

Abstract—Wavelet Transform (WT) has been proved to

be a very useful tool for image processing in the recent

years. However, WT is very computationally rigorous

process requiring novel and computationally competent

method to achieve image compression. The concurrent

transformation of the image might be one of the solutions

to this problem. In this paper, we investigate and analyze

the concurrency in communicating threads that perform

the wavelet transformation concurrently. The grammar

and its syntax are formulated to specify the

communication among threads. Moreover, the system

modeled in Symbolic Model Verifier (SMV) is formally

verified.

Index Terms— Computation Tree Logic, Discrete Wavelet

Transform, Formal Verification, Image Compression,

Message Sequence Charts, Symbolic Model Verifier.

I. INTRODUCTION

The display, storage and transportation of digital images

have moved from obscurity to the commonplace in the last

few decades. Now-a-days, many people interact with digital

imagery, in one form or another, on a daily basis. The

amount of data to be transported demands the development

and improvement of the compression approaches. A certain

amount of compression is possible without loss of

information using lossless methods. However, many

applications call for an order of magnitude more reduction

of size than is possible to meet using such methods. Once the

realm of lossy compression is entered, a trade-off in size vs.

distortion must be made. The fundamental problem is to

meet the competing goals of accurate approximation and

reduction in storage requirements.

 Compressing an image is significantly different from

compressing raw binary data. Of course, general purpose

compression programs can be used to compress images, but

the result is less than optimal. This is because images have

certain statistical properties which can be exploited by

encoders specifically designed for them. Also, some of the

finer details in the image can be sacrificed for the sake of

saving a little more bandwidth or storage space.

Manuscript received January 7, 2008.

Kamrul Hasan Talukder is a PhD student of the Dept. of Information

Engg. in Hiroshima University, Japan. (E-mail: khtalukder@hiroshima-

u.ac.jp).

Koichi Harada is a professor of the Dept. of Information Engg. in

Hiroshima University, Japan. (e-mail: hrd@hiroshima-u.ac.jp).

 The initial breakthrough in the compression of one-

dimensional signals [1] was easily extended to the image

domain by concatenating image rows or columns into a

single stream. Some techniques such as Shannon Fano

coding [2] and Huffman coding [3] [4] [5] [6] [7] [8] use

redundancy-reduction mechanisms which result in shorter

codes for more frequently appearing samples. It is necessary

to scan the data samples in order to calculate their

probabilities of occurrence and create an exact code.

Adaptive variations of these techniques initially assume

equal probability for all samples and calculate subsequent

probability measures based on a fixed window length prior

to the sample of interest. This allows local changes in

probability measurements and achieves higher global

compression. Run-length coding [9] is another redundancy-

reduction coding method where in a scan-line each run of

symbols is coded as a pair that specifies the symbol and the

length of the run. While most redundancy-reduction methods

are lossless, other arbitrarily lossy coding methods have

achieved higher levels of compression. Transform coding

[10], subband coding [11] [12] [13] [14], vector

quantization [15] [16] [17] and predictive coding [18] [19]

[20] [21] [22] [23] [24] [25] [26] [27] are among the ones

that have achieved high levels of lossy compression. The

major transform coding techniques include cosine/sine [28],

Fourier [29], Hadamard [30], Haar [30] [10], slant [10] and

principal-component (Karhunen-Loeve) transforms [31]. All

transform coding based compression algorithms are pixel-

based approaches which decompose a signal unto an

orthonormal basis to achieve energy compaction. Lossy

compression is then achieved by coding the high energy

components and leaving out the low energy ones. While

some transformations such as the Hadamard and Haar

transforms can be performed relatively quickly, other

transforms are computationally intensive and either require

dedicated hardware or restrictions such as limiting the size

of the transform to a power of two. Recently, second-

generation compression algorithms based on human visual

behavior [32] have been proposed which have the potential

for much higher compression ratios.

 In the recent years, the wavelet transform has emerged as

a cutting edge technology within the field of image analysis.

The wavelet transformations have a wide variety of different

applications in computer graphics including radiosity [33],

multiresolution painting [34], curve design [35], mesh

optimization [36], volume visualization [37], image

searching [38] and one of the first applications in computer

graphics, image compression. The Discrete Wavelet

Transformation (DWT) provides adaptive spatial frequency

Use of Concurrent Wavelet Transform (WT) to

Image Compression and a Verification Analysis

of Communicating Threads for Concurrent WT

Kamrul Hasan Talukder and Koichi Harada

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

resolution (better spatial resolution at high frequencies and

better frequency resolution at low frequencies) that is well

matched to the properties of an HVS.

 However, the DWT is very computationally intensive

process which requires innovative and computationally

efficient method to obtain the image compression. The

concurrent transformation might be a useful solution to this

problem. In this paper, we investigate the concurrency in

wavelet transformation for the compression of image. A

verification of the system is also done.

