottom outlet serves to regulate or release water impounded 
by a dam.  The flow in the laboratory model of gate slot was 
studied for different flow rates. A physical model with a scale 

of 1:12 is built according to the Froude Law. The main 
purposes of the model tests are to measure pressure in the gate 
slote. Numerical simulation is done at flow rates of 75, 107 and 
127 m3/s. The simulation results for flow field are compared 
with the experimental data and have good agreement. The 
Lagrangian method is used to investigate trajectories of bubbles 
with considering drag, pressure gradient, saffman lift and 
volume variation forces acting on bubble. Microbubbbles are 
released at the different locations in the gate slot.  Effect flow 
rate on the bubble motion is studied. 

  

II. FLOW SIMULATION 

A. Mean-flow model 
For an incompressible fluid flow, the equation of continuity 

and balance of momentum for the mean motion are given as: 
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Where iu  is the mean velocity, ix is the position, t is the 
time, p is the mean pressure, ρ is the constant mass density, 
υ is the kinematic viscosity, and 

jiij uuR ′′= is the Reynolds 

stress tensor. Here, iii uuu −=′  is the i th fluid fluctuation 
velocity component. The RSTM provides for differential 
transport equations for evaluation of the turbulence stress 
components. 
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Where the turbulence production terms are defined as: 

ij
k

i
jk

k

j
jkij PP

x
uR

x
u

RP
2
1, =

∂
∂−

∂
∂

−=
                                                    (3) 

With P being the fluctuation kinetic energy production.  Here 
is tv the turbulent (eddy) viscosity; and 6.0,8.1,0.1 21 === CCkσ  
are empirical constants. 

The transport equating for the turbulence dissipation rat, ε  , 
is given as: 
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In Eq. (1), 
iiuuk ′′=

2
1  is the fluctuation kinetic energy, and ε  

is the turbulence dissipation. The values of constants are [15]: 
.92.1,44.1,3.1 21 === εεεσ CC                                                 (5) 

B.  Fluctuating velocity  
The dispersion of small particles is strongly affected by the 

instantaneous fluctuation fluid velocity. The turbulence 
fluctuations are random functions of space and time. In this 
study, the continuous filter white-noise (CFWN) model 
described by Thomson (1987) is used to generate instantaneous 
fluctuating fluid velocity [16]. Accordingly, the ith component 
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of instantaneous fluid velocity satisfies the following stochastic 
equation 
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Here, iu 2′  is the mean-square of the ith fluctuation velocity, 
and the summation convention on the underlined indices is 
suspended. 
In equation (6), 1T  is the particle integral time. For small 
particles that move with the fluid, the particle integral time may 
be approximated by the fluid point Lagrangian integral time. 
The latter is related to fluctuating kinetic energy and dissipation 
rat, i.e. 

ε
kCT LL =                                                                                   (7) 

With the constant 3.0≈LC  [17]. Therefore, 

ε
kTT Ll 3.0≈≈                                                                            (8) 

In equation (6), )(tiζ  is a Gaussian vector.  In the numerical 
simulation, the amplitude of )(tiζ   at every time step is given as 

t
Gt i

i Δ
=)(ζ                                                                            (9) 

Where 
iG  is a zero-mean, unit variance independent 

Gaussian random number and tΔ  is the time step used in the 
simulation. Each entire time sample is then shifted randomly 
between 0 to tΔ  to generate an appropriate white-noise time 
history. 

C.  Improved Spherical Bubble Dynamics Model 
The behavior of spherical bubble in a pressure field is 

usually described with a relatively simple bubble dynamics 
model known as the Rayleigh-Plesset equation (Plesset 1948) 
[12]: 
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Where R  is the time dependent bubble radius, ρ is the 
liquid density, vp  is the vapor pressure, gp is the gas pressure 

inside the bubble, p is the ambient pressure local to the 
bubble, μ  is the liquid viscosity, γ is the surface tension. If 
the gas is assumed to be perfect and to follow a polytrophic 
compression relation, then one has the following relationship 
between the gas pressure and the bubble radius: 
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Where 0gp  and 0R  are the initial gas pressure and bubble 

radius respectively and k is the polytropic gas constant.  The 
internal process inside the bubble is assumed to be isentropic.  
Equation (10) does not consider the effect of slip velocity 
between the bubble and the carrying liquid. To account for this 
slip velocity, an additional pressure term ( ) 4/

2
bUU
rr

−ρ  is added 
to the classical Rayleigh-Plesset equation [4]. 
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For initial conditions, it is usually appropriate to assume that 
the microbubble of radius Ro is in equilibrium at t = 0 in the 
fluid and dR/dt|t=0 = 0. 

