
 

 

 

  
Abstract—This paper proposes a new design procedure of a 

fixed-structure robust controller for the joint space control of a 

pneumatic robot arm. The proposed technique is based on the 

concept of H∞ loop shaping which is a sensible method for robust 

controller design. However, in conventional H∞ loop shaping, 

the order of the controller is much higher than that of the plant. 

It is not easy to implement this controller in practical 

applications. To overcome this problem, in this paper, H∞ loop 

shaping control under a structure-specified controller for a 

pneumatic robot is proposed. The performance and robust 

stability conditions of the designed system satisfying the H∞ loop 

shaping are formulated as the objective function in the 

optimization problem. Genetic algorithm (GA) is adopted to 

solve this problem and to achieve the control parameters of the 

proposed controller. Additionally, in the proposed technique, 

the performance weighting function, which is normally difficult 

to obtain, is determined by using GA. The optimal stability 

margin is used as an objective in GA for selecting the optimal 

weighting parameters; the requirements in terms of 

performance specifications are utilized as additional constraints 

in order to get more practical parameters. The designed 

controller contains simple structure with lower order and still 

retains the robustness and performance specification. 

Simulation results show that the robustness and performance of 

the proposed controller are almost identical to those of the 

controller designed by H∞ loop shaping method. Experimental 

results verify the effectiveness of the proposed technique. 

 
Index Terms—H∞ loop shaping control, robust control, 

pneumatic robot, pneumatic actuator. 

 

I. INTRODUCTION 

  In the past decades, many immense developments in 

pneumatic controllers have been done and the results of those 

are used extensively in today industrial processes. Pneumatic 

actuator is an attractive choice for being used in both 

industrial and non-industrial applications because of the 

following advantages-high reliability, mainly because of 

 
Manuscript received October 25, 2007. This work was fully supported by 

Thailand Research Fund (TRF, Project No. MRG4980087), Thailand. 

S. Kaitwanidvilai is with the Electrical Engineering Department, Faculty 

of Engineering, King Mongkut's Institute of Technology Ladkrabang,  

Bangkok 10520, Thailand. (Phone: 66-81-5961386, e-mail: 

kksomyot@kmitl.ac.th ) 

M. Parnichkun is with the School of Engineering and Technology, Asian 

Institute of Technology, Pathumtani, 12120, Thailand.  

(e-mail: manukid@ait.ac.th) 

 

fewer moving parts; self-cooling; high power-to-weight ratio; 

wide useful range; easy installation and maintenance; and, the 

availability of a wide range of standard sizes. Recently, this 

actuator has been used in the designing of the robot 

manipulators to enhance capabilities of the robot. Because of 

the advantages of this actuator, the pneumatic robot is now an 

attractive choice for the industrial robot. 

  Pneumatic system is highly nonlinear because of its 

compressibility of air and highly nonlinear flow through 

pneumatic components. Furthermore, in a long connecting 

tube, the effects of time delay are significant. These lead to a 

difficulty in analyzing and designing an effective controller 

for the system. Many researchers investigated various control 

techniques to control the system. Several approaches based on 

nonlinear control techniques have been successfully applied 

to design a controller for pneumatic system, such as 

block-oriented approximate feedback linearization by Fulin 

Xiang and Jan Wikander in 2003 [1], fuzzy state feedback 

control by H. Schulte and H. Hahn in 2004 [2], and etc. 

Unfortunately, because of time consuming in system 

identification process and many feedback states, these 

techniques are now only implemented in very precise 

requirement applications but not in general industrial 

applications. In linear control point of view, linear model is 

derived from linear mathematic equations. Mostly, linear 

dynamic model is obtained by applying the linearization 

technique around a specified operation point, usually at the 

middle of pneumatic cylinder. Various control techniques 

based on linear control have been proposed to control a 

pneumatic system such as simple PID control [3], PI control 

with analog loop [4], self-tuning control [5], and etc. Since 

these techniques do not include the presence of system 

uncertainties; that is, system nonlinear characteristics, load 

changing, and so on into the consideration in the system 

modeling; the robustness in the sense of uncertainties of these 

designed controllers cannot be guaranteed. To solve such 

problem, some researchers applied the robust control of a 

pneumatic system. Kimura and et. al. [6] proposed a minor 

feedback loop and H∞ control to pneumatic servo. Inner 

pressure loop is used to reduce the complexity of resulting 

controller in H∞ control. Kimura and et. al. [7] also applied a 

sampled-data H∞ control approach into the plant. 