 Simulation and testing [39] are some of the traditional

approaches for verifying the systems. Simulation and testing

both involve making experiments before deploying the

system in the field. While simulation is performed on an

abstraction or a model of the system, testing is performed on

the actual product. In both cases, these methods typically

inject signals at certain points in the system and observe the

resulting signals at other points. Checking all the possible

interactions and finding potential pitfalls using simulation

and testing techniques is not always possible. Formal

verification [40], an appealing alternative to simulation and

testing, conducts an exhaustive exploration of all possible

behaviors of the system. Thus, when a design is marked

correct by the formal method, it implies that all behaviors

have been explored and the question of adequate coverage

or a missed behavior becomes irrelevant. There are some

robust tools for formal verification such as SMV, SPIN,

COSPAN, VIS etc [40]. The method has been modeled in

SMV and the properties of the system have been verified

formally.

II. COMPRESSION TECHNIQUE

The primary aim of any compression method is generally to

express an initial set of data using some smaller set of data

either with or without loss of information. As for an

example, let we have a function)(xf expressed as a

weighted sum of basis function)(,),........(1 xuxu m as given

below-

 ∑
=

=
m

i

ii xucxf

1

)()(

where mcc,,.........1 are some coefficients. We here will

try to find a function that will approximate)(xf with

smaller coefficients, perhaps using different basis. That

means we are looking for-

 ∑
=

=
m

i

ii xucxf

ˆ

1

)(ˆˆ)(ˆ

with a user-defined error tolerance ε (ε = 0 for lossless

compression) such that mm ˆ> and ε≤−)(ˆ)(xfxf . In

general, one could attempt to construct a set of basis

functions muu ˆ1
ˆ....,,.........ˆ that would provide a good

approximation in a fixed basis.

 One form of the compression problem is to order the

coefficients mcc ,........,1 so that for mm ˆ> , the first

m̂ elements of the sequence give the best approximation

)(ˆ xf to)(xf as measured in the 2
L form.

 Let)(iπ be a permutation of m,.......,1 and)(ˆ xf be a

function that uses the coefficients corresponding to the first

m̂ numbers of the permutation :)(iπ

 ∑
=

=
m

i

ii ucxf
ˆ

1

)()()(ˆ
ππ

The square of the 2
L error in this approximation is given

by-

)(ˆ)(|)(ˆ)()(ˆ)(
2

2
xfxfxfxfxfxf −−=−

 = () () () ()

1 1

m m

i i j j

i m j m

c u c uπ π π π
∧ ∧

= + = +

∑ ∑

 = () () () ()

ˆ ˆ1 1

m m

i j i j

i m j m

c c u uπ π π π
= + = +
∑ ∑

 ∑
+=

=
m

mi

ic

1ˆ

2
)()(π

Wavelet image compression using the 2
L norm can be

summarized in the following ways:

i) Compute coefficients mcc ,......,1 representing an

image in a normalized two-dimensional Haar basis.

ii) Sort the coefficients in order of decreasing

magnitude to produce the sequence)()1(.,,......... mcc ππ .

iii) Given an allowable error ε and starting from

mm =ˆ , find the smallest m̂ for which

 ()∑
+=

≤
m

mi

ic

1ˆ

22
)(επ

 The first step is accomplished by applying either of the

2D Haar wavelet transforms being sure to use normalized

basis functions. Any standard sorting method will work for

the second step and any standard search technique can be

used for third step. However, for large images sorting

becomes exceedingly slow. The procedure below outlines a

more efficient method of accomplishing steps 2 and 3, which

uses a binary search strategy to find a thresholdτ below

which coefficients can be truncated.

 The procedure takes as input a 1D array of coefficients c

(with each coefficient corresponding to a 2D basis function)

and an error tolerance ε. For each guess at a threshold τ the

algorithm computes the square of the 2
L error that would

result from discarding coefficients smaller in magnitude

thanτ . This squared error s is compared to 2ε at each loop

to decide if the search would continue in the upper or lower

half of the current interval. The algorithm halts when the

current interval is so narrow that the number of coefficients

to be discarded no longer changes [41].

procedure Compress (C : array [1. .m] of reals; ε : real)

 τmin←min{|c[i]|}

 τmax←max{|c[i]|}

 do

 τ ←(τmin + τmax)/2

 s ← 0

 for i ← 1 to m do

 if |C [i]| < τ then s ← s + |C [i]|2

 end for

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

 if s < ε2
 then τmin← τ else τmax← τ

 until τmin≈ τmax

 for i ← 1 to m do

 if |C [i]| < τ then C [i] ← 0

 end for

end procedure

The below pseudocode is the fragment for a greedy L
1

compression scheme, which works by accumulating in a 2D

array ∆ [x,y] the error introduced by discarding a coefficient

and checking if this error has exceeded user-defined

threshold.