C.  Bubble Motion Equation 
Several prominent scientists such as Basset [18], Boussinesq 

[19] and Maxey [20] have derived the motion equation of a 
spherical particle subjected to the force of gravity in a fluid. 
Use of numerical simulation to studying particle dispersion and 
deposition in the turbulent flows was reported by Ahmadi et al 
[21] and Shams et al [22].  By considering the forces acting on 
the spherical bubble with radius R, the equation of motion is: 
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Where terms with the subscript b are related to the bubble 
and those without a subscript are related to carrying fluid. bV  
and 

bA  are the bubble volume and projected area, which are 
equal to 23/4 Rπ and 2Rπ respectively. The bubble drag 
coefficient 

DC  in equation (13) can be determined by using the 
empirical equation of Hagerman and Morton (1953) [9]: 
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III. RESULTS 
 A 2-dimensional model is used to simulate numerically. The 

finite volume method with unstructured meshes is used to solve 
the two dimensional incompressible Navier–Stokes equations. 
The velocity and pressure coupling used the SIMPLEC 
algorithm. RSTM model is used to model turbulence. 
Maximum relative error is considered smaller than 0.0005.  A 
grid with about 60,000 cells is generated for analyzing the flow 
in the gate slot. The grid independency is checked in order to 
make sure that the grid numbers is sufficient and has enough 
accuracy. Fig.4 shows the geometry and the details of the 
computational grid for the gate slot model. The growth and 
radius change of bubbles are modeled by the Improved 
Rayleigh-Plesset equation. The velocity fluctuations have a 
significant effect on the bubble size and its trajectory.   Some of 
the previous researches ignored this effect. Here, the CFWN 
model is use to calculate velocity components. The bubble 
motions are simulated by the Lagrangian trajectory analysis 
procedure. The radius of bubbles is small, therefore the effects 
of interaction between bubbles with carrier flow are neglected 
and one-way coupling is used. Forces acting on the bubble 
include drag, buoyancy, pressure gradient, Saffman lift and 
volume variation. Bubble with diameter about 50-micron 
release in the slot gate. 

Engineering Letters, 15:2, EL_15_2_29
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



 
 

 

 
Fig.1 Geometry and generated grid for gate slot 

 Because pressure have strong effect on bubble growth and 
motion, confident of its precision cause that analysis is accurate. 
Fig.2 shows Comparison between the numerical simulation and 
the experimental data for the mean pressure in the gate slot. The 
numerical results have admissible agreement with the 
experimental data. Major reason error between CFD and 
experimental results is two-dimensional simulation, while 
nature of flow in the gate slot is three-dimensional.   

 
Fig.2 Comparison of numerical and experimental results for mean pressure at 

the different flow rate in the gate slot 
 

The numerical simulation shows that two vortex in the gate 
slot is created (Fig.3). Then, pressure in these locations is 
strongly decreased.   The counters of pressure at the different 
flow rate are indicated in Fig.4. It shows that with increasing 
the flow rate, pressure drop increase and vortex grow. With 
growing vortex, low speed regions in the gate slot increase and 
then drag force acting on bubble decrease in these regions. 
With decreasing drag force, forces of pressure gradient and 
volume variation are strongly effaced on the bubble trajectory.  
The pressure gradient transfers the bubble from high-pressure 
regions to low pressure (Fig.6). This affect is strong near vortex 
and tendency of the bubble to the vortex center (low-pressure 
region) increase. The bubble diameter in these regions is big 
because pressure is low. Inside vortex, this force also has little 
influence on bubble motion and force of volume variation is 
dominant. Influence of this force cause random motion of 
bubble in this region.  

