Engineering Letters, 16:1, EL._ 16 1 04

Hybrid Neuro-Predictive-Fuzzy Algorithm for a
Model Helicopter’s Yaw Angle Control
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Abstract—In this paper, a Neuro-Predictive (NP)
controller was first designed and implemented on a
highly non-linear system, a model helicopter in a con-
strained situation. It was observed that the closed
loop system with the NP controller had a significant
overshoot and a long settling time in comparison to
the same system with an fuzzy controller. In or-
der to improve the system’s performance, a Sugeno-
type fuzzy compensator, having only two rules, is
added to the control loop to adjust control input.
The newly designed Neuro-Predictive control with
the Fuzzy Compensator (NPFC) improves the sys-
tem’s performance. Furthermore, it is shown that
the NPFC controlled system is robust to disturbance
and system parameter changes.
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Helicopter, Overshoot

1 Introduction

Predictive control, as a method of using current and pre-
dicted output to determine control input, was initially
introduced by Camacho in the classical Model Predictive
Controll (MPC) [1]. It is known that for prediction, a
linear model is needed in the classical MPC. Quite often
linear state-space models are used. Such models can be
used to predict the behaviour of many systems [2]. When
a general linear model is not available, Artificial Neural
Network (ANN) method can be used to obtain piecewise
linear models through recorded data under certain con-
ditions. Such ANN models can be used in the classical
predictive control [3] as well. But naturally, nonlinear
models are more suitable for nonlinear systems in order
to predict a wide range behaviour of the nonlinear sys-
tems. For example, Soloway and Haley used a nonlin-
ear ANN as a model for predictive control purposes [4].
However using the classical MPC method to derive the
control input is not applicable any more when nonlinear
models are implemented. In order to derive the control
input in the presence of nonlinear ANN models, nonlinear
optimisation methods are often used [5, 6, 7], or an addi-
tional ANN should be implemented [8]. Neuro-predictive
controllers have been implemented in a variety of appli-
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cations such as the control of food or chemical processes
and the control of air/fuel ratio of engines [9, 10, 11].
This technique has also been used to control a hybrid
water and power supply [12] and a 6-DOF robot [13]. In
biomedical engineering, neuro-predictive controllers are
used to control insulin pump of diabetic patients [14].
In this research, a neuro-predictive approach is used to
control a model helicopters yaw movement. A fuzzy in-
ference system is also designed as a compensator or brake
to improve the effectiveness of the neuro-predictive con-
troller.

2 Control Method

The designed hybrid controller includes three main parts:
an ANN to predict the behaviour of system, a nonlinear
optimisation method to minimise the performance func-
tion, and a fuzzy inference system to improve the effec-
tiveness.

The model helicopter under consideration is a dynamic
inertial system. In such a system, the current value of the
system’s output is determined by not only the inputs of
the system, but also the output at previous instants. For
example, for a Single Input and Single Output (SISO)
system as shown in Fig. 1, the nonlinear recurrent model
can be described by following equation:

Ys(kt1) = f[U(k-nu+1), Ce U, Yeny 1), ,y(k)], (1)

where u is the input, y is the output, y; is the estimated
output and f is the nonlinear mathematical model.
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Figure 1: Scheme of a first order SISO dynamic system
and its recurrent model, v and y are the input and output
of the system, respectively.
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In order to model the system’s dynamics, dynamic or re-
current models can be obtained from the recorded data of
the input/output signals which are available in the form
of numeric arrays. These data should be arranged prop-
erly to be used in the training/modelling. To obtain the
model function f as shown in Eq. (1) through training,
the recorded raw data of this SISO system can be organ-
ised as:

input || output

Uy U2
raw data = . . ) (2)

I

prepared data =

input output
U e U, yl e ym yny+1
. . )
um—r u1n+n\1—1'- 1 ym-r ym+ny— r-1 ym+ny—r

®3)
where m is the rank of the raw data vector, r is the
order number of the system model, i.e., r = max(nu, ny).
Usually, ny > nu, therefore, the order of the model is
often considered as the number of delayed outputs that
are used for the estimation as shown in Fig. 1.

A neural network was trained off-line using recorded data
before operation; besides, it was trained on-line during
operation as well. A perceptron structure with two lay-
ers of connections is used in this study. After training,
for the first estimation, the input of the ANN includes
the tentative control input of system (u’), previous con-
trol inputs of system (u(k — ¢) when ¢ > 1), current and
previous actual outputs of systems (y(k —4) when ¢ > 1).
The output of the ANN includes the first predicted value
of the output ys(k+1). To estimate ys(k+i), when i > 1,
the previously estimated values of ys are used as previ-
ous output values of the system which were originally
estimated based upon the actual outputs of the system,
the actual inputs and the tentative control inputs of the
system.

