
 

  
Abstract—Quantum computer algorithms require an ‘oracle’ 

as an integral part. An oracle is a reversible quantum Boolean 
circuit, where the inputs are kept unchanged at the outputs and 
the functional outputs are realized along ancillary input 
constants (0 or 1). Recently, a nearest neighbour template based 
synthesis method of quantum Boolean circuits has been 
proposed to overcome the adjacency requirement of the input 
qubits of physical quantum gates. The method used SWAP 
gates to bring the input qubits of quantum CNOT or C2NOT 
gates adjacent. In this paper, we propose cost reduction 
techniques such as ancillary constant determination to reduce 
the number of NOT gates and variable ordering and product 
grouping to reduce the number of SWAP gates required in 
nearest neighbour template based synthesis. The proposed 
approach significantly reduces the quantum realization cost of 
the synthesized quantum Boolean circuit than that of the 
original nearest neighbour template based synthesis. 
 

Index Terms— Ancillary constant determination, nearest 
neighbour template, product grouping, quantum Boolean 
circuit, fixed polarity Reed-Muller expression, reversible logic, 
variable ordering  
 

I. INTRODUCTION 
Quantum computer algorithms require a black box called 

‘oracle’. An oracle is a reversible quantum Boolean circuit, 
which takes a set of inputs and produces a set of functional 
outputs. The inputs are kept unchanged at the outputs and the 
functional outputs are generated along ancillary input 
constants (0 or 1). Thus, if the oracle has n inputs and m 
functional outputs, then the oracle is realized as a (n + 
m)-qubit reversible quantum Boolean circuit [1], where the 
circuit has (n + m) inputs and outputs. Therefore, synthesis of 
reversible quantum Boolean circuit is very important in 
quantum computation. 

Younnes and Miller [2] introduced representation of 
Boolean quantum circuits as Reed-Muller expression using 
(k + 1)-qubit CkNOT gates. However, physical realization of 
CkNOT gate for k > 2 is practically very difficult and this 
physical constraint requires that quantum Boolean circuit be 
synthesized using CkNOT gates with k ≤ 2. A (k + 1)-qubit 
CkNOT gate has k controlling inputs and one target input. The 
target qubit value is inverted if and only if all the controlling 
qubit values are 1. Physical realizations of these quantum 
gates require that the controlling qubits and the target qubit 
be physically adjacent [3]. This constraint also requires that, 
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in a quantum Boolean circuit, the controlling qubits and the 
target qubit of a quantum gate must be brought to physically 
adjacent position using quantum SWAP gates. For this 
purpose, Chakrabarti and Sur-Kolay [4] introduced a nearest 
neighbour template based synthesis, where the controlling 
qubits and the target qubit are brought to adjacent positions 
by using quantum SWAP gates. They also used a quantum 
gate library consisting of only NOT, CNOT, C2NOT, and 
SWAP gates to overcome the physical realization problem 
with k > 2. In this nearest neighbour template based 
synthesis, besides NOT, CNOT, and C2NOT gates, a large 
number of SWAP gates are needed. In the present paper, we 
have reduced the number of SWAP gates by using variable 
ordering and product grouping techniques. We have also 
reduced number of NOT gates by judicious determination of 
ancillary constant value. 

The rest of the paper is organized as follows. We introduce 
NOT, CNOT, C2NOT, and SWAP gates in Section II. Then 
we discuss Reed-Muller expressions of a Boolean function in 
Section III. In Section IV, we discuss quantum gate network 
for fixed polarity Reed-Muller (FPRM) expression and also 
discuss the ancillary constant determination to reduce the 
number of NOT gates. We then discuss nearest neighbour 
template based synthesis of quantum gate network for FPRM 
expression from [4] in Section V. In Section VI, we propose 
variable ordering and product grouping techniques to reduce 
the number of SWAP gates in nearest neighbour template 
based synthesis of quantum gate network. We calculate 
quantum gate counts and quantum realization costs of several 
FPRM expressions and compare with that of [4] in Section 
VII. Finally, in Section VIII, we conclude the paper.  

