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Abstract— The improvement on the QSAR prediction of the 

trans-stilbenes affinity for the β-amyloid peptide (employed for 
detecting the Alzheimer disease) achieved by means of using 
approximate similarity measurement is presented in this work. A 
wide spectrum of similarity methods is described, and results 
obtained by approximate similarity are compared with those 
obtained by constitutional, fingerprint and descriptor-based 
similarity. The fact of using similarity corrections by considering 
distances between the non-isomorphic fragments (the 
approximate similarity concept) led to accurate QSAR models (Q2 
> 0.80). The high predictive ability achieved by simple methods is 
remarked. 
 

Index Terms— Similarity, Non-isomorphic Dissimilarity, 
Approximate similarity, Drug activity prediction.  
 

I. INTRODUCTION 
Chemists have always employed models aimed at 

representing complex chemical entities in a simple way: names, 
molecular weight, graphs, and so on. But the rising of computer 
science has allowed developing a great amount of methods with 
the aim of transforming molecules into data structures 
amenable to be processed by computers [1]. 

Computational chemistry encompasses a series of 
mathematical methods implemented by computer which show a 
wide spectrum of applications, namely: reproduction of 
chemical processes, modeling of structures, prediction of 
properties, activities and reaction variables, etc. [2] 

The description of structures by means of numbers enables 
the application of statistical methods to establish a 
mathematical relationship between the description carried out 
and properties and/or behavior of molecules. Quantitative 
Structure Activity/Property Relationships (QSAR/QSPR) are 

the computational chemistry disciplines which propose 
different methodologies for molecular description and study 
their efficiency for in-silico prediction [3]. 
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Quantitative Structure-Activity Relationships (QSAR) 
methodology seeks mathematical equations that correlate 
structural descriptors with activities of drugs as well as other 
pharmacological properties. This methodology shows a series 
of advantages related to optimization of drug synthesis 
regarding economical and environmental factors. In addition, a 
deep theoretical knowledge of the receptor-drug system is not 
required and predictive tools are achieved for a wide drug 
spectrum. 

Several classifications of these methodologies could be 
carried out depending on the characteristics of the descriptor 
vector (2D or 3D, local or global, constitutional or geometrical, 
etc.) and on the mathematical method employed to define the 
QSAR/QSPR equation (univariate or multivariate, parametric 
or non parametric, global or feature selection, etc.) [4].  

2D similarity approaches can be defined as simple methods 
since they employ topological measurements derived from 
molecular graphs. Graph theory has provided several 
descriptors showing good correlations with the properties of 
molecules.  

In addition, topological structural similarity also derived 
from the graph representation of molecules (molecular graphs) 
has been employed in. These approaches are based on the 
“structurally similar molecules show similar properties and 
biological activities” principle. 

Hence, similarity matrices, obtained any known similarity 
index (Tanimoto, Cosine, etc.) and representing how similar all 
the data set elements are between them, can be employed as 
multivariate spaces for the prediction of properties or activities.  

However, many times these similarity-based methods show 
inconsistencies for the appropriate representation of 
QSAR/QSPR predictive spaces [5]. Thus, accuracy achieved is 
not enough in order to consider models as predictive tools.  

In this work we present the advantages resulting from the use 
of the recently proposed approximate similarity. This 
measurement refines the chemical information extracted from 
molecular graphs by considering new chemical pieces of 
information: the non-isomorphic substructures.  

The affinity of trans-stilbenes for the β-amyloid peptide [6] 
has been the chemical frame considered due to its application in 
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the early detection of the Alzheimer disease. 
This work has been organized as follows: after the 

introductory section, a general description of the use of the 
similarity concept in QSAR/QSPR is given. Section 3 describes 
different classical similarity approaches, whereas the 
approximate similarity concept is defined in section 4. 
Evaluation of the different QSAR models developed is carried 
out in section 5, and finally, conclusions are given. 

 

II. SIMILARITY APPROACHES 
Similarity measurements are often employed to develop 

screening methods of chemical databases and to predict 
molecular properties. The latter application is based on the 
“similar molecules show similar properties” chemical 
principle, thus enabling the study of both physico-chemical 
properties and biochemical behavior. 

The development of similarity-based QSAR models consists 
of a series of common stages, namely: a) first, a data set which 
represents both the molecular diversity and the 
property/activity range to be modeled and predicted is selected; 
b) second, 2D or 3D methods are employed to compute the 
isomorphism shown by each pair of the compounds which 
compose the data set; c) a similarity matrix is built by means of 
using any of the similarity metrics summarized in literature; 
and d) multivariate regression techniques and validation 
strategies are employed to establish the prediction equations 
and to assess the uncertainty reduction achieved, respectively.  