for each pixel (x,y) do

 ∆ [x,y] ← 0

end for

for i← 1 to m do

'∆ ← ∆ + error from discarding c[i]

 if ∑ <∆
yx

yx

,

'],[ε then

 c[i] ← 0

 ∆ ← ∆ ’

 end if

end for

III. WAVELET TRANSFORMATION FOR IMAGE COMPRESSION

Wavelet transform (WT) represents an image as a sum of

wavelet functions (wavelets) with different locations and

scales [41]. Any decomposition of an image into wavelets

involves a pair of waveforms: one to characterize the high

frequencies corresponding to the detailed parts of an image

(wavelet function) and one for the low frequencies or

smooth parts of an image (scaling function). Fig. 1 shows

two waveforms of a family discovered in 1980 by

Daubechies: the left one can be used to represent smooth

parts of the image and the right one to represent detailed

parts of the image. The two waveforms are translated and

scaled on the time axis to generate a set of wavelet functions

at different locations and on diverse scales. Each wavelet

possesses the same number of cycles, such that, the wavelet

gets longer while frequency reduces. Low frequencies are

transformed with long functions (high scale). High

frequencies are transformed with short functions (low scale).

The analyzing wavelet is shifted over the full domain of the

analyzed function. The result of WT is a set of wavelet

coefficients, which measure the contribution of the wavelets

at these locations and scales.

 WT performs multiresolution image analysis [42]. The

result of multiresolution analysis is simultaneous image

representation on different resolution levels [43]. The

resolution is determined by the specified threshold below

which all details are overlooked. The difference between two

neighboring resolutions represents details. Therefore, an

image can be represented by a low-resolution image

(approximation or average part) and the details on each

higher resolution level. Let us consider a one dimensional

function)(tf . The approximation of the function)(tf at the

resolution level j is defined as)(tf j . At the one level upper

resolution 1+j , the approximation of the function)(tf is

represented by)(1 tf j+ . The details denoted by)(td j are

included in)()()(:)(11 tdtftftf jjjj +=++ . This procedure

is repetitive for several times and the function can be written

as-

∑
=

+=
n

jk

kj tdtftf)()()(

In the same way, the space of square integrable functions

)(2
RL can be treated as a composition of scaling subspaces

jV and wavelet subspaces jW such that the approximation of

)(tf at resolution))((tfj j is contained in jV and the

details)(td j are in jW . jV and jW are defined in terms of

dilates and translates of scaling function Φ and wavelet

function })2({: ZkkxV
j

j ∈−Φ=Ψ and

})2({ ZkkxW
j

j ∈−Ψ= . jV and jW are localized in

scaled frequency octaves by the scale or resolution

parameter j2 and localized spatially by translation k . The

scaling subspace jV must be contained in all subspaces on

higher resolutions (1+⊂ jj VV). The wavelet subspaces jW

fill the gaps between successive scales: jjj WVV ⊕=+1 . We

can start with an approximation on some scale 0V and then

use wavelets to fill in the missing details on finer scales. The

finest resolution level includes all square integrable

functions-

j
j

WVRL
∞

=
⊕+=

0
0

2)(

Since 10 VV ⊂∈Φ , it follows that the scaling function for

multiresolution approximation can be found out as the

solution to a two-scale dilational equation-

∑ −Φ=Φ
k

L kxkax)2()()(

for some suitable sequence of coefficients)(kaL . Once it

has been found, an associated mother wavelet is given by a

similar looking formula-

∑ −Φ=Ψ
k

H kxkax)2()()(

 One of the big discoveries for wavelet analysis was that

perfect reconstruction filter banks could be formed using the

coefficient sequences)(kaL and)(kaH as shown in Fig. 2.

The input sequence x is convolved with high-pass (HPF) and

low-pass (LPF) filters)(kaH and)(kaL and each result is

Wavelet function psi

Scaling function phi

Fig. 1. Scaling and wavelet function.

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

downsampled by two, yielding the transform signals Hx and

Lx . The signal is reconstructed through upsampling and

convolution with high and low synthesis filters)(ksH and

)(ksL . For properly designed filters, the signal x is

reconstructed exactly (xy =).

 The choice of filter not only decides if the perfect

reconstruction is possible or not, it also determines the shape

of wavelet to be used to perform the analysis. By cascading

the analysis filter bank with itself several times, a digital

signal decomposition with dyadic frequency scaling known

as DWT can be formed. An efficient way to implement this

scheme using filters was developed by Mallat [43]. The new

twist that wavelets bring to filter banks is connection

between multiresolution analysis and digital signal

processing performed on discrete, sampled signals.

 The DWT for an image as a 2D signal can be obtained

from 1D DWT. The easiest way for finding scaling and

wavelet function for 2D is by multiplying two 1D functions.

The scaling function for 2D DWT can be obtained by

multiplying two 1D scaling functions:)().(),(yxyx ΦΦ=Φ .

