
 

  
Abstract—Wavelet Transform (WT) has been proved to 

be a very useful tool for image processing in the recent 

years. However, WT is very computationally rigorous 

process requiring novel and computationally competent 

method to achieve image compression. The concurrent 

transformation of the image might be one of the solutions 

to this problem. In this paper, we investigate and analyze 

the concurrency in communicating threads that perform 

the wavelet transformation concurrently. The grammar 

and its syntax are formulated to specify the 

communication among threads. Moreover, the system 

modeled in Symbolic Model Verifier (SMV) is formally 

verified. 

 

Index Terms— Computation Tree Logic, Discrete Wavelet 

Transform, Formal Verification, Image Compression, 

Message Sequence Charts, Symbolic Model Verifier.   

I. INTRODUCTION 

The display, storage and transportation of digital images 

have moved from obscurity to the commonplace in the last 

few decades. Now-a-days, many people interact with digital 

imagery, in one form or another, on a daily basis. The 

amount of data to be transported demands the development 

and improvement of the compression approaches. A certain 

amount of compression is possible without loss of 

information using lossless methods. However, many 

applications call for an order of magnitude more reduction 

of size than is possible to meet using such methods. Once the 

realm of lossy compression is entered, a trade-off in size vs. 

distortion must be made. The fundamental problem is to 

meet the competing goals of accurate approximation and 

reduction in storage requirements. 

     Compressing an image is significantly different from 

compressing raw binary data. Of course, general purpose 

compression programs can be used to compress images, but 

the result is less than optimal. This is because images have 

certain statistical properties which can be exploited by 

encoders specifically designed for them. Also, some of the 

finer details in the image can be sacrificed for the sake of 

saving a little more bandwidth or storage space.  
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     The initial breakthrough in the compression of one-

dimensional signals [1] was easily extended to the image 

domain by concatenating image rows or columns into a 

single stream. Some techniques such as Shannon Fano 

coding [2] and Huffman coding [3] [4] [5] [6] [7] [8] use 

redundancy-reduction mechanisms which result in shorter 

codes for more frequently appearing samples. It is necessary 

to scan the data samples in order to calculate their 

probabilities of occurrence and create an exact code. 

Adaptive variations of these techniques initially assume 

equal probability for all samples and calculate subsequent 

probability measures based on a fixed window length prior 

to the sample of interest. This allows local changes in 

probability measurements and achieves higher global 

compression. Run-length coding [9] is another redundancy-

reduction coding method where in a scan-line each run of 

symbols is coded as a pair that specifies the symbol and the 

length of the run. While most redundancy-reduction methods 

are lossless, other arbitrarily lossy coding methods have 

achieved higher levels of compression. Transform coding 

[10], subband coding [11] [12] [13] [14], vector 

quantization [15] [16] [17] and predictive coding [18] [19] 

[20] [21] [22] [23] [24] [25] [26] [27] are among the ones 

that have achieved high levels of lossy compression. The 

major transform coding techniques include cosine/sine [28], 

Fourier [29], Hadamard [30], Haar [30] [10], slant [10] and 

principal-component (Karhunen-Loeve) transforms [31]. All 

transform coding based compression algorithms are pixel-

based approaches which decompose a signal unto an 

orthonormal basis to achieve energy compaction. Lossy 

compression is then achieved by coding the high energy 

components and leaving out the low energy ones. While 

some transformations such as the Hadamard and Haar 

transforms can be performed relatively quickly, other 

transforms are computationally intensive and either require 

dedicated hardware or restrictions such as limiting the size 

of the transform to a power of two. Recently, second-

generation compression algorithms based on human visual 

behavior [32] have been proposed which have the potential 

for much higher compression ratios. 

     In the recent years, the wavelet transform has emerged as 

a cutting edge technology within the field of image analysis. 

The wavelet transformations have a wide variety of different 

applications in computer graphics including radiosity [33], 

multiresolution painting [34], curve design [35], mesh 

optimization [36], volume visualization [37], image 

searching [38] and one of the first applications in computer 

graphics, image compression. The Discrete Wavelet 

Transformation (DWT) provides adaptive spatial frequency 
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resolution (better spatial resolution at high frequencies and 

better frequency resolution at low frequencies) that is well 

matched to the properties of an HVS. 