Experimental results in his work showed the advantages of 

discrete H∞ control over the continuous H∞ control in certain 

senses. However, in some techniques such as robust H∞ 
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optimal control, the structure of controllers is complicated 

with a high order. It is difficult to implement these controllers 

in practice. Mostly, the controllers used in industrial process 

are PI or PID controllers. Unfortunately, tuning of control 

parameters of these controllers for achieving both robustness 

and performance specifications is difficult. To overcome this 

problem, the approaches to design a robust control for 

structure specified controller were proposed in [8-10]. In [8], 

a robust H∞ optimal control problem with structure specified 

controller was solved by using genetic algorithm (GA). 

Bor-Sen.Chen. et. al.[9], proposed a PID design algorithm for 

mixed H2/H∞ control. In their paper, PID controller 

parameters were tuned in the stability domain to achieve 

mixed H2/H∞ optimal control. A similar work was also 

presented in [10]. In H∞ optimal control, H∞ loop shaping 

control is a feasible design method for designing a robust 

controller. Uncertainties in this approach are modeled as the 

normalized left co-prime factor which is not representing the 

uncertainty of the real plant. However, this approach is suited 

for designing a robust controller since the well known 

classical loop shaping concept is incorporated in the design 

procedure. Additionally, in the system that the dynamic model 

is identified by the standard system identification with 

black-box modeling approach, the robust control technique 

based on the structured uncertainty model such as 

mu-synthesis, H2/H∞ optimal control, and etc. can not be 

applied. However, the structure of controllers designed by H∞ 

loop shaping is complicated with a high order. In this paper, 

genetic algorithm based fixed-structure H∞ loop shaping 

control of a pneumatic robot arm is proposed. The simple 

structure and robust controller can be achieved. Additionally, 

in this paper, we propose a GA to evaluate an appropriate 

performance weight W1 that satisfying the performance 

specifications and robustness. This then reduces the difficulty 

in selecting appropriate weight in H∞ loop shaping control. 

The controller designed by the proposed approach has a good 

performance and robustness as well as simple structure. This 

allows our designed controller to be implemented practically 

and reduces the gap between the theoretical and practical 

approach.  

  The remainder of this paper is organized as follows. 

Pneumatic robot dynamics, pneumatic actuator dynamics are 

described in section II. Conventional H∞ loop shaping and the 

proposed technique are discussed in section III. Section IV 

demonstrates the design example and results. And, finally, in 

section V the paper is summarized with some final remarks.  

 

II. DYNAMIC MODEL 

In this paper, we constructed a cylindrical type robot arm 

with pneumatic actuators. This robot is widely used in many 

industrial processes. Consider the cylindrical type robot arm 

shown in Fig.1, it is seen that it consists of two translation 

joints and a revolute joint. Generally, the dynamic model of 

this robot can be written as [11]  
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where m1 and m2 are the mass of the vertical and horizontal 

links, respectively,  

           θ is angle of the rotation axis,  

           g is gravity,  

           J is inertia of the base link,  

           h is the distance of the vertical link,  

           r is the distance of the horizontal link,  

           τ is the force vector.  

           n1, f2 and f3 are the torque in rotation axis, force in 

vertical and horizontal axis, respectively.  

 

                         1m  

 

Fig.1 A cylindrical robot arm. 

 

The dynamic model in (1) is derived from the Lagrange’s 

equations of motion [11] and can be applied indirectly to 

describe the dynamic model of our developed robot.  

There are many control schemes to control a robot 

manipulators such as computed torque control, independent 

joint control, and etc. In computed torque control, the control 

design problem is decomposed into an inner loop design and 

an outer loop design. The nonlinear inner loop is used to 

compute the inverse dynamic of the robot for canceling the 

nonlinear term while the outer loop control is used for 

trajectory tracking.  

In the industrial robotic applications, independent joint 

control is widely used since it allows a decoupled analysis of 

the closed-loop system. At present, it is strongly accepted by 

several researchers that this kind of control scheme is more 

practically suitable for implementing in industrial robotic 

applications since the nonlinear control schemes used in the 

computed torque control scheme is too complicated to be 

utilized in practice. In this control scheme, each axis of the 

manipulators is controlled as a SISO system. Any coupling 

effects due to the motion of the other links are treated as 

disturbances. Fig. 2 shows the diagram of the independent 

joint control scheme. A picture of developed robot in this 

paper is shown in Fig. 3. Based on this control scheme, in this 

paper, the position of piston in each actuator of the robot is 

controlled separately.  
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Fig. 2 Independent joint control scheme. 