Wavelet functions for 2D DWT can be found by multiplying

two wavelet functions or wavelet and scaling function for 1D

analysis. For the 2D case, there exist three wavelet functions

that scan details in horizontal)()(),(
1

yxyx ΨΦ=Ψ ,

vertical)()(),(2
yxyx ΦΨ=Ψ , and diagonal directions

)()(),(
3

yxyx ΨΨ=Ψ . This may be represented as a four

channel perfect reconstruction filter bank as shown in Fig. 3.

Now, each filter is 2D with the subscript indicating the type

of filter (HPF or LPF) for separable horizontal and vertical

components. The resulting four transform components

consist of all possible combinations of high and low pass

filtering in the two directions. By using these filters in one

stage, an image can be decomposed into four bands. There

are three types of detail images for each resolution:

horizontal (HL), vertical (LH), and diagonal (HH). The

operations can be repeated on the low low (LL) band using

the second stage of identical filter bank. Thus, a typical 2D

DWT, used in image compression, generates the hierarchical

structure as shown in Fig. 3(b).

 Wavelet multiresolution and direction selective

decomposition of images is matched to an HVS [44]. In the

spatial domain, the image can be considered as a

composition of information on a number of different scales.

A wavelet transforms measures gray-level image variations

at different scales. In the frequency domain, the contrast

sensitivity function of the HVS depends on frequency and

orientation of the details.

IV. CONCURRENCY IN WAVELET TRANSFORMATION FOR

COMPRESSION OF IMAGE

We know that wavelet transformation entails transformation

of image data horizontally first and then vertically. Here we

divide the image plane into n horizontal sections which are

horizontally transformed concurrently. After then the image

is divided into n vertical sections which are then vertically

transformed concurrently. It is not a must that the number of

horizontal sections is equal to the number of vertical

sections.

 But the problem lies in the concurrency. The system just

proposed lets the possibility for vertical transformation to

begin on some vertical sections before horizontal

transformation in all sections is completed. Vertical sections

that are already horizontally transformed can be vertically

transformed. That allows the possibility for threads that

completed horizontal transformation to go on to vertical

transformation without having to wait on other threads to

complete horizontal transformation. Before a vertical section

is available for transformation, one condition that must be

met is that all horizontal sections transform n size data

horizontally such that an n wide vertical section is available

with all data points already horizontally transformed.

 The assertion for the verification is that at any time, the

vertical transformation does not start on a vertical section

that is not horizontally transformed.

A. Communication among threads

A message passing library providing two levels of

abstraction namely channel and topology has been

developed, for the communication that occurs among

threads. These message passing classes can be the part of a

larger system that provides a class library for threads, thread

synchronization, and message passing. We have used the

Message Sequence Charts (MSCs) to visualize the

interactions among the threads.

Message Sequence Charts (MSCs):

Message Sequence Charts (MSCs) are an attractive visual

formalism that is often used in the early stage of system

design to specify the system requirements. A main advantage

 Fig. 2. Two-channel Filter Bank

LS

HS
Ha

La 2↓

2↓ 2↑

2↑
LX

HX

⊕
y

x

Fig. 3. One Filter Stage in 2D DWT

Horizontal

Vertical

LL

LH

HL

HH
 2

 2

 2

 2

Image corresp

onding to resolu

 tion level i

Detail

Images at

resolution

level i

Image

 Corresp

onding

 to resolution

level i-1

 aL

 aH

 2

 2 aL

 aH

 aL

 aH

(a)

LL

LH3

HL3

HH3

LH2

HL2

HH2

LH1

HL1

HH1

(b)

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

of an MSC is its clear graphical layout which immediately

gives an intuitive understanding of the described system

behavior [45]. MSCs are particularly suited to describe the

distributed telecommunication software [46] [47]. The wide

ranges of use of MSCs are usually in the distributed systems

and in a number of software methodologies [47] [48] [49].

In a distributed system, MSCs mainly concentrate on the

exchange of messages among various processes and their

environments as well as some internal actions in these

processes. MSCs are also known as object interaction

diagrams, timing sequence diagrams and message flow

diagrams.

 In MSCs, the executing processes are shown by the

vertical lines; these processes communicate through an

explicit message passing (send-receive) among them shown

by the horizontal or downward sloped arrow lines. The head

of the arrow indicates to the event message-receiving and

the opposite end indicates to the event message-sending.

Each send-receive event (horizontal or downward sloped

line) is labeled by the message identifier. For more clear

understanding the MSC may also contain necessary data

attributes as part of the message exchanged. A simple MSC

is shown in the following Fig. 4 where there are two

processes namely ‘CPU’ and ‘Memory’.

Time flows downward in each vertical line of MSCs. So, in

this MSC, the sequences of actions in process ‘CPU’ and

‘Memory’ are {sending request, receiving +ve

acknowledgement, sending address a and receiving value of

address a} and {receiving request, sending +ve

acknowledgement, receiving address a, an internal action

)(: alookupv and sending value v} respectively. These

orderings cannot be violated in either of the processes i.e. a

total ordering of the events along every process is assumed.