Predicted outputs of the ANN can be used to calculate
the performance function. In the discrete domain, the
performance function is defined as:

N
T(k) = lys(k +i)yal + plo/ (k) —u(k — D)?,  (4)
i=1
where ys and y4 are the estimated and desired outputs of
the system, respectively, v’ and u are the tentative and
actual control inputs, respectively. Additionally, p is a
factor defining the importance of constancy of the con-
trol input. Among the right-hand side terms of Eq. (4)
(the arguments of J function), u’ is the only independent
variable that is not influenced by the current and previ-
ous situation of the system. This variable can be selected

arbitrarily and can affect other variables and the perfor-
mance, whereas other terms of the right-hand side of the
equation (arguments of J) are thoroughly dependent on
the current situation of the system, therefore, their val-
ues can not be adjustable. In other words, for control
purpose, it can be assumed that:

J=J). (5)

Now, u’ should be so determined that J has its minimal
value. To do this, the first-order approximation of the
Taylors series for the performance function can be written
as:

aJ(u')

/ A, /
J(u —i—Au)_J(u)—i——aulAu,. (6)
Differentiate Eq. (6), it becomes:
oJ(u' + Au') , 0J(u') 92 J(u') (M)
ou’ o Ou2Au'”

In order to minimise J(u' + Auv’), its derivative is set to
zero. Consequently, it is obtained:

Au' = — ouw | OuAw (8)

dJ(u) [82J(u’) } !
The right-hand side of Eq. (8) is called Newtons direction
[15]. Especially, a performance function gradient, g is
defined as:

A 0JW)  Jk)—-Jk-1)

= "ow T wk) —uk-1) ©)

Furthermore, another performance function gradient, Gy,
can be defined as:

a [T W (k) —u(k — 1)
= {W?Au’} ~glk)—g(k—1)"

To modify the control input, the following relation can

be used:
(11)

In practice, an adjustable coefficient is used for Gigx to
obtain a quicker convergence, i.e.,

(10)

r_ r
Au' = Upew — Uold = _Gkgk'

Au' = gy, = Ugig = —1GrGr- (12)
Using Eq. (12), it is obtained that:
I (Unew) = J(Uo1q — NGrg)- (13)
Equation 13 can be rewritten as:
Argument of J = ul;; — nGrgx. (14)
Both u/,, and Gjgi are known at this stage. While

changing 7, the Argument of J moves along a line. There
is an optimum point on this line that minimises J. Such
an optimisation problem is classified as a linear search.
The backtracking method, introduced by Dennis and
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Schnabel [16], is selected for the linear search. The mod-
ified u'(u),.,,) is used as the new control input.

Beside neural modelling and selecting optimisation (pre-
dictive) algorithm, a simple Sugeno-type fuzzy infer-
ence system is designed to make the response of neuro-
predictive controller decay quickly when the error is suf-
ficiently small.

3 System Model

The model helicopter used in this research (as shown in
Fig. 2) is a highly nonlinear two input-two output system.
The helicopter has two degrees of freedom, the first pos-
sible motion is the rotation of the helicopter body with
respect to the horizontal axis (which changes the pitch
angle) and the second is rotation around the vertical axis
(which change the yaw angle). The helicopter can rotate
from —170° to 170° in yaw angle, and from —60° to 60°
in pitch angle. System inputs are voltages of main and
rear motors, and the yaw and pitch angles are considered
as its outputs.

Figure 2: The torques exerted on the helicopter around
the horizontal and vertical axes.

An analytical model is obtained using Newton and Eu-
ler’s laws. After modelling, the following differential

equations are obtained [17]:

dwpr TrRr — Tar — Tur
_ Tan T Tan = Tun 15
dt I (15)
dws _ Tss — Tas — TRRMF (16)
dt Is ’
do
-~ = 1
dt we, ( 7)
wo Tru — Tsu — Tun — Teu — Tou
Zv 18
dt Iy (19
dv
- = 1
Wy Tsv — Trv — Tuv + Tov
-~ = . 20
dt I, (20)

The variables and indices are listed at Nomenclature. In
Egs. (15 ~ 20) the torques can be substituted by their
equal expressions obtained from kinetics of the system.