 

 
 

Fig.3 A pneumatically actuated robot. 

 

 

In pneumatic robot, the actuator dynamics is very crucial. 

The foundation research works on modeling of a servo 

pneumatic system were derived by the study of relationship of 

gas properties and motion's equation in pneumatic cylinder. 

Linear dynamic model of a pneumatic actuator can be written 

as [4]  
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, y(s) is 

position output, u(s) is valve's input voltage, A is bore area, µ  

is friction coefficient, C is viscous friction coefficient, γ is 

the ratio of specific heat = 1.4, Vio is air's volume in the 

chamber i at nominal position, M is total load mass, Pi is 

pressure in the chamber i, T is air temperature (K) , R is gas 

constant = 29.2 m/K.  

To identify this model, some authors directly evaluated 

model’s parameters by measuring the physical parameters 

[13, 14]. Alternatively, identification method by evaluating of 

the optimal model parameters to minimize the least square of 

prediction error can be used to identify the linear model [15].  

In this paper, the standard system identification for 

identifying the robot dynamics is applied. Based on the 

concept of independent joint control scheme, the dynamic 

model of each axis of the robot is identified separately. The 

details of system identification of the developed robot are 

illustrated in section IV. 

III. H  LOOP SHAPING CONTROL AND PROPOSED 

TECHNIQUE 

This section illustrates the concepts of the conventional H∞ 

loop shaping control and the proposed technique.  

 

A. Conventional H∞ Loop Shaping  

H∞ loop shaping control is an efficient method to design a 

robust controller. This approach requires two weighting 

functions, W1 (pre-compensator) and W2 (post-compensator), 

for shaping the original plant G0 so that the desired open loop 

shape is achieved. In this approach, the shaped plant is 

formulated as normalized co-prime factor, which separates 

the shaped plant Gs into normalized nominator Ns and 

denominator Ms factors [16]. Note that, 1

2 0 1
.

s s s
G W G W N M −= =  

 

Fig.4 H∞ loop shaping design [16]. 
 

The following steps can be applied to design the H∞ loop 

shaping controller.  

Step 1 Shape the singular values of the nominal plant Go by 

using a pre-compensator W1 and/or a post-compensator W2 to 

get the desired loop shape. In SISO system, the weighting 

functions W1 and W2 can be chosen as  
 

           
1 W
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W K
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2 1W =                                   (3) 

 

 where KW, a and b are positive values. b is typically chosen 

as a small number (<<1) for an integral action. W2 can be 

chosen as a constant since the effect of the sensor noise is 

negligible when the use of good sensor is assumed [17]. If the 

shaped plant 1

s s s
G N M −=  , the perturbed plant is written as  
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Where Ns∆ and Ms∆ are stable, unknown representing the 

uncertainty satisfying ,
Ns Ms

ε
∞

∆ ∆ ≤  , ε is the uncertainty 

boundary called stability margin. There are some guidelines 

for selecting the weights available in [17].  

Step 2 Calculate εopt where 
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To determine εopt , there is a unique method explained in 

appendix A. εopt << 1 indicates that W1 or W2 designed in step 

1 are incompatible with robust stability requirement. To 

ensure the robust stability of the nominal plant, the weighting 

function is selected so that εopt ≥0.25 [17]. If εopt is not 

satisfied, then go to step 1, adjust the weighting function. 

 Step 3 Select ε < εopt and then synthesize a controller K∞ 

that satisfies  
 

1 1 1
( )s s
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ε− − −
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                                       (6) 

 

Controller K∞ is obtained by solving the sub-optimal 

control problem in (6). The details of this solving are 
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available in [16]. To determine Ms, there is a method 

explained in appendix B.  

Step 4 Final controller (K) is determined as follow  
 

               
1 2K W K W∞=                                                      (7) 

 

Fig. 4 shows the controller in H∞ loop shaping.  

