
  

Abstract—This paper analyzes the controllable set 

(stability region) of a linear time-invariant open-loop 

unstable system with constrained input. In particular, 

we apply the Lyapunov descent criterion and 

Kuhn-Tucker Theorem to the case when the input is 

allowed to saturate. We demonstrate our approach by 

a real submarine case, and find the 3D controllable set 

for the case. 

 

Index Terms—3D controllable set, Lyapunov descent 

criterion, constrained input.  

 

I. INTRODUCTION 

  The concept of controllable set in control systems 

was introduced by Snow [18], when he defined the 

controllable set as the reachable set of the system with 

time reversed.  For linear systems, there is complete 

duality between reachability (the ability to reach any 
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desired final state from a given initial state) and 

controllability (the ability to reach a given final state from 

any initial state).  But this is not generally true for 

nonlinear systems.  Determination of the reachable set 

under input saturation has been widely studied using an 

open-loop approach.  See Summers [20], Summers, Wu 

and Sabin [21], Sabin and Summers [16], and Quinn and 

Summers [13].  However, none of these papers covers the 

controllable set of a closed-loop system.  

The problem of stabilization has widely been studied 

for a linear system which is subject to input saturation. 

See Sontag and Sussmann [19], Teel [23], Yang, 

Sussmann and Sontag [26], Lin and Saberi [10], 

Sussmann, Sontag, and Yang [19], Lin, Saberi, and Teel 

[9], Kosut [6], and Chen and Wang [2].  

Another interesting aspect of this problem was 

shown by Lin, Saberi [10] and Lin, Saberi and Teel [11]. 

They showed that global stabilization via linear state 

feedback requires all the eigenvalues of the open-loop 

system be in the closed left-half plane with those on the 

imaginary axis simple, while semi-global stabilization via 

linear state feedback requires only that all the eigenvalues 

of the open-loop system be in the closed left-half plane. 

However, the stability of an open-loop unstable system 

with input saturation had never been studied until Lee and 

Hedrick [9] studied such a case. Specifically they 

considered the case in which the input )(tu is bounded, 

,1)( ≤
∞

tu  and at least one of the eigenvalues is located 
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on the open right-half plane or at least one multiple 

eigenvalue is located on the imaginary axis. In this case, 

they chose as a stable region an ellipsoid which lies in a 

non-saturated zone. Quinn [14] developed a method of 

constructing a graphical representation of the set of null 

controllability by linear feedback for 2-dimensional linear 

systems, and addressed that the algorithm to construct a 

3-dimensional systems would be too complicated. 

Russell and Alpigini [15] created the controllable 

regions by using a 3D-Julia set methodology for a 

real-time nonlinear system. However, neither the 

constraint of the input nor the open-loop instability was 

studied in that paper.  

In this paper, we study the case of 3D controllable set 

(stability region) of open-loop unstable systems with 

constrained input for a practical submarine case [4]. We 

also note that, in this paper, we do not distinguish between 

the stability region and controllable set.  

We consider a linear time-invariant continuous-time 

system 

)()( tButAxx +=&                                      (1) 

)),((sat)( tKxtu −=                                      (2) 

where )(sat ⋅ denotes the saturation function. The 

one-dimensional version of the saturation function is 

defined by  
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and we componentwise extend its definition to the 

multi-dimensional version: 
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II. LINEAR TIME-INVARIANT SYSTEM WITH 

CONSTRAINED INPUT 

Consider the linear time-invariant continuous system (1), 

where nnA ×ℜ∈ is a given constant matrix, mnB ×ℜ∈ is 

a given constant matrix, ntx ℜ∈)(  is the state vector, 
mtu ℜ∈)(  is the control vector, with 

)](,),([)( 1 tututu mK= . Assume that A is not 

asymptotically stable. We also assume that the above 

open-loop system (A,B) is linearly stabilizable. In other 

words, it is assumed that, without saturation, the system 

would be stabilizable. 

 Hence there exists at least one matrix K such that 

)()()( tBKxtAxtx −=&   

is asymptotically stable. Actually it is possible to select 

the location of the system eigenvalues (i.e., the 

eigenvalues of A-BK) arbitrarily. Hence we assume that 

matrix K has been selected so as to place the system 

eigenvalues in the desired location. Since BKAA −=
~ is 

Hurwitz, for every positive definite matrix Q~ , there 

exists an unique nnP ×ℜ∈ satisfying 

                            QAPPAT ~~~
−=+ ,                          (5) 

and P > 0.  

Now we introduce saturation (2) in the system, 

where )(sat ⋅  denotes the saturation function defined in 

(4). 