Every process of the MSC is assumed to contain a message

queue to store the incoming messages and another message

queue to store the outgoing messages. Each MSC is

associated with a ‘condition’. The MSC is executed when its

‘condition’ is true. The ‘condition’ is composed by

predicates over the variables of the processes in the MSC

connected by the logical connectives. The ‘condition’ of the

above MSC is readyMemorystatusCPU .. ∧ . The variable

status is a boolean variable of the process CPU which is true

when the CPU is ready to interact with Memory. Similarly,

the variable ready is a boolean variable of the process

Memory which is true when it can serve the request of the

CPU.

 Let us discuss MSCs with its formal definition. Assume

that P is the finite set of processes, M is the finite set of

messages and A is the finite set of internal actions. For each

Pp ∈ , a set of events the process p takes part in is defined

by { }∑ ∈∈≠><=
p

MmPqqpmqp ,,,!

{ }MmPqqpmqp ∈∈≠>< ,,,?U

{ }Aaap ∈>< ,U .The meanings of >< mqp ,! , >< mqp ,?

and >< ap, are ‘process p sends message m to process

q ’, ‘process p receives message m from process q ’ and

‘process p performs internal action a ’ respectively. We set

pPp ∑=∑ ∈U and let βα , range over ∑ . Assume a set of

channel (){ }qpqpCh ≠= , and let dc, range over Ch . A

∑ -labeled poset is a structure ()λ,, ≤= ES where ()≤,E is

a poset and ∑→E:λ is a labeling function. Here E is a

finite set of events and ≤ is a partial order which is

reflexive, transitive and anti-symmetric. For any event

{ }eeeeEe ≤=↓∈ 11, where ee ≤1 means that the event

1e occurs before event e . For Pp ∈ , and ∑∈a , let

{ }pp eeE ∑∈=)(λ and { }aeeEa ∈=)(λ . For channel c, let

the relation () qpeqpeeeRc ?)(,!)(,{ 11 === λλ and

}.?1! qpqp EeEe II ↓=↓ For a process Pp ∈ , the

relation is () ≤×= Ippp EER The Rch-edge across the

processes is depicted by the horizontal or downward sloped

edge.

 Thus, an MSC (over P) is a finite ∑-labeled poset

),,(λ≤= ES that satisfies the following conditions [50]:

a) For every Pp ∈ , Rp is a linear order.

b) For every Pqp ∈},{ and qp ≠ , pqqp EE ?! = i.e. no

lifeless communication edge exists in MSC that means the

number of sent messages equals the number of received

messages.

c) *)(Chp RR U≤= where pPpp RR ∈= U and

cChcCh RR ∈= U i.e. the partial order of MSC is its visual

order; deduced by linear orders of participating processes

and the sent-receive order of the messages.

Modeling the Communications:

In order to establish the communication between multiple

threads, we require some work to set up and maintain the

communication channels. There are several ways to

communicate between threads, with some being more

efficient than others.

 One of the simplest ways to communicate state

information between threads is to use a shared object or

shared block of memory. A shared object requires very little

setup—all we have to do is make sure each thread has a

pointer to the object. The object contains whatever custom

information we need to communicate between threads, so it

should be very efficient.

 The second option is the port-based communication.

Ports offer a fast and reliable way to communicate between

threads and processes on the same or different computers.

Ports are also a fairly standard form of communication on

many different platforms and their use is well established. In

Mac OS X, a port implementation is provided by the Mach

kernel. These Mach ports can be used to pass data between

processes on the same computer.

+ve acknowledgement

e22

e23

v:=lookup(a)

CPU Memory
request

address(a)

value(v)

e20

e21

e10

e11

e12

e13

Fig. 4: A Message Sequence Chart

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

 The third way is the use of the message queues. The

message queues offer an easy-to-use abstraction for thread

communication. A message queue is a first-in, first-out

(FIFO) queue that manages incoming and outgoing data for

the thread. A thread can have both an input and an output

queue. The input queue contains work the thread needs to

perform, while the output queue contains the results of that

work.

 To establish communication between the threads, we

model it as a queue of message, which is the the integral part

of the threads. The following Fig. 5 shows the modeling of

the channel as a queue of message from thread i to thread

i+1. The message is pushed through the tail of the queue

from the thread i side and the message is received from the

head of the queue at the thread i+1 side. Fig. 6 shows the

modeling of the communication channel as a queue for the

message from thread i+1 to thread i. The message is sent

from the thread i+1 side and it is received at the head of the

queue at the thread i side.

 Fig. 5 Channel for message from thread i to thread i+1

The communication among threads is specified by a

grammar. The syntax for it is formulated and is tabulated in

Table 1.

B. Model Verification

Let us first be familiar with transition system and Kripke

Structure before we define model. A transition system is a

structure),,(0 RSSTS = where, S is a finite set of states;

SS ⊆0 is the set of initial states and SSR ×⊆ is a

transition relation which must be total i.e. for every s in S

there exists 1s in S such that),(1ss is in R

()()RssSsSs ∈∃∀ ∈∈ 1,,
1

. And),,,,(0 LAPRSSM = is a

Kripke Structure; where),,(0 RSS is a transition system. AP

is a finite set of atomic propositions (each proposition

corresponds to a variable in the model) and L is a labeling

function. It labels each state with a set of atomic

propositions that are true in that state. The atomic

propositions and L together convert a transitions system into

a model.