Several 2D and 3D similarity methods have been proposed. 
The former makes use of graph (called molecular graph) 
representation of all the data set elements by considering the 
atoms and bonds which compose a molecule as the nodes and 
edges, respectively. There are two ways of using a molecular 
graph. First, after computing one or several descriptors over the 
molecule, we can build univariate or multivariate models to 
predict chemical properties/activities. In other way, measures 
of similarity between the different molecule descriptions of the 
data set can be carried out by means of considering size and 
nature of molecules and of the isomorphic fragments [7]. 

Three dimensional similarity methods, based on 
Comparative Molecular Field Analysis (CoMFA), consider 
XYZ coordinates of atoms and grids enclosing data set 
structures. Then, a series of molecular field interactions are 
computed at each one of the grid points, and similarity between 
all the molecules is computed by taking into account the 
overlapping between a pattern randomly selected and each data 
set element in the built grid. Thus, a similarity measurement can 
be considered as a distance between the calculated descriptors 
for the XYZ coordinates of each data set element [8].  

In spite of the efficiency achieved by 3D methods, some 
shortcomings related to their high computational cost are 
involved in this kind of QSAR developments. For instance, 
optimizations of 3D structures are carried out by complex 
methods like quantum mechanics, molecular dynamics, 
molecular mechanics, etc. In other hand, alignment of 

structures is also required in order to reproduce the 3D space 
according to key parts for the property/activity. In addition, 
selection of a representative pattern is also a subjective step. 

Regarding 2D methods, optimization and alignment of 
chemical structures are not involved, thus not requiring high 
computational resources. In spite of this, similarity 
measurements have shown some problems in predicting 
molecular properties even in data sets composed by compounds 
showing similar structures. 

In previous works [9], we have proposed the Approximate 
Similarity concept. This new similarity measurement, which 
involves all the characteristics of 2D similarity approaches, 
considers several pieces of 2D structural information, namely: 
a) graph information of the data set elements; b) data of 
common fragments extracted from the isomorphism detection 
process; c) information of the non-isomorphic fragments 
obtained in the graph matching, i.e., those substructures which 
do not compose the isomorphism computed for each pair of the 
data set elements; and d) invariant-based description of whole 
graphs, and of isomorphic and non-isomorphic fragments by 
means of 2D-descriptors which accounts for their chemical 
nature. 

 

III. CLASSICAL SIMILARITY APPROACHES 
In this work, we expose the application of several 2D 

similarity methods to the development of QSAR models, thus 
showing the advantage derived from the use of the approximate 
similarity.  

A. Representation of the data set elements 
The molecules which compose the data set to be modeled are 

represented by non-directed and non-weighted graphs, known 
as molecular graphs. A molecular graph GA consisting of nA 
nodes and eA edges which represent the atoms and bonds of a 
molecule, respectively. 

B. Constitutional Similarity 
Bi-dimensional similarity measurements are obtained after 

representing the data set elements by means of molecular 
graphs and isomorphism extraction. Classically, graph 
matching computes the number of nodes and edges of the two 
matched molecular graphs and of the common fragments. 

Several similarity indices have been proposed with the aim 
of relating the constitutional description with a similarity 
measurement normalized within the range [0,1]. Tanimoto and 
Cosine formulas have been widely employed as similarity 
indices. These indices are shown in expressions (1) and (2). 

Tanimoto: 
cba

cS BA −+
=,  (1) 

Cosine: 
ba

cS BA
×

=,  (2) 

where: a and b are the sizes (number of nodes and edges) of the 
molecular graph GA and GB, respectively, and c is the size of the 
molecular graph GC which represents the isomorphism 
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extracted form the GA and GB matching. 
The GC graph can be obtained by different ways. GC is often 

considered as a connected graph representing the maximal 
common subgraph (MCS) between GA and GB. But other 
approaches do not show the requirement of fully connected 
graph, these representing either the set of maximal common 
edges subgraphs (MCES) or the set of all the maximal common 
subgraphs (AMCS). 

C. Fingerprint-based Similarity 
Other classical approaches to the 2D similarity concept make 

use of the transformation of the molecules into fingerprints [10]. 
A fingerprint is a binary array of a preset size which represents 
structural properties of the molecular graphs. Different kinds of 
fingerprints have been proposed depending on the structural 
elements to be represented and on the array size. 