 

B. Genetic Algorithm based Fixed-Structure H∞ Loop 

Shaping Optimization  

In the proposed technique, GA is adopted in both weight 

selection and control synthesis. GA is well known as an 

algorithm that can be applied to any optimization problem. 

This algorithm applies the concept of chromosomes, and the 

genetic operations of crossover, mutation and reproduction. 

At each step, called generation, fitness value of each 

chromosome in population is evaluated by using fitness 

function. Chromosome, which has the maximum fitness 

value, is kept as a solution in the current generation and 

copied to the next generation. The new population of the next 

generation is obtained by performing the genetic operators 

such as crossover, mutation, and reproduction. In this paper, a 

roulette wheel method is used for chromosome selection. In 

this method, chromosome with high fitness value has high 

chance to be selected. Operation type selection, mutation, 

reproduction, or crossover depends on the pre-specified 

operation’s probability. Normally, chromosome in genetic 

population is coded as binary number. However, for the real 

number problem, decoding binary number to floating number 

is applied [18]. The proposed technique is described in 

followings:  

 

-Weight Selection  

Weight selection is an important procedure for H∞ loop 

shaping. Some researchers incorporated the performance 

specifications for selecting the appropriated weights [19, 20]. 

Based on (5), εopt  can be used for indicating the compatibility 

of the selected weight with the robust stability requirement. 

However, in some cases, time domain response of close loop 

system at nominal plant is not satisfied although εopt is 

satisfied. In this paper, we specify the performance 

specifications and then evaluate the optimal weight W1 by 

using GA. The fitness function for the weight selection is 

given as  
 

Fitness = εopt  if the performance specifications are satisfied,  

        = 0.01 (or a small value) otherwise.                         (8) 
 

A unique method to compute εopt is given in appendix A. 

The fitness is set to a small value (in this case is 0.01) if the 

performance specifications are not satisfied.  

Rather than minimizing some objective functions, it is 

more naturally to define the performance specifications for 

control system design in terms of algebraic or functional 

inequalities. For example, in the step response, the system 

may be required to have a rise-time less than 0.4 s., a settling 

time less than 1 s. and an overshoot less than 5%. In this 

paper, the performance specifications are defined as 

Maximum overshoot < OV, Settling time < St, 

 Steady State Error < SE,     Bandwidth > BW, 

Gain ( )l uGω ω< >                                  (9) 

where OV, St, SE, BW, ωl and Gu are specified values. ω  is the 

frequency. The last term in (9) is defined for achieving good 

performance in some frequency range, typically some low 

frequency [ ]( 0, )
l

ω ω∈ . Other specifications can be added to 

achieve additional specifications.  

 

-Controller Synthesis  

In this paper, the genetic searching algorithm is also 

adopted to solve the Fixed-Structure H∞ Loop Shaping 

Optimization problem. Although the proposed controller is 

structured, it still retains the entire robustness and 

performance guarantee as long as a satisfactory uncertainty 

boundary ε is achieved. The proposed algorithm is explained 

as follows.  

Assume that the predefined structure controller K(p) has 

satisfied parameters p. Based on the concept of H∞ loop 

shaping, optimization goal is to find parameters p in 

controller K(p) that minimize infinity norm from disturbances 

w to states z , ||Tzw||∞ 
 
. From (7), the controller K(p) can be 

written as  
 

           
1 2( )K p W K W∞=                                                    (10)     

 

Assuming that W1 and W2 are invertible, it is obtained that  
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Selecting the weight W2 = 1, we get  
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Substituting (12) into (6), the ∞-norm of the transfer function 

matrix from disturbances to states, ||Tzw||∞, which is subjected 

to be minimized can be written as 
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The optimization problem can be written as  
 

Minimize  
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Subject to  pi,min < pi < pi,max ,  
 

Where  pi,min
 
 and pi,max 

 
are the lower and upper bounds of the 

parameter pi in controller K(p), respectively. Some methods 

for selecting the range of parameter are shown in [14-15]. The 

fitness function in the controller synthesis can be written as  
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The fitness is set to a small value (in this case is 0.01) if 

K(p) does not stabilize the plant. Our proposed algorithm is 

summarized as follows.  
 

-Weight Selection  
 

Step 1 Select a weight structure W1, normally done by 

using (5). Define the genetic parameters such as initial 

population size, crossover and mutation probability, 

maximum generation, and etc. Also, specify the performance 
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specifications such as OV, St, SE, and etc.  