     However, the DWT is very computationally intensive 

process which requires innovative and computationally 

efficient method to obtain the image compression. The 

concurrent transformation might be a useful solution to this 

problem. In this paper, we investigate the concurrency in 

wavelet transformation for the compression of image. A 

verification of the system is also done. 

    Simulation and testing [39] are some of the traditional 

approaches for verifying the systems. Simulation and testing 

both involve making experiments before deploying the 

system in the field. While simulation is performed on an 

abstraction or a model of the system, testing is performed on 

the actual product. In both cases, these methods typically 

inject signals at certain points in the system and observe the 

resulting signals at other points. Checking all the possible 

interactions and finding potential pitfalls using simulation 

and testing techniques is not always possible. Formal 

verification [40], an appealing alternative to simulation and 

testing, conducts an exhaustive exploration of all possible 

behaviors of the system. Thus, when a design is marked 

correct by the formal method, it implies that all behaviors 

have been explored and the question of adequate coverage 

or a missed behavior becomes irrelevant. There are some 

robust tools for formal verification such as SMV, SPIN, 

COSPAN, VIS etc [40]. The method has been modeled in 

SMV and the properties of the system have been verified 

formally. 

II. COMPRESSION TECHNIQUE 

The primary aim of any compression method is generally to 

express an initial set of data using some smaller set of data 

either with or without loss of information. As for an 

example, let we have a function )(xf  expressed as a 

weighted sum of basis function )(,),........(1 xuxu m as given 

below- 

                                      ∑
=

=
m

i

ii xucxf

1

)()(  

where mcc ......,,.........1 are some coefficients. We here will 

try to find a function that will approximate )(xf with 

smaller coefficients, perhaps using different basis. That 

means we are looking for- 
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with a user-defined error tolerance ε  ( ε = 0 for lossless 

compression) such that mm ˆ> and ε≤− )(ˆ)( xfxf . In 

general, one could attempt to construct a set of basis 

functions muu ˆ1
ˆ....,,.........ˆ  that would provide a good 

approximation in a fixed basis.  

     One form of the compression problem is to order the 

coefficients mcc ,........,1  so that for mm ˆ> , the first 

m̂ elements of the sequence give the best approximation 

)(ˆ xf to )(xf as measured in the 2
L  form.  

     Let )(iπ be a permutation of m,.......,1 and )(ˆ xf be a 

function that uses the coefficients corresponding to the first 

m̂  numbers of the permutation :)(iπ    
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The square of the 2
L  error in this approximation is given 

by- 
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Wavelet image compression using the 2
L  norm can be 

summarized in the following ways: 

i) Compute coefficients mcc ,......,1   representing an 

image in a normalized two-dimensional Haar basis. 

ii) Sort the coefficients in order of decreasing 

magnitude to produce the sequence )()1( .,,......... mcc ππ . 

iii) Given an allowable error ε and starting from 

mm =ˆ , find the smallest m̂  for which 

                  ( )∑
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≤
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22
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     The first step is accomplished by applying either of the 

2D Haar wavelet transforms being sure to use normalized 

basis functions. Any standard sorting method will work for 

the second step and any standard search technique can be 

used for third step. However, for large images sorting 

becomes exceedingly slow. The procedure below outlines a 

more efficient method of accomplishing steps 2 and 3, which 

uses a binary search strategy to find a thresholdτ below 

which coefficients can be truncated.  

     The procedure takes as input a 1D array of coefficients c 

(with each coefficient corresponding to a 2D basis function) 

and an error tolerance ε. For each guess at a threshold τ the 

algorithm computes the square of the 2
L  error that would 

result from discarding coefficients smaller in magnitude 

thanτ . This squared error s is compared to 2ε  at each loop 

to decide if the search would continue in the upper or lower 

half of the current interval. The algorithm halts when the 

current interval is so narrow that the number of coefficients 

to be discarded no longer changes [41]. 
 

procedure Compress (C : array [1. .m] of reals; ε : real) 

   τmin←min{|c[i]|} 

   τmax←max{|c[i]|} 

   do 

       τ ←(τmin + τmax)/2 

       s ← 0 

       for i ← 1 to m do 

              if |C [i]| < τ then s ← s + |C [i]|2 

       end for 
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       if s < ε2
 then τmin← τ else τmax← τ  

   until τmin≈ τmax 

   for i ← 1 to m do 

         if |C [i]| < τ then C [i] ← 0 

    end for 

end procedure 

 

The below pseudocode is the fragment for a greedy L
1
 

compression scheme, which works by accumulating in a 2D 

array ∆ [x,y] the error introduced by discarding a coefficient 

and checking if this error has exceeded user-defined 

threshold. 