In a general way, fingerprint construction consists of a series 
of steps, namely: a) generation of the molecular graph for each 
element of the data set; b) obtaining of the subgraphs showing 
size from 1 to m (often lower than 9) for each graph; c) 
extraction of preset pattern substructures in some fingerprint 
kinds; d) assignation of a binary representation and position of 
each path and pattern presented in the data set; e) and finally, 
the fingerprint construction. 

So, fingerprints can be considered as data structures which 
do not require great computational costs for their handling and 
they store greater structural information than that shown by the 
chemical graph. Nevertheless, some shortcomings are involved 
in the use of fingerprints. On a hand, if fingerprint size is small, 
different paths or patterns are located at the same bits, thus 
giving redundancy and high density fingerprints which produce 
high similarity values and data inconsistencies. On the other 
hand, big sizes are often responsible for scattered fingerprints 
which produce extremely low similarity measurements. 

Fingerprint similarity values are most of times obtained by 
means of Tanimoto index and through the computation of 
Boolean operations between the data set fingerprints. Values 
for a and b (see expressions 1 and 2) are the number of bits 
equal to 1 of fingerprints A and B, respectively, whereas c 
represents the number of bits equal to 1 and common to the 
fingerprints of molecules A and B. 

D. Descriptor-based Similarity 
Recently, the use of different descriptors computed over 

molecular graphs has been proposed with the aim of obtaining 
similarity measurements. So, taking into account the molecular 
graphs GA and GB representing the molecules A and B, 
respectively, a similarity approach based on extracting a 
descriptor or invariant over graphs GA, GB and GC can be 
proposed. Advantages of this kind of approaches derive from 
the use of descriptors which account for different structural 
properties of molecular graphs. Therefore, a given descriptor 
can be selected in order to explain in a major extent the 
property/activity we are trying to model and predict. 

Descriptor-based similarity measurements can be obtained 
by any descriptor, for instance, the Cosine index as follows: 

  

Cosine: 
)()(

)(
,

BA

C
BA GtdGtd

Gtd
S

×
=  (3) 

  

where: td(GA), td(GB) and td(GC) are the values of a given 
descriptor computed over the graphs of molecules A, B and of 
the extracted isomorphism, respectively. 

 

IV. APPROXIMATE SIMILARITY APPROACH 
The above described similarity approaches employ 

characteristics of molecular graphs and of isomorphic 
subgraphs extracted in the matching process for all the pairs of 
the data set. But these approaches do not consider straightly the 
fragments which do not compose the extracted isomorphism. 

    

O CH3

O
CH3

A 
CH3

NH

Cl

B 

CH3

Br
C  

Non isomorphic fragments Isomorphism 

—O—CH3 
—O—CH3 

—Cl 
—NH—CH3 

—CH3 
—Br 

 
    

Fig. 1. Isomorphic and non-isomorphic fragments for three 
examples of molecules 

 

For instance, taking into account the three molecular graphs 
shown in Fig. 1, classical similarity measurements only 
consider the characteristics of graphs GA, GB and GC and 
characteristics of the isomorphic subgraph GI. As can be 
observed, the matching processes GA-GB and GB-GC computed 
the same isomorphism.  

Nevertheless, non-isomorphic fragments are also responsible 
for the properties/activities of the molecules shown in Fig. 1.  

Our proposal is to consider the contribution to the similarity 
measurement of the non-isomorphic fragments. Thus, we take 
into account the distances between the subgraphs that do not 
form the isomorphism IA,B. Thus, the structural difference ГA,B 
(dissimilarity or distance) between two molecular graphs GA 
and GB is calculated as follows: 

  

)](),([
)],(),,([ .,,

BA

BABBAABA

NIFtdNIFtdg
IGtdIGtdg

=

==Γ
 (4) 

  

where: IA,B represents the isomorphism extracted from the 
matching of the GA and GB molecular graphs; non-isomorphic 
subgraphs NIFA=GA-IA,B and NIFB=GB-IA,B correspond to the 
subgraphs of GA and GB, respectively, that do not form the 
isomorphism IA,B; g() is a function aimed to obtain a distance 
value (e.g. Euclidean, Mahalanobis, etc.) between td(NIFA) and 
td(NIFB); and td is a topological descriptor which describes the 
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non-common subgraphs, namely: Wiener (W), Hyper Wiener 
(WW) and so on indices. Contrary to similarity, higher the ГA,B 
shows, higher the dissimilarity between the molecules A and B 
is. 