Step 2 Initialize several sets of weight parameters as 

population in the 1
st
 generation. If (5) is used as the weight 

structure, the weight parameters are KW and a. The weight 

parameters are chromosome in this problem.  

Step 3 Evaluate the fitness value of each chromosome 

using (8). Select the chromosome with maximum fitness value 

as a solution in the current generation. Increment the 

generation for a step.  

Step 4 While the current generation is less than the 

maximum generation, create a new population using genetic 

operators and go to step 3. If the current generation is the 

maximum generation, then go to step 5.  

Step 5 Check the optimal fitness value (εopt). If εopt < 0.25, 

then back to step 1 to change the weight structure and/or 

adjust the performance specifications if possible.  

 

-Controller synthesis  
 

Step 6 Select a controller structure K(p) and initialize 

several sets of parameters p as population in the 1
st
 

generation. Define the genetic parameters such as initial 

population size, crossover and mutation probability, 

maximum generation, and etc. The control parameters set, p is 

chromosome in GA.  

Step 7 Evaluate the fitness value of each chromosome 

using (14). Select the chromosome with maximum fitness 

value as a solution in the current generation. Increment the 

generation for a step.  

Step 8 While the current generation is less than the 

maximum generation, create a new population using genetic 

operators and go to step 7. If the current generation is the 

maximum generation, then stop.  

Step 9 Check performances in both frequency and time 

domains. If the performance is not satisfied such as too low ε 

(too low fitness function), then go to step 6 to change the 

structure of controller. Low ε indicates that the selected 

control structure is not suitable for the problem.  

IV. SIMULATION AND EXPERIMENTAL RESULTS 

This section explains the design of controller for the 

vertical axis of a pneumatic robot. Controllers in the other 

axes are designed by the same design procedure. In this paper, 

the standard system identification using experimental data is 

applied to determine the dynamic model of a pneumatic robot. 

Based on the concept of the independent joint control scheme, 

the dynamic model of each axis of the robot must be identified 

separately. The appropriate input valve voltage signal is 

applied to the actuator in the axis attempted to be identified, 

while the pistons of actuators in other axes are maintained at 

the nominal positions. The estimated model is obtained when 

the difference between model’s output, prediction, and the 

measured output data is minimized [15]. In this paper, an 

appropriate input signal was applied to the actuator in vertical 

axis. The data from valve’s voltage input and position output 

are collected and used for the system identification. Simple 

black-box system identification was used in our work. In this 

approach, the structure and parameters of the plant are 

assumed to be unknown. Firstly, a model is selected from the 

standard models such as ARMAX, ARX, OE, and etc. Then, 

the orders of pole, zero, delay, and so on in the model are 

selected and the system identification using prediction 

method is applied [15]. The appropriate dynamic model can 

be obtained by adjusting these orders or changing the model. 

In this paper, to identify the plant’s parameters, “OE (output 

Error) model” is selected. The details of the standard system 

identification and OE model are available in [15]. Units of 

output and input are meter and volt, respectively. Sampling 

time in our control system is 0.0112 seconds. From the 

procedure discussed previously, the identified plant model is 

found to be  
 

0 2

0.47947( 90.76)

( 0.4231)( 16.97 167.9)

s
G

s s s

+
=

+ + +
                        (15) 

 

Note that, this identified model includes the dynamics of 

actuator, valve, A/D, mass of the other links, and etc. The 

comparison of the simulated model output and the measured 

output is shown in Fig. 5. The results show that the plant 

model is accurately approximated by the identified model.  

 

 
Fig.5 Comparison between simulated and measured outputs. 

 

Based on (5), the weight parameters ranges is selected as 

Kw ∈ [0.01, 50] , a ∈ [0.01, 50] , b = 0.001. The performance 

specification in (9) is selected as OV = 0.05 , SE = 0.001 , St 

= 1.2 sec , BW = 4 rad/sec , ωl = 0.4 rad/sec , Gu = 20 dB, 

population size = 100, crossover probability = 0.7, mutation 

probability = 0.1, and maximum generation = 20. Fig.6 shows 

a plot of convergence of fitness function (optimal stability 

margin) versus generations by genetic algorithm. After the 

12
th
 generation, the weighting function are evaluated as 

 

          
1

15.535 6.83

0.001

s
W

s

+
=

+
                                            (16) 

 

 
Fig.6 Convergence of the fitness value. 