  

for each pixel (x,y) do 

     ∆ [x,y] ← 0 

end for 

for i← 1 to m do 

     
'∆  ← ∆ + error from discarding c[i] 

      if ∑ <∆
yx

yx

,

' ],[ ε then 

             c[i] ← 0 

            ∆ ← ∆ ’ 

      end if 

end for 

III. WAVELET TRANSFORMATION FOR IMAGE COMPRESSION 

Wavelet transform (WT) represents an image as a sum of 

wavelet functions (wavelets) with different locations and 

scales [41]. Any decomposition of an image into wavelets 

involves a pair of waveforms: one to characterize the high 

frequencies corresponding to the detailed parts of an image 

(wavelet function) and one for the low frequencies or 

smooth parts of an image (scaling function ). Fig. 1 shows 

two waveforms of a family discovered in 1980 by 

Daubechies: the left one can be used to represent smooth 

parts of the image and the right one to represent detailed 

parts of the image. The two waveforms are translated and 

scaled on the time axis to generate a set of wavelet functions 

at different locations and on diverse scales. Each wavelet 

possesses the same number of cycles, such that, the wavelet 

gets longer while frequency reduces. Low frequencies are 

transformed with long functions (high scale). High 

frequencies are transformed with short functions (low scale). 

The analyzing wavelet is shifted over the full domain of the 

analyzed function. The result of WT is a set of wavelet 

coefficients, which measure the contribution of the wavelets 

at these locations and scales. 

 

 

 

 

 

 

 

 

 

 

 

 

     WT performs multiresolution image analysis [42]. The 

result of multiresolution analysis is simultaneous image 

representation on different resolution levels [43]. The 

resolution is determined by the specified threshold below 

which all details are overlooked. The difference between two 

neighboring resolutions represents details. Therefore, an 

image can be represented by a low-resolution image 

(approximation or average part) and the details on each 

higher resolution level. Let us consider a one dimensional  

function )(tf . The approximation of the function )(tf at the 

resolution level j is defined as )(tf j . At the one level upper 

resolution 1+j , the approximation of the function )(tf  is 

represented by )(1 tf j+ . The details denoted by )(td j  are 

included in )()()(:)( 11 tdtftftf jjjj +=++ . This procedure 

is repetitive for several times and the function can be written 

as- 

∑
=

+=
n

jk

kj tdtftf )()()(  

In the same way, the space of square integrable functions 

)(2
RL can be treated as a composition of scaling subspaces 

jV and wavelet subspaces jW such that the approximation of 

)(tf at resolution ))(( tfj j  is contained in jV  and the 

details )(td j  are in jW . jV  and jW  are defined in terms of 

dilates and translates of scaling function Φ and wavelet 

function })2({: ZkkxV
j

j ∈−Φ=Ψ  and 

})2({ ZkkxW
j

j ∈−Ψ= . jV  and jW  are localized in 

scaled frequency octaves by the scale or resolution 

parameter j2  and localized spatially by translation k . The 

scaling subspace jV  must be contained in all subspaces on 

higher resolutions ( 1+⊂ jj VV ). The wavelet subspaces jW  

fill the gaps between successive scales: jjj WVV ⊕=+1 . We 

can start with an approximation on some scale 0V  and then 

use wavelets to fill in the missing details on finer scales. The 

finest resolution level includes all square integrable 

functions- 

j
j

WVRL
∞

=
⊕+=

0
0

2 )(  

Since 10 VV ⊂∈Φ  , it follows that the scaling function for 

multiresolution approximation can be found out as the 

solution to a two-scale dilational equation- 

 

∑ −Φ=Φ
k

L kxkax )2()()(  

for some suitable sequence of coefficients )(kaL . Once it 

has been found, an associated mother wavelet is given by a 

similar looking formula- 

 

∑ −Φ=Ψ
k

H kxkax )2()()(  

     One of the big discoveries for wavelet analysis was that 

perfect reconstruction filter banks could be formed using the 

coefficient sequences )(kaL  and )(kaH as shown in Fig. 2. 