A. Correction of the structural similarity: the Approximate 
Similarity 

With the aim of defining a new similarity measurement 
which takes into accounts both the classical similarity and the 
non-isomorphic distance, the Approximate Similarity (AS) is 
defined as follows: 

  

),w,Γf(SAS ΓA,BA,BA,B =  (5) 
  

where: SA,B is a classical similarity measurement 
(constitutional, fingerprint-based or descriptor-based); ГA,B is 
the dissimilarity defined in equation (4), and wΓ is a weighting 
factor which adjusts the distance contribution in the 
approximate similarity calculation.  

Thus, chemical similarity achieved by the AS approach will 
be more accurate due to the consideration of the difference 
between the non-common substructures of the matched 
molecules, which most of the times is responsible for their 
properties/activities. 

 

V. MATERIAL AND METHODS 
In this work, the efficiency of approximate similarity 

methods was tested for the prediction of binding affinity of 
trans-stilbene derivatives to the β-amyloid (Aβ) peptide. Aβ 
accumulation in the brain is a key symptom for the 
development of Alzheimer’s disease (AD), which destroys the 
part of the nervous system responsible for storing memories. 
The fact of detecting Aβ accumulations by means of non 
invasive spectroscopic techniques is pursued by the scientific 
community in order to detect the disease in its early 
development. 

The synthesis of specific ligands of Aβ which act as imaging 
factors to reveal the presence of Aβ has been widely studied. 
The trans-stilbene series (22 compounds) studied in this work 
shows a wide range of affinity for the Aβ plaques consisting of 
Aβ1-40 aggregates in the brain of AD people. Thus, there is a 
great interest in developing computer tools for the aid of 
development of trans-stilbene derivatives. A fast and efficient 
QSAR model based on 2D similarity calculations and distance 
corrections of similarity, respectively, could provide a useful 
predictive tool. 

Fig. 2 and Table I show, respectively, the 2D structures and 
the SMILE representations of the 22 stilbene compounds. 
MarvinScketch was employed as builder for the 2D structures, 
whereas the fingerprints were generated by generfp of JChem 
[11]. As can be observed, the structure of the compound 22 is a 
substructure of the rest of stilbene molecules.  

The affinity values are also shown in Table I, expressed as 
pKi = -log(Ki), and the statistical characterization of the 
experimental data set affinity is as follows: N: 22, mean: 7.64, 

min: 6.24, max: 8.70, standard deviation: 0.52. 
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as carried out by using an algorithm which extracts the 

maximum common substructure (MCS). This program was 
developed by the authors [12]. Wiener index (eq. 6) was 
employed to calculate descriptor-based similarities. 

N

∑
<

=
ji

ijdW  

nsider the weighted distance matrix. In this matrix, each 
element (i, j) corresponds to the minimal pathway length 
between the graph nodes (atoms) i and j computed by 
considering interatomic distances relative to the C-C bond. The 
Wiener index has been demonstrated to be useful for predicting 
molecular properties since three decades ago [7]. This index 
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allows describing the molecular size and volume, which have 
been widely related to properties/activities of molecules. In 
addition, W* provides information of the atoms and bonds that 
compose the molecule, thus refining the chemical information 
shown by this kind of graph invariants. 
  

able I.  SMILE structures, and experi
   

menta cted and 

i 

T l, predi
reference affinities for the data set 

     

  pK
 Molecules Exp. Ref 

(C)C1=CC=C(\C=C\C )C=C2)C=C1 

2C=C1 

1 

)C=C1 
C1 

1 

O)=O 

Pred. 
1 CN 2=CC(Br)=C(O 8.70 8.46 8.56 
2 CN(C)C1=CC=C(\C=C\C2=CC=C(Br)C(N)=C2)C=C1 8.55 8.21 8.13 
3 COC1=CC2=CC=C(\C=C\C3=CC=C(C=C3)N(C)C)C=C 8.15 8.14 8.23 
4 CN(C)C1=CC=C(\C=C\C2=CC=C3C=CC(C)=CC3=C2)C=C1 8.14 7.91 8.09 
5 CCN(CC)C1=CC=C(\C=C\C2=CC=C(O)C=C2)C=C1 