 

In the proposed technique, GA is used to evaluate the 

weight W1. By using GA, the optimal stability margin (εopt) is 

founded to be 0.60149. This means that the evaluated 

weighting function is compatible with robust stability 
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requirement in the problem. Based on (5), W2  = 1. With these 

weighting functions, the crossover frequency of the desired 

system is increased to 4 rad/sec. Specified time domain 

specifications of the system are met. Bode plots of open loop 

transfer function for the nominal plant and shaped plant are 

shown in Fig. 7. As shown in this figure, at low frequency, the 

open loop gain of shaped plant is much larger than that of the 

nominal plant. This makes the designed system good in terms 

of performance tracking and disturbance rejection. In this 

case, the shaped plant is then determined as  
                                                                   

1 0 2 2

15.535 6.83 0.47947( 90.76)

0.001 ( 0.4231)( 16.67 167.9)
s

s s
G W G W

s s s s

+ +
= =

+ + + +
       (17) 

 

  To evaluate the performance and robustness of the 

proposed system, responses of the system from conventional 

H∞ loop shaping (HLS), proposed robust PID (PPID), PID 

tuned by Ziegler-Nichols method (ZN) and PID tuned by 

Tyreus-Luyben rule (TLC) are investigated. We first design a 

controller by the conventional H∞ loop shaping procedure. 

ε is set to be 0.54681, which is less than the optimal value. 

Then, the H∞ loop shaping controller can be evaluated as 

following. 
 

4 3 2

5 4 3 2

372.3 6714 67960 55790 11950
( ) ( )

40 701.3 6310 2648 2.641

s s s s
HLS K s

s s s s s

+ + + +
=

+ + + + +
          (18) 

 

As shown in (18), the controller designed by H∞ loop shaping 

controller is fifth order controller and complicated. It is not 

easy to implement practically.  
 

 
Fig.7 Bode diagram of the open loop transfer function for: the 

shaped plant, nominal plant, plant with HLS, and proposed 

controller. 

 

Next, a fixed-structure robust controller using the 

proposed algorithms is designed. The structure of controller is 

selected as PID with first-order derivative filter. The 

controller structure is expressed in (19). Kp , Ki , Kd and τd are 

parameters to be evaluated.  
 

        ( ) ( )
1

i d
p

d

K K s
K p K

s sτ
= + +

+
                                      (19) 

In the optimization, the ranges of search parameters and GA 

parameters are set as follows: Kp ∈ [0.01, 100] , Ki ∈[0.01, 

100] , Kd ∈ [0.01, 100] , τd ∈ [0.01, 100], population size = 

200 , crossover probability = 0.7 , mutation probability = 0.1 

, and maximum generation = 30. As a result, the optimal 

controller is found to be  
 

* 5.6444 38.639
( ) ( ) (11.013 )

74.162 1

s
PPID K p

s s
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+
            (20) 

 

Open loop bode diagram is plotted to verify the proposed 

algorithm. Fig. 7 shows comparison of the plant, the shaped 

plant, the loop shape by the proposed controller and HLS. As 

shown in this figure, both loop shapes by the proposed 

controller and HLS are close to the desired loop shape. Fig.8 

shows a plot of convergence of fitness function (stability 

margin) versus generations by genetic algorithm. As shown in 

the figure, the optimal robust PID controller provides a 

satisfied stability margin at 0.548.  
 

 
Fig.8 Convergence of the fitness value. 

 

  For performance comparison, PID tuned by ZN and PID 

tuned by TLC are also designed. Both tuning rules do not 

require an analytic model of the plant. These methods are 

widely used for PID tuning in many kinds of systems. In these 

methods, gains Kp , Ki and Kd are tuned using the ultimate 

gain, Ku and ultimate period, Tu. To evaluate Ku and Pu , the 

integral and derivative gains in PID controllers are set to zero. 

Ultimate gain, Ku is the proportional gain value that results in 

a sustained periodic oscillation in the output. Ultimate period, 

Pu  is the period of oscillation. The details of tuning by ZN and 

TLC are given in [21]. Responses of the unit step input from 

PID controllers tuned by ZN and TLC rules are shown in Fig. 

9. As seen in the figure, response from the PID tuned by ZN 

has a maximum overshoot about 45 % while there is a 

maximum overshoot about 10% from the PID tuned by TLC. 