 The foremost step to verify a system is to specify the

properties that the system should have. For example, we may

want to show that some concurrent program never

deadlocks. These properties are represented by temporal

logic. Computation Tree Logic (CTL) is one of the versions

of temporal logic. It is currently one of the popular

frameworks used in verifying properties of concurrent

systems [51]. Once we know which properties are important,

the second step is to construct a formal model for that

system. The model should capture those properties that must

be considered for the establishment of correctness. Model

checking includes the traversing the state transition graph

(Kripke Structure) and of verifying that if it satisfies the

formula representing the property or not, more concisely, the

system is a model of the property or not.

thri_tail

message sent

at this point

Thread i (thri) Side

 thri_tail+1

+1

 thri+1_head+1

Thread i+1 (thri+1) Side

thri+1_head

message recei

ved here

thri_head

message

received at

this point

Thread i (thri) Side

 thri_head+1

thri+1_tail+1

Thread i+1(thri+1)

Side
thri+1_tail

message sent at

this point

Fig. 6 Channel for reply from thread i+1 to thread i

S → THREAD thread-name { thr-dec-part trans-sch-

dec-part }

thr-dec-part → thr-dec-part thr-dec | thr-dec

thr-dec → PROCESS process-name {var-dec-part

equation-part }

type → basic-type | enum-type | array-type

basic-type → range-type | BOOLEAN

enum-type → { id-list }

id-list → identifier (, identifier)+

array-type → ARRAY range-type OF basic-type

range-type → interger-const .. interger-const

var-dec-part → var-dec-part var-dec; | ε

var-dec → type-id : id-list

equation-part → EQUATION id-list;

trans-sch-dec-part → trans-sch-dec trans-sch-dec-part | trans-

sch-dec

trans-sch-dec → SCHEME trans-schm-name { trans-list }

trans-list → trans-dec trans-list | trans-dec

trans-dec → TRANSACTION trans-name {

 AGENTS { agent-list } condition-section ; }

 | TRANSACTION trans-name { AGENTS { agent-list }

condition-section → CONDITION condition ;

Table 1: The Syntax

agent-list → agent-list agent | agent

agent → process-name : event-list

event-list → event , event-list | event ;

event → send(mesg-id, var) | send(mesg-id, const,

type) | recv(process-name.mesg-id) | {action}

action-atom → simple-stmt ; | if-stmt

action → action action-atom | action-atom

simple-stmt → var := expr | var :=DIN

expr → expr [* | / | &] F | F

F → F + G | F - G | F | G

G → G mod H | H

H → H RelOp I | I

I → ~I | -I | (expr) | var | const

const → integer-const | boolean-const

condition → condition & condition-atom | condition-

atom | (condition-atom)

condition-atom → ~prop | prop

prop → prop or prop-atom | prop-atom

prop-atom → scoped-var relop const | scoped-var relop

scoped-var | scoped-var

relop → = | < | > | ≤ | ≥ | !=

if-stmt → IF expr { action } | IF expr action-atom | IF

expr {action}ELSE {action}

var → identifier | identifier[identifier] | identifier

[integer-const]

scoped-var → process-name.var

thread-name → identifier

process-name → identifier

trans-name → identifier

mesg-id → identifier

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

 Each CTL formula is either true or false in a given state

of the Kripke Structure. Its truth is evaluated from the truth

of its sub-formulae in a recursive fashion, until one reaches

atomic propositions that are either true or false in a given

state. A formula is satisfied by a system if it is true for all the

initial states of the system. Mathematically, say, a Kripke

Structure),,,,(0 LAPRSSK = (system model) and a CTL

formula Φ (specification of the property) are given. We

have to determine if Φ=K holds (K is a model of Φ) or

not. Φ=K holds iff Φ=0, sK for every 00 Ss ∈ . If the

property does not hold, the model checker will produce a

counter example that is an execution path that can not satisfy

that formula.

 Atomic propositions, standard boolean connectives of

propositional logic (e.g., AND, OR, NOT), and temporal

operators all together are used to build the CTL formulae.

Each temporal operator is composed of two parts: a path

quantifier (universal (A) or existential (E)) followed by a

temporal modality (F, G, X, U) and are interpreted relative

to an implicit “current state”. There are generally many

execution paths (the sequences) of state transitions of the

system starting at the current state. The path quantifier

indicates whether the modality defines a property that should

be true of all those possible paths (denoted by universal path

quantifier A) or whether the property needs only hold on

some path (denoted by existential path quantifier E). The

temporal modalities describe the ordering of events in time

along an execution path and have the following meaning.

