
 
 

 

  
Abstract—Multiple-valued quantum circuits are promising 

choices for future quantum computing technology, since the 
multiple-valued quantum system is more compact than the 
corresponding binary quantum system. Grover’s quantum 
search algorithm requires a sub-circuit called oracle, which 
takes a set of inputs and gives an output stating whether a given 
search condition on the inputs is satisfied or not. Equality, 
less-than, and greater-than comparisons are widely used as 
search conditions. In this paper, we show design of quantum 
ternary equality, less-than, and greater-than comparators on 
the top of ion-trap realizable 1-qutrit gates and 2-qutrit 
Muthukrishnan-Stroud gates. 
 

Index Terms—Multiple-valued logic, quantum logic, 
reversible logic, ternary comparators, ternary logic  
 

I. INTRODUCTION 
Landauer [1] proved that binary logic circuits built using 

traditional irreversible gates lead inevitably to energy 
dissipation, regardless of the technology used to realize the 
gates. Zhirnov et al [2] showed that power dissipation in any 
future CMOS will lead to impossible heat removal and thus 
the speeding-up of CMOS devices will be impossible at some 
point of time, which will be reached soon. Bennett [3] proved 
that for power not to be dissipated in a binary logic circuit, it 
is necessary that the circuit be built from reversible gates. A 
gate (or circuit) is reversible if it is a one-to-one mapping 
between the input values and the output values. Thus all 
output patterns are just permutations of input patterns. Such 
circuit can be described by a permutation matrix. Bennett's 
theorem suggests that every future binary technology will 
have to use some kind of reversible gates in order to reduce 
power dissipation. This is also true for multiple-valued logic, 
which demonstrates several potential advantages over binary 
technology. Quantum technology is inherently reversible and 
is one of the most promising technologies for future 
computing systems [4]. Quantum computing allows solving 
problems much more efficiently than in classical computing. 
For instance, while classical algorithm needs N steps to 
search an unstructured database, a quantum Grover algorithm 
[5] needs only √N steps and it can be proved that there is no 
classical algorithm that would require less steps than O(N) [6, 
7]. Although only few quantum algorithms are now known, 
researchers believe that many problems may be reduced to 
some of these algorithms, for instance to Quantum Fourier 
Transform or to Grover Algorithm. Thus, many NP-hard 
problems may be reduced to Grover search to give a 
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practically useful and substantial reduction of complexity for 
large values of N. 

An oracle is a logic circuit that takes a set of inputs and 
gives an output stating whether a given search condition on 
the input is satisfied or not. An oracle is an integral part of 
Grover’s quantum search algorithm [4, 5]. Quantum oracles 
are built from quantum gates and many oracles include 
arithmetic, logic, and mixed blocks.  If one only knows how 
to build a respective oracle, Grover quantum search 
algorithm and its modifications would be immediately useful 
to solve many problems when the physical quantum 
computers will be available. It is, therefore, important to 
study methods and algorithms to design various types of 
oracles. The problem of designing various classes of oracles 
or their blocks (components) is well known for binary 
quantum circuits [4, 8]. 

Multiple-valued quantum systems are physically 
realizable. Klimov et al [9] and Mc Hugh and Twamley [10] 
showed realization of ternary quantum gates using trapped 
ions. Muthukrishnan and Stroud [11] showed realization of 
d-valued (d > 2) quantum gates using liquid ion-trap. Bartlett 
et al [12] showed d-valued quantum encoding in spin systems 
and harmonic oscillators. Realizations of these 
multiple-valued quantum systems enable us to develop 
quantum algorithm and related oracles on these systems. In 
this paper, we show design of ternary equality, less-than, and 
greater-than comparator circuits, which are very important 
components in constructing oracles for ternary quantum 
search algorithm. 