CN(C)C1=CC=C(\C=C\C2=CC=CC(Br)=C2)C=C1 
8.00 8.05 8.04 

6 7.90 8.52 7.74 
7 
8 

COC1=CC(=CC=C1)\C=C\C2=CC=C(C=C2)N(C)C 7.87 8.07 7.60 
CNC1=CC=C(C=C1)\C=C\C2=CC=C(C=C2)N(C)C 7.82 7.70 7.82 

9 CN(C)C1=CC=C(\C=C\C2=CC=C(C=C2)N(C)C)C=C 7.73 7.83 7.99 
10 NC1=CC=C(C=C1)\C=C\C2=CC=C(OCCF)C=C2 7.59 7.29 7.42 
11 CN(C)C1=CC=C(\C=C\C2=CC=C(N)C=C2)C=C1 7.58 7.56 7.80 
12 CN(C)C1=CC=C(\C=C\C2=CC=CC(=C2)N(=O)=O

CN(C)C1=CC=C(\C=C\C2=CC=C3C=CC(=O)OC3=
7.56 7.29 7.65 

13 C2)C= 7.55 7.72 7.93 
14 OC1=CC=C(C=C1)\C=C\C2=CC=C(NCCF)C=C2 

CC=C3)C=C
7.52 7.47 7.65 

15 CN(C)C1=CC=C(\C=C\C2=CC=C(C=C2)C3=CC= 7.47 7.76 7.48 
16 COC1=CC=C(C=C1)\C=C\C2=CC=C(N)C=C2 

C=C2 
7.44 7.74 7.68 

17 FCCNC1=CC=C(C=C1)\C=C\C2=CC=C(OCCF) 7.41 7.44 7.21 
18 COC1=CC=C(C=C1)\C=C\C2=CC=CC=C2 

1 
7.36 7.08 7.08 

19 CN(C)C1=CC=C(\C=C\C2=CC=CC=C2)C=C 7.35 7.27 7.31 
20 COC1=CC=C(C=C1)\C=C\C2=CC=C(C=C2)N(= 7.33 7.45 7.31 
21 CC1=CC=CC(\C=C\C2=CC=C(C=C2)N(=O)=O)=C1 6.82 6.82 6.94 
22 C1=CC=C(C=C1)\C=C\C2=CC=CC=C2 6.24 6.36 6.38 
     

 

VI. EVALUATION OF THE DIFFERENT SIMILARITY APPROACHES 

m

 that meaningful models are 
ob

e different similarity 
ap

 similarity 
ap

first principal 
co

ained 
fo

Partial Least Squares Regression (PLSR) was employed as 
ultivariate regression technique [13]. PLSR reduced original 

similarity spaces by considering variances of predictors and 
properties/activities. In addition, PLSR permitted the use of 
symmetric matrices —other regression techniques, e.g. 
Multiple Linear Regression (MLR), require systems with more 
objects than predictors—. Leave one out was the strategy 
employed to validate the quality of equations. Different 
statistical parameters were studied, namely: coefficient of 
determination (Q2), standard error in cross-validation (SECV), 
and slope and intercept of the predicted vs. experimental plot. 
All these parameters are referred to predictions. A study of 
anomalies was also carried out. 

QSAR community considers
tained when Q2 > 0.50 and, also, when the SECV value is 

much lower than the standard deviation of the data set. In 
addition, slope and bias close to 1 and 0, respectively, also 
confirm the models predictive capacity.  

Table II shows the models built by th
proaches studied in this work. As can be observed in Table 

II, classical similarity matrices did not give good predictive 
models since all the indices employed led to poor values for all 
the statistical parameters. In a similar way, descriptor-based 
similarities did not show predictive ability in spite of using the 
modified Wiener index (W*). Q2 values were much lower than 
0.5 and SECV was similar to the standard deviation of the 
affinities, thus not obtaining uncertainty reduction.  

Clustering study for classical and descriptor-based
proaches was also carried out using hierarchical and 

principal component analysis (PCA) methods.  
Fig. 3 shows the Dendogram and the two 
mponent plots obtained with PCA analysis for Constitutional 

similarity using Cosine and Tanimoto indices. 
As we observe in Fig. 3, very close behavior was obt
r Cosine and Tanimoto indices. Three or four clusters 

distributed in different quadrants can be observed. 
 