• F Ξ (reads ‘ Ξ ’ holds sometime in the future'') is true

in a path if there exists a state in that path where

formula ‘ Ξ ’ is true.

• G Ξ (reads ‘ Ξ ’ holds globally'') is true in a path if

‘ Ξ ’ is true at each and every state in that path.

• X Ξ (reads ‘ Ξ ’ holds in the next state'') is true in a

path if ‘ Ξ ’ is true in the state reached immediately

after the current state in that path.

• Ξ U Ω (reads ‘ Ξ ’ holds until ‘ Ω ’ holds) is true in

a path if ‘ Ω ’is true in some state in that path, and

‘ Ξ ’ holds in all preceding states.

The semantics of the CTL operators are below:

•)(, Φ= EXsK there exists 1s such that 1ss →

(),(1ssR) and Φ=1, sK . It means that s has a

successor state 1s s’ at which Φ holds.

•),(, 21 ΦΦ= EUsK iff there exists a path

..........., 10 ssL = from s and 0≥k such that:

2)(, Φ=kLK and if kj <≤0 , so 1)(, Φ=jLK .

•),(, 21 ΦΦ= AUsK iff for every path

..........., 10 ssL = from s there exist 0≥k such that:

2)(, Φ=kLK and if kj <≤0 , so 1)(, Φ=jLK .

•)(ΦAX : It is not the case there exists a next state at

which Φ does not hold i.e. for every next state

Φ holds.

•)(ΦEF : There exists a path L from s and 0≥k

such that: Φ=)(, kLK .

•)(ΦAG : It is not the case there exists a path L from

s and 0≥k such that: Φ=)(, kLK i.e. for every

path L from s and every 0≥k ; Φ=)(, kLK .

•)(ΦAF : For every path L from s, there exists

0≥k such that: Φ=)(, kLK .

•)(ΦEG : It is not the case that for every path L

from s there is a 0≥k such that Φ=)(, kLK . It

means that there exists a path L from s such that, for

every 0≥k : Φ=)(, kLK .

C. Verification

Despite tremendous advances in constraint-random stimulus

generation and coverage-based verification, simulation-

based verification cannot effectively find all the potential

issues within today’s complex designs. This is the main

reason that designers complement their simulation-based

verification methodology with formal verification.

 We use the SMV [52] as the verification tool. Here the

number of threads is defined as SIZE = 8. Using the loop

from 0 to 7 we verify if any of the threads starts vertical

transformation while some other thread(s) is/are still on the

transformation of the horizontal part of the same section

(unsafe). It is found that each of the threads is in the safe

state (desired) all the time. It means that in all states of the

transition system it is true that no vertical transformation

gets started until the all the horizontal section is completed.

This specification is the most important one that we must get

true. The part of the SMV code is shown in Fig. 7 and the

snapshot of the verification result is shown in Fig. 8.

for (index=0;index<SIZE;index=index+1){

 loc[index],idle[index]:boolean;

 idle[index]:=free & freed=index;

 loc[index]:=alloc & pos_ack & allocd=index;

 safe[index]:SPEC AG(A(~idle[index] U loc[index]));

}

Fig.7 Part of the SMV Code

Fig. 8 Verification Results

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

V. CONCLUSION

The concept of compression, the use of wavelet for the

image compression, the possibility of concurrency in the

wavelet transformation with a model, the communication

among different concurrent threads for wavelet

transformation and the verification result of the model are

presented here. The system is modeled in SMV and verified

by SMV that automatically creates a formal environment to

efficiently solve the design checking tasks. One of the

important properties, in the context of the concurrent

wavelet transformation, is that at any time, the vertical

transformation does not start on a vertical section that is not

fully horizontally transformed. We find that all the

communicating threads are in the safe states all the time. At

present, the system has two drawbacks. One is, in SMV, the

smaller size of the queue shared by different threads and the

other is the smaller number of participating threads. In this

respect, we plan to model it in SPIN, another verification

tool, in future, to solve these problems.

REFERENCES

[1] R. Williams. Adaptive Data Compression. Kluwer Academic

Publishers, 1991.

[2] C. Shannon. A mathematical theory of communication. Bell Systems

Technical Journal, 27:623-656, 1948.

[3] N. Faller. An adaptive system for data compression. In Proceedings

of the Asilomar Conference on Circuits, Systems and Computers,

pages 593-597, 1973.

[4] R. Gallager. Variations on a theme by Huffman. IEEE Transactions

on Information Theory, 24:668-674, 1978.

[5] D. Knuth. Optimal binary search trees. Acta Informatica, 1:14-25,

1971.

[6] J. Vitter. Design and analysis of dynamic Huffman codes. Journal of

the Association for Computing Machinary, 34:825-845, 1987.

[7] J. Ziv and A. Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory, 23:337-

343, 1977.

[8] J. Ziv and A. Lempel. Compression of individual sequences via

variable-rate coding. IEEE Transactions on Information Theory,

24:530-536, 1978.