 
Fig.3 Creation the vortexes in the gate slot 

 
a) 

 
b) 

 
c) 

Fig.4 Contours of pressure in the gate slot at flow rate a) 75 b) 107 c) 125 m3/s 
 
For low flow rate, the bubble follows an iterative rotating 

motion because drag force acting on the bubble is stronger than 
pressure gradient force. Therefore, bubble follows from flow 
pattern. 

For flow rate 125 m3/s, if the bubble release at away regions 
from vortex, drag force is dominant. Behavior of the bubble in 
these regions is same flow pattern (Fig.7).      

It shows that the bubble trajectory in away regions of vortex 
is independent of flow rate.  Because force of pressure gradient 
is weak, it cannot transfer the bubble to vortex. Therefore 
bubble follow flow pattern (Fig. 7, 8 and 9). 
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a) 

 
b) 

 
c) 

Fig.5 Contours of cavitation index in the gate slot at flow rate a) 75 b) 107 c) 
125 m3/s 

Microbubbles are initial nuclei for formation hydrodynamic 
cavitation[3]. Possibility of existence these nuclei 
(microbubbles) are in whole of fluid and its boundaries. These 
microbubbles convert to cavitation bubble till they attain to 
low-pressure regions. In these regions, abrupt growth is created 
and bubbles radius enlarges suddenly.  Then, cavitation can 
predicate with scrutiny of microbubbles trajectory.  

As shown in the results, microbubbles, which release near 
the gate boundaries, move close to boundaries. They enter to 
low-pressure regions, therefore cannot growth and convert to 
cavitation bubbles.  

It is obvious that microbubbles, which are near vortex inside 
gate, move inside gate because of influence of pressure 
gradient force. These microbubbles grow and convert to 
cavitation bubbles. By increasing flow rate, vortex enlarges and 
then, many microbubbles can change to cavitation bubble. 
Then, it is shown that probability of occurrence of cavitation 
increase by increasing flow rate. Contours of cavitation index 
that is criterion for cavitation indicate rectitude of this claim 
(Fig.5). From this method can used to predicate probability of 

occurrence of cavitation.  

 
a) 

 
b) 

 
c) 

Fig.6 Bubble trajectory in the gate slot at flow rate a) 75 b) 107 c) 125 m3/s 

IV. CONCLUSION 
  In this paper, the bubble trajectory in a gate slot is studied.  

The Eulerian – Lagrangian approach is used to analyze 
two-phase flow. A two-dimensional is used to simulate flow 
field. The RSTM model models the Reynolds stresses. The 
components of instantaneous fluctuation velocity are simulated 
using the Continuous Filter White-Noise model. The 
simulation results with experimental model data are compared. 
The numerical results have good agreement with the 
experimental data. 

Trajectories of bubbles are simulated using the Lagrangian 
method with considering drag, pressure gradient, saffman lift 
and volume variation forces. The growth and radius change of 
bubbles are modeled by the Rayleigh-Plesset equation. Based 
on the results presented, the following conclusions are drawn: 

In away regions of vortex, drag force have most effect 
whereas force of pressure gradient is dominant in near vortex. 
However, inside vortex, this force also has little influence on 
bubble motion and force of volume variation is dominant. 
Saftman force has negligible effect on bubble trajectory. 

Microbubbles near vortex, affecting force pressure gradient, 
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have tendency to vortex center where pressure is low.  These 
microbubbles grow. Therefore, probability of conversion these 
bubbles to cavitation bubble increase. Microbubbles, which are 
at a far distance from vortex, this probability is lower because 
they do not enter low-pressure regions.  

 With increasing flow rate, vortex enlarges. Therefore, 
probability of conversion microbubbles to cavitation bubble 
and cavitation risk increase. 

 
a) 

 
b) 

 
c) 

Fig.7. Bubble trajectory in the gate slot at flow rate a) 75 b) 107 c) 125 m3/s 

 
Fig.8 Bubbles trajectory near boundary in the gate slot is same at the different 

flow rate 
 

 

 
Fig.9 Bubbles trajectory in center of the gate slot is same at the different flow 

rate 
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