Ternary reversible/quantum logic synthesis is a new and 
immature research area [13-26]. Papers [17, 24-26] presented 
ternary quantum logic synthesis methods using 2-qutrit 
(quantum ternary digit) controlled gates. Papers [14-16, 22, 
23] presented ternary quantum logic synthesis methods using 
multi-qutrit macro-level gates, which are needed to be 
realized using primitive quantum gates. Papers [14-17, 
22-26,] presented generalized synthesis techniques but did 
not give synthesis examples of practically important ternary 
circuits like adder, subtractor, encoder, decoder, multiplexer, 
demultiplexer, comparators, etc. These circuits are major 
sub-circuits needed for ternary system design as well as 
constructing ternary quantum oracles. Design of ternary 
reversible/quantum adder is given in [17].  Synthesis of 
ternary reversible/quantum adder/subtractor is given in [19, 
20]. Realization of ternary reversible/quantum encoder and 
decoder is given in [18]. Synthesis of ternary 
reversible/quantum multiplexer/demultiplexer is given in 
[21]. In this paper, we present design of reversible/quantum 
realization of ternary equality, less-than, and greater-than 
comparator circuits. For this purpose, we introduce 1-qutrit 
gates and 2-qutrit Muthukrishnan-Stroud (M-S) gates [11]. 
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We then show the realization of macro-level 3-qutrit 
controlled-controlled gates built on the top of 1-qutrit and 
2-qutrit M-S gates. Then we show the design of n-qutrit 
reversible/quantum equality, less-than, and greater-than 
comparator circuits using 1-qutrit and 3-qutrit 
controlled-controlled gates. 

 

II. ONE-QUTRIT PERMUTATIVE GATES 
Any transformation of the qutrit state represented by a 3×3 

unitary matrix specifies a valid 1-qutrit quantum gate. There 
are many such non-trivial 1-qutrit gates. However, in this 
work, we use only the unitary permutative transforms as 
shown by the permutative matrices of Figure 1. 
Transforms )1(+Z  and )2(+Z  shift the qutrit states by 1 and 
2, respectively. Transform )12(Z permutes the qutrit states 1 
and 2, )01(Z permutes the qutrit states 0 and 1, and 

)02(Z permutes the qutrit states 0 and 2 without affecting the 
other qutrit state. The input-output relationships of these 
1-qutrit gates are shown in truth table form in Table 1. The 
reversible 1-qutrit gates are elementary gates and can be 
realized using liquid ion trap quantum technology [11]. 
Therefore, we assign them a cost of 1. In reversible/quantum 
circuits, we will represent a 1-qutrit gate by the symbol of 
Figure 2, where x is the input, the output y is the Z transform 
of the input x, and the transform Z is any of the transforms 
shown in Figure 1 and Table 1. 
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Figure 1. One-qutrit unitary permutative transforms. 

 
Table 1. Truth table of 1-qutrit reversible gates. 
Inpu

t 
Transformed Output 

 Z(+1) Z(+2
) 

Z(12) Z(01) Z(02) 

0 
1 
2 

1 
2 
0 

2 
0 
1 

0 
2 
1 

1 
0 
2 

2 
1 
0 
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Figure 2. Symbol of 1-qutrit reversible gates [cost = 1]. 

 
Cascade of two 1-qutrit gates behaves like another 1-qutrit 

gate. The resultant 1-qutrit gates for all possible pairs of 
1-qutrit cascades are shown in Table 2. If a cascade pair of 
two 1-qutrit gates has the resultant effect that the input signal 
to the first gate is restored at the output of the second gate 

(that is, the resultant gate is +0), then the second gate is said 
to be the inverse gate of the first gate. From Table 2, we can 
identify inverse gates for all five 1-qutrit gates. 
 

Table 2. Resultant 1-qutrit gate for two cascaded 1-qutrit 
gates. 

 Second gate 
First gate +1 +2 12 01 02 

+1 +2 +0 02 12 01 
+2 +0 +1 01 02 12 
12 01 02 +0 +1 +2 
01 02 12 +2 +0 +1 
02 12 01 +1 +2 +0 

 

III. TERNARY MUTHUKRISHNAN-STROUD GATE FAMILY 
Muthukrishnan and Stroud [11] proposed a family of 

2-qudit (quantum digit) d-valued gates, which applies a 
1-qudit unitary transform on the second qudit conditional on 
the first qudit being (d – 1). Figure 1 and Table 1 show five 
such ternary (d = 3) unitary permutative transforms. Figure 3 
gives the symbolic representation of ternary 
Muthukrishnan-Stroud (M-S) gates. The ternary M-S gate is 
a controlled gate. The input A is the controlling input and the 
input B is the controlled input. The output P is equal to the 
input A. The output Q is the Z transform of the controlled 
input B if the controlling input A = 2, Q is equal to B 
otherwise. The ternary M-S gates can be realized using liquid 
ion trap quantum technology as an elementary gate [11]. 
Therefore, we assign these gates a cost of 1. 
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Figure 3. Symbol of 2-qutrit Muthukrishnan-Stroud gate 

family [cost = 1]. 
 

IV. TERNARY CONTROLLED-CONTROLLED GATE FAMILY 
We propose a ternary controlled-controlled gate family 

using the symbol of Figure 4. In Figure 4, A and B are the 
controlling inputs and C is the controlled input. The output P 
is equal to the controlling input A and the output Q is equal to 
the controlling input B. The output R is the Z transform of the 
controlled input C if the controlling inputs A = 2 and B = 2, R 
is equal to C otherwise. 