The input sequence x is convolved with high-pass (HPF) and 

low-pass (LPF) filters )(kaH and )(kaL  and each result is 

Wavelet function psi 
 

Scaling function phi 
 

Fig. 1. Scaling and wavelet function. 
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downsampled by two, yielding the transform signals Hx  and 

Lx . The signal is reconstructed through upsampling and 

convolution with high and low synthesis filters )(ksH  and 

)(ksL . For properly designed filters, the signal x is 

reconstructed exactly ( xy =  ). 

 

 

 

 

 

 

 

 

 

     The choice of filter not only decides if the perfect 

reconstruction is possible or not, it also determines the shape 

of wavelet to be used to perform the analysis. By cascading 

the analysis filter bank with itself several times, a digital 

signal decomposition with dyadic frequency scaling known 

as DWT can be formed. An efficient way to implement this 

scheme using filters was developed by Mallat [43]. The new 

twist that wavelets bring to filter banks is connection 

between multiresolution analysis and digital signal 

processing performed on discrete, sampled signals. 

     The DWT for an image as a 2D signal can be obtained 

from 1D DWT. The easiest way for finding scaling and 

wavelet function for 2D is by multiplying two 1D functions. 

The scaling function for 2D DWT can be obtained by 

multiplying two 1D scaling functions: )().(),( yxyx ΦΦ=Φ . 

Wavelet functions for 2D DWT can be found by multiplying 

two wavelet functions or wavelet and scaling function for 1D 

analysis. For the 2D case, there exist three wavelet functions 

that scan details in horizontal )()(),(
1

yxyx ΨΦ=Ψ , 

vertical )()(),(2
yxyx ΦΨ=Ψ , and diagonal directions 

)()(),(
3

yxyx ΨΨ=Ψ . This may be represented as a four 

channel perfect reconstruction filter bank as shown in Fig. 3. 

Now, each filter is 2D with the subscript indicating the type 

of filter (HPF or LPF) for separable horizontal and vertical 

components. The resulting four transform components 

consist of all possible combinations of high and low pass 

filtering in the two directions. By using these filters in one 

stage, an image can be decomposed into four bands. There 

are three types of detail images for each resolution: 

horizontal (HL), vertical (LH), and diagonal (HH). The 

operations can be repeated on the low low (LL) band using 

the second stage of identical filter bank. Thus, a typical 2D 

DWT, used in image compression, generates the hierarchical 

structure as shown in Fig. 3(b).  

     Wavelet multiresolution and direction selective 

decomposition of images is matched to an HVS [44]. In the 

spatial domain, the image can be considered as a 

composition of information on a number of different scales. 

A wavelet transforms measures gray-level image variations 

at different scales. In the frequency domain, the contrast 

sensitivity function of the HVS depends on frequency and 

orientation of the details. 

IV. CONCURRENCY IN WAVELET TRANSFORMATION FOR 

COMPRESSION OF IMAGE 

We know that wavelet transformation entails transformation 

of image data horizontally first and then vertically. Here we 

divide the image  plane  into n horizontal  sections which are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

horizontally transformed concurrently. After then the image 

is divided into n vertical sections which are then vertically 

transformed concurrently. It is not a must that the number of 

horizontal sections is equal to the number of vertical 

sections.  

     But the problem lies in the concurrency. The system just 

proposed lets the possibility for vertical transformation to 

begin on some vertical sections before horizontal 

transformation in all sections is completed. Vertical sections 

that are already horizontally transformed can be vertically 

transformed. That allows the possibility for threads that 

completed horizontal transformation to go on to vertical 

transformation without having to wait on other threads to 

complete horizontal transformation. Before a vertical section 

is available for transformation, one condition that must be 

met is that all horizontal sections transform n size data 

horizontally such that an n wide vertical section is available 

with all data points already horizontally transformed. 

     The assertion for the verification is that at any time, the 

vertical transformation does not start on a vertical section 

that is not horizontally transformed.  

A. Communication among threads 

A message passing library providing two levels of 

abstraction namely channel and topology has been 

developed, for the communication that occurs among 

threads. These message passing classes can be the part of a 

larger system that provides a class library for threads, thread 

synchronization, and message passing. We have used the 

Message Sequence Charts (MSCs) to visualize the 

interactions among the threads.  