Response from TLC is seem better than the response from ZN; 

however, both responses are not met the specified 

specifications.  

 
Fig. 9 Responses from the PID controller tuned by ZN and 

TLC tuning rules. 
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Fig.10 Step responses by the H_ loop shaping and 

Proposed PID. 

 

Responses from the unit step inputs by H∞ loop shaping 

(HLS) and the proposed robust PID (PPID) are shown in 

Fig. 10. The settling time of all responses is about 1.1 

second. Response from PPID has a small maximum 

overshoot compared to the PID tuned by ZN and TLC as 

seen in Fig. 9. The better overshoot response is from the 

appropriate selection of the performance weight W1. As 

shown in this figure, the settling time of PPID and HLS are 

almost identical. Response from the proposed controller has 

a small maximum overshoot about 1 % while there is no 

overshoot from the HLS. 

Fig. 11 shows the closed-loop frequency domain measures 

relevant to this design. The common closed-loop transfer 

function objectives and their interpretations are shown in 

Table 1 [22]. The notation ( )Aσ  is the maximum singular 

value of A. 

 

Table 1 Common closed-loop transfer function objectives 

[22] (Note that, in this paper, the control system is negative 

feedback control) 

 

Function Interpretation 

( )1( )I GK Gσ −+  - Gain form input disturbance to plant 

output. 

( )1
( )GK I GKσ −+  -Gain form controller input 

disturbance to plant output. 

- ( )11/ ( )GK I GKσ −+ indicates the 

maximum allowable output 

multiplicative plant perturbation for 

closed-loop stability. 

( )1
( )K I GKσ −+  -Gain form output disturbance to 

controller output.  

- ( )11/ ( )K I GKσ −+ indicates the 

maximum allowable additive plant 

perturbation for closed-loop stability. 

 

 
(a) 

 

(b) 

 
 (c) 

Fig.11 (a) Maximum multiplicative plant perturbation, 
11/ ( ( ) )GK I KGσ −+ ,  (b) maximum allowable additive plant 

perturbation for close loop stability , ( )11/ ( )K I GKσ −+  , (c) 

Gain from input disturbance to plant output, 1(( ) )I KG Gσ −+  

 

As shown in Fig. 11(a), the maximum allowable 

multiplicative plant perturbation of the HLS is better than that 

of the proposed controller especially in the high frequency 

range. In the low frequency range, this maximum allowable 

perturbation of HLS and the proposed controller are almost 

the same. At low frequency, uncertainties of 100% of the plant 

magnitude can be tolerated. In Fig. 11(b) the plot of  

( )11/ ( )K I GKσ −+  shows that the maximum allowable 

additive plant perturbation for close loop stability of the HLS 

is better than that of the proposed controller especially in the 

high frequency range. In the low frequency range, this 

maximum allowable perturbation of HLS and the proposed 

controller are almost the same. Fig. 11(c) shows the plots of 
1(( ) )I KG Gσ −+  which is the gain from input disturbance to 

plant output. As shown in this figure, the disturbance rejection 

of the proposed technique is as good as that achieved from H∞ 

loop shaping control. The maximum gain from input 

disturbance to plant output of the proposed technique is about 

0.08. At low and high frequency, the gain is very small which 

means good disturbance attenuation. 
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Some experiments are done on a pneumatically actuated 

robot arm. The developed robot consists of two pneumatic 

cylinders (horizontal: SMC CDY1S10H-190 and Vertical: 

SMC-MS-B30R) and a rotary pneumatic actuator 

(KOGRNGI MSR 16x300). Three 5-port proportional 

valves used in the experiment are Festo MPYE-5-1/8-010B. 

Linear potentiometers and a potentiometer are used as the 

position sensor of the robot. Nominal supply pressure is 

maintained at a constant of 450 kPa by pressure regulator. 

Fig. 12 shows the photo of the proportional valve used in the 

experiment. The experimental result of step response of the 

proposed robust PID controller is shown in Fig. 13. The 

result is similar to the simulation result in terms of the 

settling time; that is, about 1 s. In simulation result as shown 

in Fig. 10, there is no steady state error and there is a small 

overshoot in the response. However, in the experimental 

result, the steady state error is about ±0.7 mm. and the 

response has no overshoot which are caused from the 

non-model friction dynamic, dead-zone of valve, and 

limitation of the sensor resolution.  
 