 
 

II. SOME QUANTUM GATES 
In the nearest neighbour template based synthesis of [4], a 

quantum gate library consisting of NOT, CNOT, C2NOT, 
and SWAP gates is used. In this section, we introduce these 
gates. These gates are shown in Figure 1. The NOT gate maps 
the input x → x ⊕ 1, where the ⊕ symbol represents the 
EXOR operation. The NOT gate inverts the input qubit value 
at the output. The CNOT gate maps two inputs (x, y) → (x, y 
⊕ x), where x is the control input and y is the target input. The 
CNOT gate inverts the target qubit value at the output if and 
only if the control qubit value is 1. The CNOT gate is also 
known as Feynman gate. The C2NOT gate maps three inputs 
(x, y, z) → (x, y, z ⊕ xy), where the product represents the 
AND operation. Here, x and y are control inputs and z is 
target input. C2NOT gate inverts the target qubit value at the 
output if and only if both the control qubit values are 1. We 
refer the two control lines of a C2NOT gate as top control line 
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and bottom control line. C2NOT gate is also known as Toffoli 
gate. The SWAP gate maps two inputs (x, y) → (y, x). A 
SWAP gate exchanges the two qubit values at the output. 
NMR based implementation costs of these gates are as 
follows [4, 9, 10]: 
 

• Cost of NOT gate = 1 
• Cost of CNOT gate = 5 
• Cost of C2NOT gate = 25 
• Cost of SWAP gate = 5 
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Figure 1. (a) NOT gate, (b) CNOT gate, (c) C2NOT gate, (d) 
SWAP gate 

 

III. REED-MULLER EXPRESSION OF A BOOLEAN FUNCTION 
In [2] and also in the nearest neighbour template based 

synthesis of [4], a Boolean function is represented by its 
Reed-Muller expression and then the Reed-Muller 
expression is realized using quantum CkNOT gates. In this 
section, we discuss Reed-Muller expressions of a Boolean 
function in brief. 

There are many canonical two-level AND-EXOR 
expressions for a given Boolean function [5]. Among them 
positive polarity Reed-Muller (PPRM) expression and fixed 
polarity Reed-Muller (FPRM) expressions are very popular. 
In the PPRM expression, all the variables appear in 
uncomplemented form throughout the AND-EXOR 
expression. In the FPRM expression, a variable appears 
either in complemented form or in uncomplemented form 
throughout the AND-EXOR expression. If a variable appears 
in uncomplemented form, we say that its polarity is 0 and if 
the variable appears in complemented form, we say that its 
polarity is 1. If a Boolean function has n variables, then the 
n-tupple of the variable polarities represent the polarity of the 
FPRM expression. As there are 2n possible choices of 
polarity for an n-variable Boolean function, there are 2n 
possible FPRM expressions for the function. In this respect, 
the PPRM expression is an FPRM expression with polarity 0.  
There are several methods of converting a Boolean function 
into a given polarity FPRM expression [6-8]. Here, we will 
not discuss the methods and the readers may see the 
references. The 8 possible FPRM expressions for the 
Boolean function 
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are given below: 
 

00112012 ),,( xxxxxxxxf ⊕⊕=      (polarity 0) (1) 
 

1),,( 010112012 ⊕⊕⊕⊕= xxxxxxxxxf   (polarity 1) (2) 
 

01212012 ),,( xxxxxxxxf ⊕⊕=      (polarity 2) (3) 
 

101212012 ),,( xxxxxxxxxf ⊕⊕⊕=    (polarity 3) (4) 
 

001112012 ),,( xxxxxxxxxf ⊕⊕⊕=    (polarity 4) (5) 
 

1),,( 00112012 ⊕⊕⊕= xxxxxxxxf     (polarity 5) (6) 
 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf   (polarity 6) (7) 
 

1),,( 20112012 ⊕⊕⊕= xxxxxxxxf     (polarity 7) (8) 
 
These FPRM expressions are used in [4] to illustrate the 
nearest neighbour template based synthesis. We will also use 
these FPRM expressions for our examples. 

 

IV. QUANTUM GATE NETWORK FOR FPRM EXPRESSION 
In [4], an n-input single-output FPRM expression is 

realized using the quantum gate network model of Figure 2, 
where 0x  to 1−nx  are the n function inputs and the functional 
output f is realized along an ancillary constant input c = 0. In 
the quantum gate network of an FPRM expression, the 
complemented variables are first realized using NOT gates. 
Then, the first product term from the FPRM expression is 
realized using the control inputs of a CkNOT gate and the 
product is EXORed with ancillary constant 0 using the target 
input of the gate. The next product term from the FPRM 
expression is realized similarly and then EXORed with the 
previous product term (which is the target output of the 
previous CkNOT gate) using another CkNOT gate. In this 
way, EXOR sum of all the product terms are realized. Then, 
if the FPRM expression has a constant 1 as in (2), (6), (7), and 
(8), then another NOT gate is placed along the output f (since, 

xx =⊕1 ). Finally, the complemented variables are restored 
using NOT gates. The quantum gate network for FPRM 
expression 
 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf  
 
of (7) is shown in Figure 3. Readers can see [4] for quantum 
gate networks for FPRM expressions of (1), (2), (3), (4), (5), 
(6), and (8). In [4], the ancillary constant c is assumed to be 0. 
The problem of this assumption is that if an FPRM 
expression has a constant 1 as in (2), (6), (7), and (8), then an 
additional NOT is required. This NOT gate can be omitted if 
we assume c = 1 for these cases. This rule can be generalized 
as 
 