Message Sequence Charts (MSCs): 

Message Sequence Charts (MSCs) are an attractive visual 

formalism that is often used in the early stage of system 

design to specify the system requirements. A main advantage 

            Fig. 2. Two-channel Filter Bank 

LS  

HS  
Ha  

La  2↓  

2↓  2↑  

2↑  
LX  

HX  

⊕  
y  

x 

Fig. 3. One Filter Stage in 2D DWT 
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of an MSC is its clear graphical layout which immediately 

gives an intuitive understanding of the described system 

behavior [45]. MSCs are particularly suited to describe the 

distributed telecommunication software [46] [47]. The wide 

ranges of use of MSCs are usually in the distributed systems 

and in a number of software methodologies [47] [48] [49]. 

In a distributed system, MSCs mainly concentrate on the 

exchange of messages among various processes and their 

environments as well as some internal actions in these 

processes. MSCs are also known as object interaction 

diagrams, timing sequence diagrams and message flow 

diagrams.   

     In MSCs, the executing processes are shown by the 

vertical lines; these processes communicate through an 

explicit message passing (send-receive) among them shown 

by the horizontal or downward sloped arrow lines. The head 

of the arrow indicates to the event message-receiving and 

the opposite end indicates to the event message-sending. 

Each send-receive event (horizontal or downward sloped 

line) is labeled by the message identifier. For more clear 

understanding the MSC may also contain necessary data 

attributes as part of the message exchanged. A simple MSC 

is shown in the following Fig. 4 where there are two 

processes namely ‘CPU’ and ‘Memory’.  

  

 

 

 

 

 

 

 

 

 

 

 

Time flows downward in each vertical line of MSCs.  So, in 

this MSC, the sequences of actions in process ‘CPU’ and 

‘Memory’ are {sending request, receiving +ve 

acknowledgement, sending address a and receiving value of 

address a} and {receiving request, sending +ve 

acknowledgement, receiving address a, an internal action 

)(: alookupv and sending value v} respectively. These 

orderings cannot be violated in either of the processes i.e. a 

total ordering of the events along every process is assumed. 

Every process of the MSC is assumed to contain a message 

queue to store the incoming messages and another message 

queue to store the outgoing messages. Each MSC is 

associated with a ‘condition’. The MSC is executed when its 

‘condition’ is true. The ‘condition’ is composed by 

predicates over the variables of the processes in the MSC 

connected by the logical connectives. The ‘condition’ of the 

above MSC is readyMemorystatusCPU .. ∧ . The variable 

status is a boolean variable of the process CPU which is true 

when the CPU is ready to interact with Memory. Similarly, 

the variable ready is a boolean variable of the process 

Memory which is true when it can serve the request of the 

CPU. 

     Let us discuss MSCs with its formal definition. Assume 

that P is the finite set of processes, M  is the finite set of 

messages and A  is the finite set of internal actions. For each 

Pp ∈ , a set of events the process p  takes part in is defined 

by { }∑ ∈∈≠><=
p

MmPqqpmqp ,,,!

{ }MmPqqpmqp ∈∈≠>< ,,,?U  

{ }Aaap ∈>< ,U  .The meanings of >< mqp ,! , >< mqp ,?  

and >< ap, are ‘process p  sends message m  to process 

q ’, ‘process p  receives message m  from process q ’ and 

‘process p  performs internal action a ’ respectively. We set 

pPp ∑=∑ ∈U and let βα ,  range over ∑ . Assume a set of 

channel ( ){ }qpqpCh ≠= , and let dc, range over Ch . A 

∑ -labeled poset is a structure ( )λ,, ≤= ES  where ( )≤,E  is 

a poset and ∑→E:λ is a labeling function. Here E is a 

finite set of events and ≤  is a partial order which is 

reflexive, transitive and anti-symmetric. For any event 

{ }eeeeEe ≤=↓∈ 11, where ee ≤1 means that the event 

1e occurs before event e . For Pp ∈ , and ∑∈a , let 

{ }pp eeE ∑∈= )(λ and { }aeeEa ∈= )(λ . For channel c, let 

the relation ( ) qpeqpeeeRc ?)(,!)(,{ 11 === λλ and 

}.?1! qpqp EeEe II ↓=↓ For a process Pp ∈ , the 

relation is ( ) ≤×= Ippp EER The Rch-edge across the 

processes is depicted by the horizontal or downward sloped 

edge.  