 
Fig.12 Photo of the proportional valve 

 

 
Fig.13 Response by the proposed controller in vertical axis. 

 

 
Fig.14 Response by the proposed controller in the vertical 

axis when the ladder input command is applied, the load at 

end effectors weights 3 kilograms, supply pressure is changed 

to 400 kPa, and the pistons in the actuators of other axes are 

moved. 

 

  Other experiment is performed to verify the robust 

properties of the proposed controller. The robot is used to 

grasp a 3-kilogram object. It is clearly shown in (1) that the 

changing in the load mass at the end effectors will affect the 

dynamic model of all axes. In this experiment, the step input 

commands are simultaneously applied to control the position 

of horizontal and rotation axes. It means that the couplings 

from the movement of the other links are also occurred. We 

also changed the supply pressure of the pneumatic system, 

equivalent to the parameter variation in the nominal plant. 

The supply pressure is changed from 450 kPa to 400 kPa. To 

verify the robustness of the designed system, ladder input 

command is applied to the position control of the vertical link. 

The experimental results show that the proposed controller 

has good robust performance from the changing of load mass 

and operating point. The response is almost identical to the 

first experiment with small difference in the setting time.  

 

  Fig. 15 shows the step responses by the proposed 

controller in horizontal and rotation axes. As seen in this 

figure, the proposed technique can be applied to design the 

robust controllers in any axes of a pneumatic robot. 

 

 
(a) 

 

 
(b) 

 

Fig.15 Step responses by the proposed controller in the (a) 

rotation axis (b) horizontal axis. 

V. CONCLUSION 

In this paper, the system identification and control of a 

pneumatically actuated robot was presented. When applied 

the standard system identification to the pneumatic system, 

dynamic model of each axis of a pneumatic robot can be 

identified. An appropriated performance weight W1 that 

satisfying the time domain specifications and robustness is 

evaluated by GA. Based on the adequate weight selection, the 

responses from the proposed controller and HLS are better 

than the responses from the PID tuned by ZN and TLC rules. 

Although there are many approaches for PID tuning; 

however, our proposed technique is an alternative method 

which directly considers the performance specifications and 
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robustness in the design. Additionally, in the proposed 

technique, the structure of controller is not restricted to PID. 

The controller K(p) can be replaced by any fixed-structure 

controller and the proposed algorithm can still be applied 

functionally.  

As shown in the simulation results, the conventional H∞ 

loop shaping controller performs closer to the desired loop 

shape as well as the proposed controller. However, because of 

the complicated controller in the conventional design, the 

proposed approach offers a significant improvement in 

practical control viewpoint by simplifying the controller 

structure, reducing the controller order and still retaining the 

robust performance. Implementation in a pneumatically 

actuated robot assures that the proposed technique is valid 

and flexible. In experimental results, movements in other 

axes, changing of supply pressure, and the changing of load 

mass of the robot have a small effect to the controlled output 

response.  

APPENDIX A 

Given a shaped plant Gs and A, B, C, D represent the 

shaped plant in the state-space form. To determine optε , there 

is a unique method as follows [17]. 
 

             
1 1/ 2

max
(1 ( ))

opt opt
XZγ ε λ−= = +  

 

where X and Z are the solutions of two Riccati in (A.1) and 

(A.2) respectively,
maxλ  is the maximum eigenvalue. 

 

     1 1( ) ( )T T T
A BS D C Z Z A BS D C

− −− + −  

        1 1 0T TZC R C Z BS B− −− + =                       (A.1)       

 

     1 1( ) ( )T T T
A BS D C X X A BS D C

− −− + −  

        
1 1 0T TXBS B X C R C− −− + =                       (A.2) 

Where 

           
T

T

S I D D

R I DD

= +

= +
 

APPENDIX B 

Given a shaped plant Gs and A, B, C, D represent the 

shaped plant in the state-space form. If Gs has a minimal 

state-space realization 

            
s

A B
G

C D

 
=  
 

                                                    (B.1) 

Then a minimal state-space realization of a normalized left 

coprime factorization is given by [17] 
 

  [ ] 1/ 2 1/ 2 1/ 2,
A HC B HD H

N M
R C R D R− − −

+ + 
=  
 

                                (B.2) 

Where 1( )T T
H BD ZC R

−= − +  
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