Realization of the ternary controlled-controlled gate family 
using ternary M-S gates is shown in Figure 5. From Figure 5, 
we see that if and only if the controlling inputs A = 2 and B = 
2, then x = 2 and the Z transform is applied on the controlled 
input C. For all other combinations of the controlling inputs A 
and B, x will never be 2 and Z transform will not be applied 
on the controlled input C. The right most two M-S gates are 
inverse gates of the left most two M-S gates and are used to 
restore the input constant 0 for reuse in the circuit. An 
auxiliary constant input used in the design of a circuit is 
called ancilla qutrit. This realization needs 5 elementary 
gates and 1 ancilla qutrit. 
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Figure 5. Realization of ternary controlled-controlled gate 

family [cost = 5 and ancilla qutrits = 1]. 
 

V. TERNARY EQUALITY COMPARATOR 
We will first realize 1-qutrit equality comparator and then 

we will realize n-qutrit equality comparator using 1-qutrit 
equality comparators. 

A 1-qutrit equality comparator compares two 1-qutrit 
numbers a and b and sets y = 2 if and only if a = b; otherwise 
sets y = 0. The truth table of a 1-qutrit equality comparator is 
shown in the first two columns of Table 3. From Table 3, we 
see that for three input combinations the value of y is 2 and 
for the remaining input combinations it is 0. In 
reversible/quantum circuits, the fan-out of the input signals is 
only one. The 1-qutrit equality comparator circuit will be 
used as a building block of n-qutrit equality comparator, so 
the inputs will have to be reused in the other parts of the 
circuit. Therefore, we will keep the inputs unchanged and the 
y output will be generated along a constant input 0. This sort 
of circuit design is especially suitable for designing oracles. 
For the input combinations producing a 0 output, no 
transform will be applied on the input constant 0 and the 
output will be automatically 0. For the input combinations 
producing output 2, we will change both the a and b inputs to 
2 by applying 1-qutrit transform (+1 or +2) and then using 
these two changed inputs as controlling signal, we will apply 
a +2 transform on the input constant 0 to produce the output 2 
by using ternary controlled-controlled gates. The transforms 
needed on the inputs a and b and the input constant 0 are 
shown in Table 3. The realization of the 1-qutrit equality 
comparator is shown in Figure 6(a). In Table 3, the 
transforms needed for the input combination 00 are +2+2. So 
a +2 gate is placed along the a input and another +2 gate is 
placed along the b input. Then a ternary controlled-controlled 
gate is placed with transform +2 along the output y line to 
generate it. So, when the input values are a = 0 and b = 0, then 
a +2 transform will be applied on the input constant 0 and the 
output y will be 2. The other transforms needed from the 
Table 3 are placed in the similar manner. Along the lines a 
and b, 1-qutrit gates are in cascade. Therefore, the effective 
transforms at the controlling points are explicitly shown to 
verify the transforms needed from Table 3. The resultant 
effect of two cascaded 1-qutrit gates is shown in Table 2. The 
output y may be set to +1 by simply changing the transform of 
the ternary controlled-controlled gates. The circuit for the 
1-qutrit equality comparator needs 6 + 3 × 5 = 21 elementary 
gates and 2 ancilla qutrits (the input constants 0 along the y 

output and another input constant 0 needed in the ternary 
controlled-controlled gates). We will use the symbol of 
Figure 6(b) to represent a 1-qutrit equality comparator in a 
larger circuit. 

 
Table 3. Truth table and transformation table for 1-qutrit 
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constant 0 to 
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22 2 +0+0 +2 

 

a a

b b

0 y

2+

2+

2+

2+

2+
2+

2+

2+ 2+

2+

2+1+

1+

0+

0+

nRealizatio (a)

a a

b b

0 y2+

ba =

Symbol (b)  
Figure 6. One-qutrit equality comparator [cost = 21, ancilla 

qutrits = 2]. 
 