     Thus, an MSC (over P) is a finite ∑-labeled poset 

),,( λ≤= ES that satisfies the following conditions [50]:  

a) For every Pp ∈ , Rp is a linear order.  

b) For every Pqp ∈},{ and qp ≠ , pqqp EE ?! = i.e. no 

lifeless communication edge exists in MSC that means the 

number of sent messages equals the number of received 

messages. 

c) *)( Chp RR U≤= where pPpp RR ∈= U and 

cChcCh RR ∈= U i.e. the partial order of MSC is its visual 

order; deduced by linear orders of participating processes 

and the sent-receive order of the messages. 

Modeling the Communications: 

In order to establish the communication between multiple 

threads, we require some work to set up and maintain the 

communication channels. There are several ways to 

communicate between threads, with some being more 

efficient than others.  

     One of the simplest ways to communicate state 

information between threads is to use a shared object or 

shared block of memory. A shared object requires very little 

setup—all we have to do is make sure each thread has a 

pointer to the object. The object contains whatever custom 

information we need to communicate between threads, so it 

should be very efficient.  

     The second option is the port-based communication. 

Ports offer a fast and reliable way to communicate between 

threads and processes on the same or different computers. 

Ports are also a fairly standard form of communication on 

many different platforms and their use is well established. In 

Mac OS X, a port implementation is provided by the Mach 

kernel. These Mach ports can be used to pass data between 

processes on the same computer.  

+ve acknowledgement 

e22 

e23 

v:=lookup(a) 

CPU Memory 
request 

address(a) 

value(v) 
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e10 
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Fig. 4: A Message Sequence Chart 
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     The third way is the use of the message queues. The 

message queues offer an easy-to-use abstraction for thread 

communication. A message queue is a first-in, first-out 

(FIFO) queue that manages incoming and outgoing data for 

the thread. A thread can have both an input and an output 

queue. The input queue contains work the thread needs to 

perform, while the output queue contains the results of that 

work.  

     To establish communication between the threads, we 

model it as a queue of message, which is the the integral part 

of the threads. The following Fig. 5 shows the modeling of 

the channel as a queue of message from thread i to thread 

i+1. The message is pushed through the tail of the queue 

from the thread i side and the message is received from the 

head of the queue at the thread i+1 side. Fig. 6 shows the 

modeling of the communication channel as a queue for the 

message from thread i+1 to thread i. The message is sent 

from the thread i+1 side and it is received at the head of the 

queue at the thread i side. 

 

 

 

 

 

 

 

        Fig. 5 Channel for message from thread i to thread i+1  

 

 

 

 

 

 

 

 

 

 

The communication among threads is specified by a 

grammar. The syntax for it is formulated and is tabulated in 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Model Verification 

Let us first be familiar with transition system and Kripke 

Structure before we define model. A transition system is a 

structure ),,( 0 RSSTS = where, S is a finite set of states; 

SS ⊆0 is the set of initial states and SSR ×⊆ is a 

transition relation which must be total i.e. for every s in S 

there exists 1s in S such that ),( 1ss  is in R 

( )( )RssSsSs ∈∃∀ ∈∈ 1,,
1

. And ),,,,( 0 LAPRSSM = is a 

Kripke Structure; where ),,( 0 RSS is a transition system. AP 

is a finite set of atomic propositions (each proposition 

corresponds to a variable in the model) and L is a labeling 

function. It labels each state with a set of atomic 

propositions that are true in that state. The atomic 

propositions and L together convert a transitions system into 

a model.   

     The foremost step to verify a system is to specify the 

properties that the system should have. For example, we may 

want to show that some concurrent program never 

deadlocks. These properties are represented by temporal 

logic. Computation Tree Logic (CTL) is one of the versions 

of temporal logic. It is currently one of the popular 

frameworks used in verifying properties of concurrent 

systems [51]. Once we know which properties are important, 

the second step is to construct a formal model for that 

system. The model should capture those properties that must 

be considered for the establishment of correctness. Model 

checking includes the traversing the state transition graph 

(Kripke Structure) and of verifying that if it satisfies the 

formula representing the property or not, more concisely, the 

system is a model of the property or not.  