Rule 1 (Ancillary constant determination): If an FPRM 
expression has a constant 1 in the expression, then assume c 
= 1, otherwise assume c = 0. 

 

0x 0x
1x 1x

1−nx 1−nx
MM

c f
 

Figure 2. Model of quantum Boolean circuit 
 
To describe the quantum gate network of Figure 3, we 

number the input lines from 0 onward starting from the target 
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input (ancillary constant). We also assume that quantum 
gates are placed one after another from left to right. We 
describe a gate in the quantum network using the line 
numbers as follows: NOT(line number), CNOT(control line 
number, target line number), and C2NOT(top control line 
number, bottom control line number, target line number). For 
example, the first C2NOT gate from the left in Figure 3 is 
described as C2NOT (3, 2, 0). Using this convention, we 
describe the quantum gate network of Figure 3 as 

 
f = NOT(3) NOT(2) C2NOT(3, 2, 0) C2NOT(2, 1, 0) 
     CNOT(3, 0) CNOT(2, 0) NOT(2) NOT(3) 

 

2x 2x

1x 1x

0x 0x
1 f0

1
2
3

no Line

 
Figure 3. Quantum gate network for FPRM expression 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf  
 

V.  NEAREST NEIGHBOUR TEMPLATE BASED SYNTHESIS OF 
QUANTUM GATE NETWORK FOR FPRM EXPRESSION 

Reader can see that, in Figure 3, the control lines of 
C2NOT(3, 2, 0) gate are adjacent but they are not adjacent to 
the target line. Similarly, the control line of CNOT(3, 0) and 
CNOT(2, 0) gates are not adjacent to the target line. The 
control lines of these gates are to be brought adjacent to the 
target line using SWAP gates. In [4], nearest neighbour 
templates are introduced for this purpose as shown in Figure 
4. We describe a SWAP gate as SWAP(top line number, 
bottom line number). Then, we can describe the templates of 
Figure 4 as 
 
C2NOT(3, 2, 0) ≡ SWAP(2, 1) SWAP(3, 2) C2NOT(2, 1, 0) 
        SWAP(3, 2) SWAP(2, 1) 
 
C2NOT(3, 1, 0) ≡ SWAP(3, 2) C2NOT(2, 1, 0) SWAP(3, 2) 
 
CNOT(3, 0) ≡ SWAP(3, 2) SWAP(2, 1) CNOT(1, 0) 

    SWAP(2, 1) SWAP(3, 2) 
 
CNOT(2, 0) ≡ SWAP(2, 1) CNOT(1, 0) SWAP(2, 1) 
 

0
1
2
3

no Line

≡

(a)

≡

(b)

≡

(c)
0
1
2
3

≡

(d)
 

Figure 4. Nearest neighbour templates for (a) C2NOT(3, 2, 
0), (b) C2NOT(3, 1, 0), CNOT(3, 0), and CNOT(2, 0) 

 

The nearest neighbour templates require a large number of 
SWAP gates. In [4], rules for calculating the number of 
SWAP gates are given, but the rule statements are ambiguous 
and do not directly agree with the examples. However, the 
example calculations are correct. Here, we state rules for 
calculating SWAP gates very clearly. 
 
Rule 2 (Number of SWAP gates needed for C2NOT gate): 
Let, in a C2NOT gate, t be the top control line number and b 
be the bottom control line number. Then the number of 
SWAP gates required to bring the control inputs adjacent to 
the target input is 2(t + b −3). 
 
Example: For C2NOT(3, 2, 0) gate, t = 3 and b = 2. Then the 
number of SWAP gates needed is 2(3 + 2 − 3) = 4. 
 
Rule 3 (Number of SWAP gates needed for CNOT gate): 
Let, in a CNOT gate, c be the control line number. Then the 
number of SWAP gates required to bring the control input 
adjacent to the target input is 2(c −1). 
 