In an n-qutrit equality comparator, we will compare 
whether two n-qutrit numbers 011 aaaa n L−=  and 

011 bbbb n L−=  are equal or not. For designing an n-qutrit 
equality comparator, we define the following qutrit-wise 
function for )1(,,1,0 −= ni L : 
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We also define a recursive function iF  for )1(,,1,0 −= ni L , 
whose value will be 2 if the partial numbers 01aaaiL  and 

0bbb ii L  are equal, otherwise 0. The recursive function iF  
can be defined as 
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If 21 =−nF , then the n-qutrit numbers a and b are equal. From 
the recursive function iF , we have that 
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Realization of n-qutrit equality comparator is shown in 
Figure 7. First 0F  is realized using a 1-qutrit equality 
comparator. Then 1E  is realized using a 1-qutrit equality 
comparator. Then we applied a controlled-controlled gate 
with 1E  and 0F  as controlling inputs and +2 as the transform. 
If )2()2( 01 =∧= FE , then 1F  will be 2, otherwise 1F  will 
be 0. In this way we complete the whole circuit. We know 
that +2 +1 = 0. Using this fact, we restore the ancilla 
constants in the constant restoring part of the circuit. For 
example, the input constant 0 along 1−nE  is restored using a 
similar 1-qutrit equality comparator with the same set of 
inputs and a +1 transform. From Figure 7, we can compute 
that the number of elementary gates or the cost of the 
realization is 1552 −n  and the number of ancilla qutrits is 

13 −n . 
 

VI. TERNARY LESS-THAN COMPARATOR 
We will first realize 1-qutrit less-than comparator, then we 

will realize n-qutrit less-than comparator using 1-qutrit 
less-than comparators and 1-qutrit equality comparators. 

A 1-qutrit less-than comparator compares two 1-qutrit 
numbers a and b and sets y = 2 if and only if a < b; otherwise 
sets y = 0. The truth table of 1-qutrit less-than comparator is 
shown in the first two columns of Table 4. The 
transformations needed on the inputs ab and the constant 
input 0 are calculated as is done for the 1-qutrit equality 
comparator. The realization of the 1-qutrit less-than 
comparator is shown in Figure 8(a). The circuit for the 
1-qutrit less-than comparator needs 5 + 3 × 5 = 20 elementary 
gates and 2 ancilla qutrits (the input constants 0 along the y 
output and another input constant 0 needed in the ternary 
controlled-controlled gates). We will use the symbol of 

Figure 8(b) to represent a 1-qutrit less-than comparator in a 
larger circuit. 

 
Table 4. Truth table and transformation table for 1-qutrit 

less-than comparator. 
Inpu

t 
 
 

ab 

Outpu
t 
 
 
y 

Transformation 
needed on inputs 
ab to make ab = 

22 

Transformation 
needed on input 

constant 0 to 
make y = 2 

00 0   
01 2 +2+1 +2 
02 2 +2+0 +2 
10 0   
11 0   
12 2 +1+0 +2 
20 0   
21 0   
22 0   

 
In an n-qutrit less-than comparator, we will compare 

whether an n-qutrit number 011 aaaa n L−=  is less than 
another n-qutrit number 011 bbbb n L−=  or not. For designing 
n-qutrit less-than comparator, we define the following 
qutrit-wise functions for )1(,,1,0 −= ni L : 
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We also define a recursive function iF  for 

)1(,,1,0 −= ni L , whose value will be 2 if the partial number 

01aaaiL  is less than the partial number 0bbb ii L , otherwise 
0. The recursive function iF  can be defined as 

0a
0b

1a
1b

1−na
1−nb

M

0

0

0

0=i

2+

1=i

L

0
M

0
0

0F

1E
1F

1−nE

2−nF

1−nF

1−= ni 0=i1−= ni

L

1=i

0a
0b

1a
1b

1−na
1−nb

M

0

0

0

0
M

0

restoringconstant 

00 ba =

11 ba =

11 −− = nn ba 11 −− = nn ba

11 ba =

00 ba =

2+
2+

2+
2+

1+

1+
1+

1+

 
Figure 7. Realization of an n-qutrit equality comparator [cost = 1552 −n , ancilla qutrits = 13 −n ]. 
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Figure 8. One-qutrit less-than comparator [cost = 20, 

ancilla qutrits = 2]. 
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If 21 =−nF , then the n-qutrit number a is less than the 
n-qutrit number b. From the recursive function iF , we 
have that 
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Realization of n-qutrit less-than comparator is shown in 
Figure 9. First 0F  is realized using a 1-qutrit less-than 
comparator. Then 1L  is realized using a 1-qutrit less-than 
comparator and 1E  is realized using a 1-qutrit equality 
comparator. Then we applied a controlled-controlled gate 

with 1E  and 0F  as controlling inputs and with a +2 
transform. Any one of the two +2 transforms will be 
applied along 1F . If 21 =L , then 1F  will be 2. Or if 

)2()2( 01 =∧= FE , then 1F  will be 2. Otherwise 1F  will 
be 0. In this way we complete the whole circuit. We restore 
the ancilla constants using the constant restoring part of the 
circuit. From Figure 9, we can compute that the number of 
elementary gates or the cost of the realization is 7792 −n  
and the number of ancilla qutrits is 35 −n . 