We denote the i-th row of matrix K by 

:,,1 , miki L=  
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We partition nℜ into m3 sections based on 
miki ,,1 , L=ξ , being  

(1) unsaturated: );1 ,1( −∈ξik  

(2) positively saturated: ;1−≤ξik  
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(3) negatively saturated: .1≥ξik  

Define s to be a function such that  

}1,0,1{},,2,1{: −→ms L  

and observe that there are m3  possible functions. Let S 

be the collection of all possible s functions. Define the 

regions where the i-th control iu  is unsaturated, 

positively saturated, and negatively saturated, 

respectively, as follows, 

(1) }; 1  : {)(0 <ℜ∈= ξξ i
n

i kKR  

(2) }; 1: {)( −≤ℜ∈=+ ξξ i
n

i kKR  

(3) }. 1: {)( ≥ℜ∈=− ξξ i
n

i kKR  

And, finally, define ),( KsR as the intersection of all 

possible regions for different control iu , i.e.,  

.  ),(),( )(,
1

SsKRKsR isi

m

i
∈=

=
I  

Observe that the set of these intersections. 

SsKsR ∈  ),,( , partition nℜ into m3  regions. 

 We now construct the Lyapunov function V. Let 

ℜ→ℜ nV : be defined by 

                            ,)( ξξξ PV T=                              (6) 

where P is a given real, positive definite, symmetric 

nn ×  matrix such that 0)~~(~
>+−= APPAQ T . Then 

)(⋅V  is a quadratic, continuously differentiable 

function. Note that the contours, 

} )( |  {)( cVc n =ℜ∈=Θ ξξ , with different values of 

c represent a nested family of ellipses for 2=n , of 

ellipsoids for 3=n , or of hyperellipsoids, for 3>n , 

all centered at 0=ξ . 

 For now, we consider the case of a single input: 

1=m . Define 

  )(sat)( ξξξ KBAf −=                                        (7) 
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   Define ))(()(~ txVtV = . Taking derivative of 

)(~ tV along the trajectory )(tx , we obtain the following 

three cases: 

(i) :)( 0Htx ∈ unsaturated case, i.e., )()( tKxtu −=  

  

),(~)(

)())()(()()(~

txQtx

txBKAPPBKAtxtV
dt
d

T

TT

−=

−+−=         (9) 

where 

).~()]()[(~ PAPABKAPPBKAQ TT +−=−+−−=
Δ

     (10) 

(ii) :)( +∈ Htx  positively saturated case, i.e., 1)( =tu  

  ,)()()()(

)()()()()()(~

PBtxtPxBtQxtx

PBtxtPxBtxPAPAtxtV
dt
d

TTT

TTTT

++−=

+++=     (11) 

where  

                   ).( PAPAQ T +−=
Δ

                                     (12) 

(iii) −∈ Htx )( : negatively saturated case, i.e., 

1)( −=tu  

,)()()()(

)()()()()()(~

PBtxtPxBtQxtx

PBtxtPxBtxPAPAtxtV
dt
d

TTT

TTTT

−−−=
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where Q is defined as in (12). 

Inspired by the right-hand sides (9), (11) and (13) 

for )(~ tV
dt
d

, we have 
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Observe that 

            )).(()(~ txgtV
dt
d

=  

In order to satisfy the Lyapunov descent condition 

0)( <ξg for a given ,ξ  we require that for each 

,0≠ξ  there exists at least one control value 

ν satisfying 1≤
∞

ν and  

      .02)( <±−= νξξξξ PBQg TT  

Then the state space nℜ can be divided into the following 

regions: 

(a) }.0~|{0 >ℜ∈= ξξξ QR Tn If ,0R∈ξ  then 

.0)( <ξg  

(b) }.02|{ ≤<ℜ∈=+ ξξξξ QPBR TTn  If 

,+∈ Rξ  then set 1=ν  so that               .0)( <ξg  

(c) }.02|{ ≥−>ℜ∈=− ξξξξ QPBR TTn  If 

,−∈ Rξ  then set 1−=ν  so that                                      

.0)( <ξg  

(d) }.{ }0 +− ∪∪−ℜ RRRn  If 

},{ }0 +− ∪∪−ℜ∈ RRRnξ  then it is not possible to 

 find ]1 ,1[−∈ν such that .0)( <ξg  

We now seek to find the maximal level set 

})(|{)( ** cPVcL Tn
P ≤=ℜ∈= ξξξξ which is 

contained in the union of the regions (a), (b) and (c), i.e.,  

}.)(  max{ 0
*

−+ ∪∪⊂= RRRcLcc P  

In other words, we seek to obtain the maximal inner 

ellipsoidal approximation )( *cLp of the controllable set 

.Ω Note that we are interested in finding the maximal set 

which is contained not only in the unsaturated region 

,0R but also in the saturated region .−+ ∪ RR  

We now give a lemma. 

Lemma 1 Suppose nnP ×ℜ∈ is positive definite, 

i.e., ,0>P satisfying (5) with .0~
>Q Define 
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0>P is selected so that .0)~~(~
>+−= APPAQ T Hence 

   00 any for  0~)( HQg T ∈≤−= ξξξξ  

and  

   .}0)(:{ 000 HgR n
g =≤ℜ∈= ξξ  

So,  

   .0 −+ ∪∪= ggg RHRR  ■ 

  Recall that we want to find the maximal level set L(r) 

that fits in the descent region .gR  The optimization 

problem can be simplified as  
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   Applying the Kuhn-Tucker Theorem, the desired value 

of the level r* can be obtained as 

*** ξξ Pr T
=  

III. PRACTICAL EXAMPLE: A SUBMARINE CASE 

We now apply the two techniques to the following real 

case from [4], except that our objective is to find the 3D 

controllable sets for the model instead of their objective of 

finding the optimal control. 