Example: For CNOT(3, 0) gate, c = 3. Then the number of 
SWAP gates needed is 2(3  − 1) = 4. 
 

Now, if we replace the C2NOT(3, 2, 0), CNOT(3, 0), and  
CNOT(2, 0) gates of Figure 3 by their corresponding 
templates, we get the quantum gate network of Figure 5, 
which requires 10 additional SWAP gates. The quantum gate 
network of Figure 5 can be described as 
 
f = NOT(3) NOT(2) SWAP(2, 1) SWAP(3, 2) 

 C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) C2NOT(2, 1, 0) 
 SWAP(3, 2) SWAP(2, 1) CNOT(1, 0) SWAP(2, 1) 
 SWAP(3,2) SWAP(2, 1) CNOT(1, 0) SWAP(2, 1) 
 NOT(2) NOT(3) 

 
2x 2x

1x 1x

0x 0x
1 f

 
Figure 5. Quantum gate network for FPRM expression 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf  with SWAP 
gates. 

 

VI. VARIABLE ORDERING AND PRODUCT GROUPING 
From Rules 2 and 3, we see that the number of SWAP 

gates is directly proportional to the distance from the target 
input to the control inputs. We can reduce these distances by 
judicious ordering of the variables and grouping of the 
products of the FPRM expression. We propose here 
techniques for such variable ordering and product grouping. 

The philosophy of variable ordering is to bring the frequent 
variables closer to the target input so that the number of 
SWAP gates needed to bring the variables adjacent to the 
target input is reduced. The variable ordering technique is 
discussed below: 
 

We construct a variable occurrence table as shown in 
Table 1. The first column lists the variables of the 
function. The next few columns (exactly equal to the 
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number of products in the FPRM expression) represent 
the products of the FPRM expression. We then 
determine the occurrence of the variables in the 
products of the FPRM expression by putting 1 in the 
corresponding cells of the table. For example, variable 

2x  occurs in the products 12 xx  and 2x . Therefore, we 
put 1s in the intersections of the columns corresponding 
to the products 12 xx , 2x  and the row corresponding to 
the variable 2x . In this way, we fill up the occurrence 
information in the table. Then, we calculate total 
occurrence of the variables. For example, variable 2x  
occurs twice and its total occurrence is 2. Then we order 
the variables according to their decreasing order of total 
occurrence. Tie is broken arbitrarily. In Table 1, the 
order of the variables is 021 xxx <<  and this ordering is 
indicated by their order number in the last column. 

 
Table 1. Variable occurrence table for the FPRM expression 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf . 
 Products Total Variable 

Variable 
12 xx  01xx  2x  1x  occurrence order 

2x  1  1  2 1 

1x  1 1  1 3 1 

0x   1   1 1 
 
We then rewrite the function using the decided variable 

order. The FPRM expression 
 

1),,( 120112012 ⊕⊕⊕⊕= xxxxxxxxxf  
 
of (7) is now rewritten as 
 

1),,( 120121021 ⊕⊕⊕⊕= xxxxxxxxxf .       (9) 
 
 The quantum gate network for the FPRM expression of (9) is 
shown in Figure 6. The quantum gate network of Figure 6 
needs only 4 SWAP gates compared to 10 SWAP gates in the 
quantum gate network of Figure 5. The quantum gate 
network of Figure 6 can be represented as 
 
f = NOT(2) NOT(1) C2NOT(2, 1, 0) SWAP(3, 2) 

 C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) CNOT(1, 0) 
 SWAP(2, 1) CNOT(1, 0) NOT(1) NOT(2) 

 

2x 2x

1x 1x

0x 0x

1 f  
Figure 6. Quantum gate network for FPRM expression  

1),,( 120121021 ⊕⊕⊕⊕= xxxxxxxxxf  with SWAP gates. 
 

Now, we will discuss the product grouping technique. 
The motivation of product grouping is illustrated using the 
quantum gate network of Figure 7. Figure 7(a) represents the 
quantum gate network with SWAP gates for the example 
FPRM expression 
 

BACBDDCBAF ⊕⊕=),,,(1 ,            (10) 

which needs 10 SWAP gates. If we group the products of 
(10) as 

ACBBDDCBAF ⊕⊕= )(),,,(1 , 
 
then the quantum gate network with SWAP gate will be as 
shown in Figure 7(b), which needs 8 SWAP gates. Therefore, 
this sort of product grouping will reduce the number of 
SWAP gates in the quantum gate network. In the case of such 
product grouping, the swapped variables are swapped back to 
original order after implementing all the products of the 
group and thus the number of SWAP gates is reduced. The 
rule for such product grouping is stated below. 
 