 

VII. TERNARY GREATER-THAN COMPARATOR 
As in the case of ternary less-than comparator, we will 

first realize 1-qutrit greater-than comparator, then we will 
realize n-qutrit greater-than comparator using 1-qutrit 
greater-than comparators and 1-qutrit equality 
comparators. 

A 1-qutrit greater-than comparator compares two 
1-qutrit numbers a and b and sets y = 2 if and only if a > b; 
otherwise sets y = 0. The truth table of 1-qutrit greater-than 
comparator is shown in the first two columns of Table 5. 
The transformations needed on the inputs ab and the 
constant input 0 are calculated as is done for the 1-qutrit 
less-than comparator. The realization of the 1-qutrit 
greater-than comparator is shown in Figure 10(a). The 
circuit for the 1-qutrit greater-than comparator needs 5 + 3 
× 5 = 20 elementary gates and 2 ancilla qutrits (the input 
constants 0 along the y output and another input constant 0 
needed in the ternary controlled-controlled gates). We will 
use the symbol of Figure 10(b) to represent a 1-qutrit 
greater-than comparator in a larger circuit. 
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Figure 9. Realization of n-qutrit less-than comparator [cost = 7792 −n , ancilla qutrits = 35 −n ]. 
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Table 5. Truth table and transformation table for 1-qutrit 
greater-than comparator. 
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Figure 10. One-qutrit greater-than comparator [cost = 20, 

ancilla qutrits = 2]. 
 

In an n-qutrit greater-than comparator, we will compare 
whether an n-qutrit number 011 aaaa n L−=  is greater than 
another n-qutrit number 011 bbbb n L−=  or not. For designing 
n-qutrit greater-than comparator, we define the following 
qutrit-wise functions for )1(,,1,0 −= ni L : 
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We also define a recursive function iF  for )1(,,1,0 −= ni L , 
whose value will be 2 if the partial number 01aaaiL  is 

greater than the partial number 0bbb ii L , otherwise 0. The 
recursive function iF  can be defined as 
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If 21 =−nF , then the n-qutrit number a is greater than the 
n-qutrit number b. From the recursive function iF , we have 
that 
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Realization of n-qutrit greater-than comparator is shown in 
Figure 11. From Figure 11, we can compute that the number 
of elementary gates or the cost of the realization is 7792 −n  
and the number of ancilla qutrits is 35 −n . 
 

VIII. CONCLUSION 
Multiple-valued quantum circuits are a promising choice 

for future quantum computing technology, since they are 
more compact than the corresponding binary quantum 
circuits. Ternary reversible/quantum logic synthesis is a new 
and immature research area [13-26]. Papers [14-17, 22-26,] 
presented generalized synthesis techniques. Design of 
ternary reversible/quantum adder is given in [17].  Synthesis 
of ternary reversible/quantum adder/subtractor is given in [19, 
20]. Realization of ternary reversible/quantum encoder and 
decoder is given in [18]. Synthesis of ternary 
reversible/quantum multiplexer/demultiplexer is given in 
[21]. But, as far as our knowledge is concerned, designs of 
ternary comparator circuits are not yet reported in the 
literature. 
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Figure 11. Realization of n-qutrit greater-than comparator [cost = 7792 −n , ancilla qutrits = 35 −n ]. 
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The most practically important quantum algorithm is 
Grover’s quantum search algorithm [5]. This algorithm 
requires a sub-circuit called ‘oracle’, which takes a set of 
inputs and generates an output indicating whether a specified 
search condition is satisfied or not. The oracle is designed 
using classical reversible design techniques without 
considering the superposition of the qutrit states [4]. Equality, 
less-than, and greater-than condition testing are very 
important in search problems. In this paper, we present 
reversible synthesis of ternary equality, less-than, and 
greater-than comparator circuits on the top of ion-trap 
realizable quaternary 1-qutrit gates and 2-qutrit 
Muthukrishnan-Stroud gates [11]. These gates are so far the 
best presented multiple-valued quantum gates in the 
literature. 

Observe that this method of synthesis, in contrast to most 
synthesis methods from literature, performs a conversion of a 
non-reversible function to a reversible one. Moreover, 
comparing to the general synthesis methods from literature, 
this problem specific synthesis method can be used to 
synthesize quaternary comparators of very large size. 
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