thri_tail 

message sent 

at this point 

Thread i (thri) Side 

     thri_tail+1 

+1 

 

        thri+1_head+1 

Thread i+1 (thri+1) Side 

thri+1_head 

message recei 

ved here 

thri_head 

message 

received at 

this point 

Thread i (thri) Side 

   thri_head+1  

thri+1_tail+1 

Thread i+1(thri+1) 

Side 
thri+1_tail 

message sent at 

this point 

Fig. 6 Channel for reply from thread i+1 to thread i  

S   → THREAD thread-name { thr-dec-part   trans-sch-

dec-part } 

thr-dec-part  → thr-dec-part  thr-dec | thr-dec 

thr-dec   → PROCESS process-name {var-dec-part    

equation-part   } 

type   → basic-type | enum-type | array-type 

basic-type  → range-type | BOOLEAN 

enum-type  → { id-list } 

id-list   → identifier (, identifier)+ 

array-type  → ARRAY range-type OF basic-type 

range-type  → interger-const .. interger-const 

var-dec-part  → var-dec-part var-dec; | ε 

var-dec   → type-id : id-list 

equation-part  → EQUATION id-list; 

trans-sch-dec-part  → trans-sch-dec trans-sch-dec-part | trans-

sch-dec 

trans-sch-dec  → SCHEME trans-schm-name { trans-list } 

trans-list   → trans-dec trans-list | trans-dec 

trans-dec  → TRANSACTION trans-name { 

         AGENTS { agent-list } condition-section ; } 

   | TRANSACTION trans-name { AGENTS { agent-list }  

condition-section  → CONDITION condition ; 

Table 1: The Syntax 

agent-list  → agent-list agent | agent 

agent   → process-name : event-list 

event-list  → event , event-list | event ; 

event   → send(mesg-id, var) | send(mesg-id, const, 

type) | recv(process-name.mesg-id) | {action} 

action-atom  → simple-stmt ; | if-stmt 

action   → action action-atom | action-atom 

simple-stmt  → var := expr | var :=DIN 

expr   → expr [* | / | &] F | F 

F   → F + G | F - G | F | G 

G   → G mod H | H 

H   → H RelOp I | I 

I   → ~I | -I | (expr) | var | const 

const   → integer-const | boolean-const 

condition   → condition & condition-atom | condition-

atom | (condition-atom) 

condition-atom  → ~prop | prop 

prop   → prop or prop-atom | prop-atom 

prop-atom  → scoped-var relop const | scoped-var relop 

scoped-var | scoped-var 

relop   → = | < | > | ≤ | ≥ | != 

if-stmt   → IF expr { action } | IF expr action-atom | IF 

expr {action}ELSE {action}      

var   → identifier | identifier[identifier] | identifier 

[integer-const] 

scoped-var  → process-name.var 

thread-name  → identifier 

process-name  → identifier 

trans-name  → identifier 

mesg-id   → identifier 
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     Each CTL formula is either true or false in a given state 

of the Kripke Structure. Its truth is evaluated from the truth 

of its sub-formulae in a recursive fashion, until one reaches 

atomic propositions that are either true or false in a given 

state. A formula is satisfied by a system if it is true for all the 

initial states of the system. Mathematically, say, a Kripke 

Structure ),,,,( 0 LAPRSSK =  (system model) and a CTL 

formula Φ  (specification of the property) are given. We 

have to determine if Φ=K holds (K is a model of Φ ) or 

not. Φ=K holds iff  Φ=0, sK for every 00 Ss ∈ . If the 

property does not hold, the model checker will produce a 

counter example that is an execution path that can not satisfy 

that formula.  

     Atomic propositions, standard boolean connectives of 

propositional logic (e.g., AND, OR, NOT), and temporal 

operators all together are used to build the CTL formulae. 

Each temporal operator is composed of two parts: a path 

quantifier (universal (A) or existential (E)) followed by a 

temporal modality (F, G, X, U) and are interpreted relative 

to an implicit “current state”. There are generally many 

execution paths (the sequences) of state transitions of the 

system starting at the current state. The path quantifier 

indicates whether the modality defines a property that should 

be true of all those possible paths (denoted by universal path 

quantifier A) or whether the property needs only hold on 

some path (denoted by existential path quantifier E). The 

temporal modalities describe the ordering of events in time 

along an execution path and have the following meaning. 