A

 
B

 
C

 
 

Fig. 3. Clustering analysis for Constitutional similarity 

Som olecules are well classified (i.e.; 

approach. (A) Dendogram using Cosine index (using 
Tanimoto index a similar Dendogram was obtained), 
(B) PCA using Cosine index, (C) PCA using 
Tanimoto index. 
e subsets of m
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molecules 3, 4, 13 and 15); however, very different molecules 
with very different property values are grouped close (i.e.; 
molecules 14 and 22), and other clusters (i.e. molecules 1, 2, 5, 
6, 7, 8, 11, 12, 14 and 19) are very disperse. 
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. Clustering analysis for Fingerprint-based similarity 

 

egardi ved from use of fingerprints, 
ac

Fig. 4
approach. (A) Dendogram using Cosine index (using 
Tanimoto index a similar Dendogram was obtained), 
(B) PCA using Cosine index, (C) PCA using 
Tanimoto index. 

ng models deri R
ceptable Q2 values were obtained, namely: 0.58 and 0.56 for 

the Tanimoto and Cosine indices, respectively. The slightly 
higher predictive ability achieved for the Tanimoto index could 
be due to the reduction of redundancies observed in the location 

of fragments in both high density and scattered fingerprints. 
Nevertheless, these models can only be employed for screening 
tools (separation of low, medium and high affinity values). 
Greater Q2 values are required to achieve robust QSAR models. 
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ig. 5. Clustering analysis for approximate similarity 

 

ilarity approach 
ca

e best behavior 
of

ig. 4 that molecules 8, 9, 11, and 19 are 
al

ent of a 2D similarity measurement 
w

F
approach. (A) Dendogram, (B) PCA  

 behavior of fingerprint-based simThe best
n be observed in Fig. 4. In this case two clear clusters with a 

better grouping can be observed in the Dendogram, and 
molecules with an anomalous (molecule 22) or specific 
behavior are identified (molecules 13 and 18).  

PCA analysis shown in Fig. 4 also detected th
 this approach. Cosine and Tanimoto indices show similar 

results. Molecule 22 is detected as a singleton and molecules 13 
and 18 as a doubleton. 

We also observe in F
located in the same point. These molecules can be not 

distinguished although they present different substituents in the 
para position. Taking into account the above commented 
results, 2D similarity approaches show shortcomings for the 
development of QSAR models. In these cases, predictive 
spaces were symmetric similarity matrices built by means of 
isomorphism measurements which only consider 
characteristics of the molecular graphs and of the computed 
isomorphic fragment.  

Thus, the developm
hich employs non-isomorphic contributions should be 

attempted. The similarity correction by considering 
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non-isomorphic information was carried out as expression (7). 
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We can observe three terms in equation (7). First, one of the 
cl

by using modified Wiener 
in

A analysis was studied using 
ap

Table II.  Experimental results for different similarity-based 

Si Prediction Model 

assical similarity SA,B above described is employed. The 
second component is a measure of the isomorphic fragment 
weighted contribution for each pair of data set elements with 
regard to the matched molecules.  

This contribution was obtained 
dex (W*), which is computed over the weighted distance 

matrix of graphs. Finally, the third term considers the 
non-isomorphic fragments (NIF) contribution to the similarity 
correction. With this aim, Wiener and modified Wiener indices 
(W and W*) were computed over the normal and weighted 
distance matrices, respectively. 

Hierarchical clustering and PC
proximate similarity matrices obtained from equation 7. As 

we observe in Fig. 5 a very good clustering is obtained. 
Molecule 22 is detected as a singleton, so this molecule has any 
substituents and its structure is present in the complete dataset. 

 

approaches 
milarity 

Model Index  Slope ECV  Bias Q2 S
Cl  assical Tan 0.62 2.91 0.12 0.51  
 Cos  0.60 3.05 0.10 0.51  
Fingerprint Tan  0.91 0.66 0.58 0.34  
 Cos  0.90 0.72 0.56 0.35  
Descriptor Tan W 0.83 1.29 0.29 0.45  
 Cos W 0.60 3.04 0.10 0.51  
 Tan W* 0.82 1.33 0.29 0.45  
 Cos W* 0.60 3.04 0.10 0.51  
Approximate * Cos W, W 1.01 -0.13 0.89 0.17 1 

 
Furthermore, very similar molecules (i.e.; 2, 6, 8) are 

gr

shows the PLS results obtained by the approxi
si

erved, one outlier was detected when a study
de

rivative 6. As 
ob

atistical parameters were 
as

VII. CONCLUSIONS 
In this work, redictive power of 

sim

s for the 
β-

resting to remark that the simplicity of 2D QSAR 
m
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