In this research, a special situation is studied. The mo-
tion of the helicopter is so constrained that the verti-
cal motion is negligible. Moreover, the input voltage of
the main motor is set to zero. As a result, the only in-
put of the system is the input voltage of the rear motor.
Also, the yaw angle (the angle in the horizontal plane)
is considered as the unique output. In this situation,
the behaviour of the system can be represented only by
Egs. (19) and (20). Since there is no change in the pitch
angle, gyroscopic torque does not exist. Furthermore,
the main motor does not generate any torque as there
is no excitation applied on it. Consequently, Eq. (20) is
simplified as below:

Wy Tsv — Tuv

dat - I, (21)

where:
Tey = rskwsign(ws)(ws)2, (22)
Tuv = Cpvww. (23)

The equations defining the behaviour of this first order
system can be written as:
\if = Wy,
rskvsign(ws)(wg)? — Cpywy
I, ’

wy = (24)
where wy is the angular velocity of helicopter body in the
yaw direction and wg is the angular velocity of the rear
motor blades that is a nonlinear function of the input
voltage of rear motor.

4 Design of Hybrid Controller
4.1 Neural Network Model

A three layer recurrent perceptron is used to model the
system. The numbers of neurons in the input and hidden
layers are 6 and 7 regardless of biases. The value of each
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bias is 1. The input and output layers have linear activa-
tion functions with slope of one, whereas, the neurons in
the hidden layer have sigmoid activation functions, i.e.,
the output of the i'” neuron of the hidden layer is:

7
Oi = tanh(z wijyj),

Jj=1

(25)

where w;; is the weight of connections between i** neuron
of the hidden layer and j** neuron of the input layer
whose output is y;, and 7 is the number of neurons in
the input layer in addition to the bias. In this research,
Levenberg-Marquardt algorithm [15] is applied for batch
back-propagation training. A scheme of neural network
together with the input and output data during training
is shown in Fig. 3.

u(k)

— y(k+1)

Figure 3: Neural network structure and input-output
data in training stage.
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Figure 4: Verification information of ANN regarding test-
ing area.

A set of 1300 input-output recorded data of system was
used for training. In order to obtain such a data set,
pulse signals were sent to the system with a time interval
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Figure 5: Verification information of ANN regarding

training area.

of 0.1 second for 130 seconds and the output values were
recorded at any time. Testing data were obtained by
sending a sinusoidal voltage signal to the rear motor of
the helicopter. The training was completed with only 8
iterations.

The performance function of training is the sum of
squared errors, and the data were normalised before
training. Figures 4 and 5 both illustrate the success of
the training.

After the successful training, the neural network was used
to predict the future outputs of the system. Unlike the
training stage, the inputs and outputs used here were

not recorded data. For the first estimation, the neural
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Figure 6: Neural network structure and input-output
data in the first estimating (predicting) stage.
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The tentative input «’ and the estimated output ys both
appear in the estimation stage. For next steps of estima-
tion, ys(k+1) is replaced by ys(k+14) (i > 1). It is shown
in Fig. 6 with a dashed rectangle that some of the inputs
of the ANN change their values when ys(k +¢) (¢ > 1)
is estimated. For example, when ¢ = 2 or ys(k + 2) is
estimated, the inputs of the ANN located in the dashed
rectangle of Fig. 6, are shown in Fig. 7. The case of
i > 2, is shown in Fig. 8.

F = = = = == = = -

!

| u
|

“u(k-1)

Figure 7: Dashed area of Fig. 6 for i=2.

Figure 8: Dashed area of Fig. 6 for i > 2.

4.2 Predictive Control

In order to explain the details of predictive control,
Eq. (4) is re-written here:

N

J(k) = Z[ys(k +a)yal” + plu’ (k) — u(k — 1)]*.

The purpose of predictive control is to define tentative
control input v’ so that J is minimised. Using the de-
signed and trained ANN in the previous section, the pre-
dicted output values can be calculated. To obtain the
predicted output values, at each instant, the ANN should
be used N times as shown in Eq. (4). The estimated (pre-
dicted) output value of any stage of prediction is applied
as one of the inputs for the next prediction stage. In
this study, N = 7 is used. The whole neural predictive
model can be assumed as having seven sequential identi-
cal neural networks, any one output (except the last one)
provides one of the inputs for the next ANN. The Neural
Predictive Model obtains the predicted output values of
the system (y(k +4),4 = 1 ~ 7), using the previous and
current values of the output of the system y, the previous

values of the control input u and the tentative control
input u’. Consequently, the values of the performance
function J can be calculated as shown in Fig. 9.