Rule 4 (Product grouping): If a smaller product of an 
FPRM expression has x number of literals and these x literals 
are exactly similar to the first x literals of another larger 
product, then these two products are grouped together. If 
more than two products satisfy the criteria, then they all are 
grouped together. 
 

B
A

C

0

D

B
A

C

1F

D

)(a

B
A

C

0

D

B
A

C

1F

D

)(b
 

Figure 7. (a) Quantum gate network with SWAP gates for 
BACBDDCBAF ⊕⊕=),,,(1  and (b) quantum gate 

network with SWAP gates for 
ACBBDDCBAF ⊕⊕= )(),,,(1 . 

 
Using rule 4, we can rewrite the FPRM expression of (9) 

as 
 

1)(),,( 201121021 ⊕⊕⊕⊕= xxxxxxxxxf        (11) 
 
The quantum gate network for (11) with SWAP gates is 
shown in Figure 8, which needs 4 SWAP gates. The quantum 
gate network of Figure 8 can be described as 
 
f = NOT(2) NOT(1) C2NOT(2, 1, 0) CNOT(1, 0) SWAP(3, 
2) C2NOT(2, 1, 0) SWAP(3, 2) SWAP(2, 1) CNOT(1, 0) 
SWAP(2, 1) NOT(1) NOT(2) 
 
In this example, the numbers of SWAP gates of Figures 6 and 
8 are same. But the motivation discussed above shows that in 
many situation the product grouping technique will reduce 
the number of SWAP gates. 
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2x

1x

0x

1

2x

1x

0x

f  
Figure 8. Quantum gate network with SWAP gates for the 

FPRM expression 
1)(),,( 201121021 ⊕⊕⊕⊕= xxxxxxxxxf  with product 

grouping. 
 

VII. EXPERIMENTAL RESULTS 
We have calculated the numbers of NOT gates, C2NOT 

gates, CNOT gates, SWAP gates, and quantum realization 
costs for the FPRM expressions of (1) to (8) and these values 
are compared with those from [4] in Table 2. We have also 
shown the percentage decrease of quantum realization costs 
in our approach. Table 2 shows that in  one case (polarity 0) 
the cost of our approach is exactly the same as that of [4]. For 
the other seven cases the cost of our approach is 1.25% to 
26.96% lesser than that of [4], which shows that the proposed 
approach significantly reduces the quantum realization cost. 

 
Table 2. Comparison of quantum gate counts and quantum realization costs for FPRM expression of (1) to (8) 

 For the case of [4] For our case 
Polarity of 

FPRM 
expression 

Number 
of 

C2NOT 
gates 

Number 
of 

CNOT 
gates 

Number 
of 

SWAP 
gates 

Number 
of NOT 

gates 

Quantum 
realization 

cost 

Number 
of 

C2NOT 
gates 

Number 
of 

CNOT 
gates 

Number 
of 

SWAP 
gates 

Number 
of NOT 

gates 

Quantum 
realization 

cost 

% decrease 
of quantum 
realization 

cost 
Polarity 0 2 1 4 0 75 2 1 4 0 75 0.00 
Polarity 1 2 2 6 3 93 2 2 4 2 82 11.83 
Polarity 2 2 1 8 2 97 2 1 4 2 77 20.62 
Polarity 3 2 2 10 4* 114** 2 2 4 4 84 26.32 
Polarity 4 2 2 6 2 92 2 2 4 2 82 10.87 
Polarity 5 2 1 4 5 80 2 1 4 4 79 1.25 
Polarity 6 2 2 10 5 115 2 2 4 4 84 26.96 
Polarity 7 2 1 8 6 101 2 1 4 6 81 19.80 
* This count is reported as 6 in [4], which should be 4. 
** This value is reported as 116 in [4], which should be 114. 
 

VIII. CONCLUSION 
In [4], a nearest neighbour template based synthesis of 

quantum Boolean circuit is proposed using NOT, CNOT, 
C2NOT, and SWAP gates. The necessity of using SWAP 
gates is due to the requirement of the physical quantum gates 
that its input qubits should be adjacent. In this paper, we have 
introduced variable ordering and product grouping 
techniques to bring the input lines of a quantum gate more 
close so that the number of SWAP gates required is less than 
that of [4]. We also proposed ancillary constant selection rule 
to reduce one NOT gate than the approach of [4]. 
Experimental results show that our approach significantly 
reduces the realization cost of the quantum circuit. 
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