Example: Consider the following linearized model of a 

submarine obtained from Kockumation AB, Malmö, 

Sweden: 
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with the control constraint 

.005.0  ≤u  

Here we note that the eigenvalues of the open-loop system 

are found as 0, 0, -0.005.  Since there are two open-loop 

zero eigenvalues for the system, the system is open-loop 

unstable.  Suppose the desired eigenvalues of the 

closed-loop system are -0.0039, -0.0026 ±0.0021i as in 

[4].  Therefore, by the technique of eigenvalues 

placement, the feedback K is found as 

]102.81029.6107126.8[ 136 −−− ×××=K  

We choose Q~ as 

,
100
010
001

~

⎥
⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Q  

the eigenvalues of P are found as 

.104946.5

,100608.2

,103051.4

1
1

6
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11
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×=

×=

×=

λ

λ

λ
 

Hence P is positive definite. 

  We now apply the two techniques: 

 

Technique 1. Maximize the stable region inside the 

linear unsaturated region. 

  To find the stable region proposed by Lee and Hedrick 

[9], we formulate the following minimization problem: 

( )
.005.0      subject to

      min       
≥

= Τ

ξ
ξξξ

K
PV

 

The above optimization problem yields the level 

007.+1.0679e*
1 =r  

Figure 1 shows the 3D ellipsoidal controllable set 

approximated by Technique 1 without showing the linear 

unsaturated region.  Figure 2 shows the 3D linear 

unsaturated region and the controllable set fit inside the 

linear unsaturated region. Figure 3 and 4 show another 

view of 3D linear unsaturated region and the controllable 

set. It is clear that the ellipsoid is bounded by the linear 

unsaturated region and tangent to the linear unsaturated 

region. 
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Figure 1. 3D ellipsoidal controllable set approximated by 

Technique 1 

 

 
 

Figure 2. Linear unsaturated region and 3D controllable 

set approximated by technique 1 

 
Figure 3 Another view of 3D ellipsoidal controllable set 

approximated by Technique 1 

 

 

 

 Figure 4 Another view of 3D ellipsoidal controllable set 

approximated by Technique 1

Technique 2. Maximize the stable region under 

Lyapunov descent criterion. 

 

To find the stable region under Lyapunov descent 

criterion, we formulate the following minimization 

problem: 

( )

.005.0                   
,0005.02)()(    subject to

      min       

−≤
≥××−+=

=

+

Τ

ξ
ξξξξ

ξξξ

K
PBPAPAg

PV
TTT

The above optimization problem yields the 

level 007+1.1115e*
2 =r , which is about 4% more 

than that of the level found from Technique 1. 

Figure 5 shows the Lyapunov controllable set for 

approximated by Technique 2 without showing the linear 

unsaturated region.  Figure 6 shows the linear unsaturated 

region and the Lyapunov controllable set. Figure 7 and 8 

show the linear unsaturated region and the Lyapunov 

controllable set. We note that a portion of the ellipsoid 

breaking through the linear unsaturated region indicates 

that indeed the Lyapunov controllable set extends beyond 

the linear unsaturated region, i.e., the Lyapunov 

controllable set is larger than the controllable set found 

inside the linear unsaturated region through Technique 2.
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Figure 5. 3D ellipsoidal controllable set approximated by 

Technique 2 

 

 

 

Figure 6. Linear unsaturated region and 3D controllable 

set approximated by technique 2 

 
Figure 7 Another view of 3D ellipsoidal controllable set 

approximated by Technique Figure 8 Another view of 3D 

ellipsoidal controllable set approximated by Technique 2 

 

 
 Figure 8 Another view of 3D ellipsoidal controllable set 

approximated by Technique Figure 8 Another view of 3D 

ellipsoidal controllable set approximated by Technique
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IV. Conclusion 
 
In this paper, we study the case of 3D controllable set for 
open-loop unstable systems with constrained input. Inspired 
by the result that the stability region of the system can be 
approximated by an ellipsoid inside the linear unsaturated 
region, we showed that the asymptotic stability region of the 
system can actually be expanded to the areas in which the 
control is saturated. In particular, we first separated the entire 
state space into three areas, namely, unsaturated area, 
positively saturated, and negatively saturated area; then we 
applied the Lyapunov descent criterion and Kuhn-Tucker 
Theorem to the problem to the case when the input is allowed 
to saturate. We demonstrated our approach by a real 
submarine case, and found the 3D controllable set for the 
case. It is shown that the controllable set found by our 
approach is actually superior to that of set found inside the 
linear unsaturated region, and thus, yield a better 
approximation. 
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