In order to explain the total process of predictive control,
a general model is considered as the sum of the neural pre-
dictive model and J function. The output of this general
model is the value of J(k). Additionally, as previously
stated, the tentative control input is derived from the
nonlinear optimisation function which is a combination
of Egs. (9),(10), (12), and the linear search. The neuro-
predictive control algorithm is shown in Fig. 10. For the
first step, J(—1) and J(—2) should be determined using
previous recorded data.

NEURAL e Joml
PREDICTIVE 11470 =7 gy

MODEL =l

recorded values
]

r
'
'

GENERAL MODEL

Figure 9: The process of calculation of the performance
function.
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Figure 10: Neuro-predictive controller.

4.3 Fuzzy compensator

After implementation of the neuro-predictive controller,
it was observed that it reached the desired setpoint more
quickly than the existing fuzzy controller, but a serious
problem was also observed. The system under neuro-
predictive control has a large percent overshoot and a
long settling time. In order to solve this problem, a fuzzy
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compensator is added to the controller. The input of this
fuzzy inference system is the absolute value of the error
and the output is a coefficient multiplying by the tenta-
tive control input (derived from the neuro-predictive al-
gorithm) to achieve a modified control input. This fuzzy
compensator is a Sugeno-type FIS with only two rules,
ie.,

e if the absolute erroris A, then the correction coeffi-
cient = 2;

e if the absolute erroris any other value, then the cor-
rection coefficient = 0.

Here A is a Gaussian membership function whose mem-
bership grade can be calculated as:

1  absolute error — 20

mg = exp[—( 7

; 2L 6

A scheme of this fuzzy inference system is shown in
Fig.11.

input! =10
output! = 0.238

02 22

Figure 11: Fuzzy compensator scheme.

The role of fuzzy compensator is to reduce the control
input (the rear motor voltage) when the error is small.
The effect of this simple corrector is discussed in the next
section.

5 Simulation Results

The responses of the closed loop system for the three
different controllers are shown in Fig.12 for four different
set-points. In those cases, the helicopter was rotated form
a stationary situation to the desired values of yaw angle
by the rear motor, while the rear motor was controlled by
an existing fuzzy controller, neuro-predictive controller or
NPFC, separately.

An energy consumption criterion (EFCC) is defined to rep-
resent the total energy consumption of the closed loop
system during operation, and it can be calculated as:

BCC = /0 ) |t (27)

100 desired angle 50 deg 150 desired angle:100 deg

b 80
g o 100 -
2 J F 4
g4 / o |/
g2 |/ /
-

0 0

[ 5 10 15 0 5 10 15

o desired angle-60 deg
g 20
g 0 -50
2 bt I e e
g L 100
g -80 1 #
=-100 !

-150
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Figure 12: Responses of different controllers and set-
points.

where T is the final time for calculation and w(t) is the
input voltage of the helicopter’s rear motor or control in-
put. Since the neuro-predictive controllers are essentially
designed to reduce the deviation of the inputs rather than
the absolute value of inputs, another criterion namely, the
input deviation criterion (IDC) is needed and defined as:
T

IDC = jf

0

| 74N\ N N L1y /a0
| u(t) —u(t—7) | dt, (28)

where 7 is the sampling time of the system.

Table 1 shows the simulation results for the four cases.
The table also shows information about the maximum
overshoot and the settling time for the yaw angle to be
settled within 5 degrees of the desired value.

Table 1: Operational information of different controllers.

Set Controller ECC IDC Maximum | Settling
point type (V-s) | (V-8) | overshoot | time
©) ) % (s)
Fuzzy | 5.434 0.32 36.367 7.4
-60 NP 11.26 2.83 | 49.238 -
NPFC | 9.784 0.79 9.124 2.7
Fuzzy | 6.758 0.33 | 45.222 | 10.8
-100 NP 11.80 0.97 | 24.781 -
NPFC | 12.51 0.69 | 10.041 5
Fuzzy | 4.101 0.16 10.239 6.9
60 NP 21.14 2.75 | 22.023 -
NPFC | 22.64 1.32 7.931 4.1
Fuzzy | 5.951 0.16 16.734 9.0
100 NP 27.92 1.95 18.913 -
NPFC | 28.38 1.41 6.247 5.3

It is clearly shown from this study that the proposed
NPFC controller performs better in terms of the over-
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shoot and settling time in comparison to the existing
fuzzy controller which is considered as a satisfactory con-
troller for this type of high inertia systems. From the
simulations, it can be seen that the control input gener-
ated by NPFC controller does not exceed the permitted
range for the input voltage although it consumes more
energy.