• F Ξ  (reads ‘ Ξ ’ holds sometime in the future'') is true 

in a path if there exists a state in that path where 

formula ‘ Ξ ’ is true. 

• G Ξ  (reads ‘ Ξ ’ holds globally'') is true in a path if 

‘ Ξ ’ is true at each and every state in that path.  

• X Ξ  (reads ‘ Ξ ’ holds in the next state'') is true in a 

path if ‘ Ξ ’ is true in the state reached immediately 

after the current state in that path.  

• Ξ  U Ω  (reads ‘ Ξ ’ holds until ‘ Ω ’ holds) is true in 

a path if ‘ Ω ’is true in some state in that path, and 

‘ Ξ ’ holds in all preceding states.  

The semantics of the CTL operators are below: 

• )(, Φ= EXsK there exists 1s such that 1ss →  

( ),( 1ssR ) and Φ=1, sK .  It means that s has a 

successor state 1s s’ at which Φ  holds. 

• ),(, 21 ΦΦ= EUsK iff there exists a path 

..........., 10 ssL = from s and 0≥k such that: 

2)(, Φ=kLK  and if kj <≤0 , so 1)(, Φ=jLK . 

• ),(, 21 ΦΦ= AUsK iff for every path 

..........., 10 ssL = from s there exist 0≥k such that: 

2)(, Φ=kLK  and if kj <≤0 , so 1)(, Φ=jLK . 

• )(ΦAX : It is not the case there exists a next state at 

which Φ  does not hold i.e. for every next state 

Φ holds. 

• )(ΦEF : There exists a path L from s and 0≥k  

such that: Φ=)(, kLK . 

• )(ΦAG : It is not the case there exists a path L from 

s and 0≥k such that: Φ=)(, kLK  i.e. for every 

path L from s and every 0≥k ; Φ=)(, kLK . 

• )(ΦAF : For every path L from s, there exists 

0≥k  such that: Φ=)(, kLK . 

• )(ΦEG : It is not the case that for every path L 

from s there is a 0≥k  such that Φ=)(, kLK . It 

means that there exists a path L from s such that, for 

every 0≥k : Φ=)(, kLK . 

C. Verification  

Despite tremendous advances in constraint-random stimulus 

generation and coverage-based verification, simulation-

based verification cannot effectively find all the potential 

issues within today’s complex designs. This is the main 

reason that designers complement their simulation-based 

verification methodology with formal verification. 

     We use the SMV [52] as the verification tool. Here the 

number of threads is defined as SIZE = 8.  Using the loop 

from 0 to 7 we verify if any of the threads starts vertical 

transformation while some other thread(s) is/are still on the 

transformation of the horizontal part of the same section 

(unsafe). It is found that each of the threads is in the safe 

state (desired) all the time.  It means that in all states of the 

transition system it is true that no vertical transformation 

gets started until the all the horizontal section is completed. 

This specification is the most important one that we must get 

true. The part of the SMV code is shown in Fig. 7 and the 

snapshot of the verification result is shown in Fig. 8.  

 

 

 

 

 

 

 

 

 

for (index=0;index<SIZE;index=index+1){ 

    loc[index],idle[index]:boolean; 

    idle[index]:=free & freed=index; 

    loc[index]:=alloc & pos_ack & allocd=index; 

    safe[index]:SPEC AG(A(~idle[index] U loc[index])); 

} 

Fig.7 Part of the SMV Code 

Fig. 8 Verification Results 
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V. CONCLUSION 

The concept of compression, the use of wavelet for the 

image compression, the possibility of concurrency in the 

wavelet transformation with a model, the communication 

among different concurrent threads for wavelet 

transformation and the verification result of the model are 

presented here. The system is modeled in SMV and verified 

by SMV that automatically creates a formal environment to 

efficiently solve the design checking tasks. One of the 

important properties, in the context of the concurrent 

wavelet transformation, is that at any time, the vertical 

transformation does not start on a vertical section that is not 

fully horizontally transformed. We find that all the 

communicating threads are in the safe states all the time. At 

present, the system has two drawbacks. One is, in SMV, the 

smaller size of the queue shared by different threads and the 

other is the smaller number of participating threads. In this 

respect, we plan to model it in SPIN, another verification 

tool, in future, to solve these problems.  
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