6 Robustness Analysis

In this section, the designed controller (NPFC) is eval-
uated regarding the parameter changes and disturbance
rejection. In the first case, a NPFC controller with p = 2
was designed. In order to test the robustness of the
controller, the helicopter was exposed to a sudden im-
pact causing a dramatic yaw angle change over 25°. The
disturbances were exerted around the sixth second time
mark during systems operation as shown in Fig. 13. At
the same moment the error was about 2° and converged
to zero. The desired yaw angles were 80° and —80°. The
assumed impacts were considerably severer than those
impacts may be encountered in reality. The controlled
system shows very good robustness to the disturbance.
Fig. 13 shows the response of the NPFC controlled sys-
tem under the mentioned disturbances.

In order to analyse the performance under parameter
changes of the system, Eq. (19) and Eq. (24) defining
systems dynamic can be re-written as:

) =

Wayy
. 1 . 9
Wy = E(rskss,lgn(ws)ws — CpuvWy)-

There are four parameters in these equations: the mo-
ment of inertia I for the helicopter body around its ver-
tical axis, the distance of the rear motor rs from the joint
of the helicopter body with its basis (shown in Fig. 3),
the rear motor blade constant k,s and the friction coeffi-
cient for rotation around vertical axis c,v. Among these
parameters, I, and ry are geometrical constants. As to
the operation environment of the model helicopter, kg is
also assumed to be a constant. Therefore, the only vari-
ant parameter of system is c,, whose original value for
properly lubricated joint is 0.0095.

Dust or lack of fabrication may cause this parameter in-
creased. Fig. 14 shows the effect of a sudden increase of
this parameter by 300% during operation. The increase
of ¢, occurred at the fourth and the sixth second time
marks. The NPFC controlled system performs well under
the test.

Two main reasons can be attributed to the robustness of
the NPFC controller, i.e.,

(i) The output of fuzzy compensator (and consequently
the controller’s input) increases considerably as soon
as the absolute error increases.

desired yaw angle=80 deg

120 noises + 30 deg aoises <30 deg
&
w0 80
£ m
2 &0
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g P | an !
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2 § 20
i} 2 4 8 8 10 a@ 2 4 § 8 1
) desied yaw angles 80 deg.

o noise= * 30 deg N notses -30 deg
) 205
g i s
B oopf |
; v

B0 W

Figure 13: Responses of the NPFC controlled system
with disturbance.
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Figure 14: Responses of the NPFC controlled system
with sudden parameter change.

(ii) On-line training makes the neural network model
adaptive to changes in the model parameters.

7 Conclusion

In this paper, neuro-predictive controllers are studied
and implemented on a system with non-linear and non-
symmetric dynamics. Although pure neuro-predictive
controllers do not work well for this system, but NP
controllers, combined with a fuzzy compensator, shows a
satisfactory response in comparison to the existing fuzzy
controllers. In the NPFC the control input is adjusted
through multiplying by a small positive number gener-
ated by fuzzy inference system. The fuzzy compensator
is designed so that as the error is small, the output con-
verges to zero. It is indicated that the designed con-
troller improves the performance of the closed loop sys-
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tem. Moreover, it is shown that the NPFC controlled sys-
tem is very robust to disturbance and parameter chang-

ing.
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Nomenclature

STFrQUNgang
<

angular velocity

pitch angle

yaw angle

moment of inertia

Torque generated by the main motor

Torque generated by the air friction in the main motor

Torque generated by the main motor’s mechanical friction
Torque generated by the rear motor

Torque generated by by the air friction in the rear motor
Torque generated by the rear motor’s mechanical friction
Torque generated by the main motor around the horizontal axis
Torque generated by the rear motor around the horizontal axis
Torque generated by the mechanical friction around the horizontal axis
Gyroscopic torque around the horizontal axis

Gravitational torque around the horizontal axis

Torque generated by the main motor around the vertical axis
Torque generated by the rear motor around the vertical axis
Torque generated by the mechanical friction around the vertical axis
Gyroscopic torque around the vertical axis

relevant to rear rotor

relevant to main rotor

around horizontal axis

around vertical axis

relevant to gyroscopic effect

relevant to gravitational force

relevant to air friction

relevant to mechanical friction

convergence coefficient

(Advance online publication: 19 February 2008)