[9] T. Huang. Run length coding and its extensions. In T. Huang and

O. Tretiak, editors, Picture Bandwidth Compression, pages 231-264.

Gordon and Breach, 1972.

[10] A. Jain. Fundamentals of Digital Image Processing. Prentice-Hall,

1989.

[11] J. Lim. Two-Dimensional Signal and Image Processing. Prentice-

Hall, 1990.

[12] D. O'Shaughnessy. Speech Communication: Human and Machine.

Addison-Wesley, 1987.

[13] M. Vetterli. Multi-dimensional sub-band coding: Some theory and

algorithms. Signal Processing, 6:97-112, 1984.

[14] J. Woods and S. O'Niel. Subband coding of images. IEEE

Transactions on Acoustics, Speech and Signal Processing, 34:1278-

1288, 1986.

[15] J. Lim. Two-Dimensional Signal and Image Processing. Prentice-

Hall, 1990.

[16] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer

design. IEEE Transactions on Communications, 28:84-95, 1980.

[17] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech

coding. Proceedings of the IEEE, 73:1551-1558, 1985.

[18] J. Abate. Linear adaptive delta modulation. Proceedings of the IEEE,

55:298-308, 1967.

[19] S. Alexander and S. Rajala. Image compression results using LMS

adaptive algorithm. IEEE Transactions on Acoustics, Speech and

Signal Processing, 33:712-717, 1985.

[20] C. Cutler. Differential quantization of communication signals. U.S.

Patent 2 605 361, 1952.

[21] A. Habibi. Survey of adaptive image coding techniques. IEEE

Transactions on Communications, 25:1275-1284, 1977.

[22] N. Jayant. Adaptive delta modulation with a one-bit memory. Bell

Systems Technical Journal, 49:321-343, 1970.

[23] A. Kolmogorov. Interpolation and extrapolation of stationary random

series. Journal of the Soviet Academy of Science, pages 3-14, 1941.

[24] T. Lei, N. Scheinberg, and D. Schilling. Adaptive delta modulation

system for video encoding. IEEE Transactions on Communications,

25:1302-1314, 1977.

[25] J. O'Neal. Predictive quantization system (differential pulse code

modulation) for the transmission of television signals. Bell Systems

Technical Journal, 45:689-721, 1966.

[26] P. Pirsch. Adaptive intra/interframe DPCM coder. Bell Systems

Technical Journal, 61:747-764, 1982.

[27] C. Song, J. Garondick, and D. Schilling. A variable-step-size robust

delta modulator. IEEE Transactions on Communications, 19:1033-

1044, 1971.

[28] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine transform.

IEEE Transactions on Computers, 23:90-93, 1974.

[29] G. Anderson and T. Huang. Piecewise Fourier transformation for

picture bandwidth compression. IEEE Transactions on

Communications, 19:133-140, 1971.

[30] B. Fino. Relations between Haar and Walsh/Hadamard transforms.

Proceedings of the IEEE, 60:647-648, 1972.

[31] H. Andrews. Computer Techniques in Image Processing. Academic

Press, 1970.

[32] A. Mazzarri and R. Leonardi. Perceptual embedded image coding

using wavelet transforms. In Proceedings of the International

Conference on Image Processing, volume I, pages 586-587, 1995.

[33] Gortler. S., Schröder, P., Cohen, M., and Hanrahan, P., "Wavelet

Radiosity", in Proc. SIGGRAPH, 1993, pp. 221-230.

[34] Berman, D., Bartell, J. and Salesin, D., "Multiresolution Painting and

Compositing", in Proc. SIGGRAPH, 1994, pp. 85-90.

[35] Finkelstein. A. and Salesin, D., "Multiresolution Curves", in Proc.

SIGGRAPH, 1994, pp. 261-268.

[36] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsberry, M. and

Stuetzle, W., "Multiresolution Analysis of Arbitrary Meshes", in

Proc. SIGGRAPH, 1995, pp. 173-182.

[37] Lippert, L. and Gross, M., "Fast Wavelet Based Volume Rendering

by Accumulation of Transparent Texture Maps", in Proc.

EUROGRAPHICS, 1995, pp. 431-443.

[38] Jacobs, C., Finkelstein, A. and Salesin, D., "Fast Multiresolution

Image Querying", in Proc. SIGGRAPH, 1995, pp. 277-286.

[39] Myers, Glenford J. “The Art of Software Testing”, John Wiley and

Sons. ISBN 0-471-04328-1, 1979.

[40] Edmund M. Clakre, Jr. Oma FrumBerg and Doron A. Paled, “Model

Checking”, The MIT Press, Second Printing, 2000.

[41] Eric J. Stollnitz, Tony D. Derose and David H. Salesin, “Wavelets for

Computer Graphics”, Morgan Kaufmann Publishers, Inc., San

Francisco.

[42] S. Mallat, “A theory of multiresolution signal decomposition: The

 wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell.,

 vol. 11, pp. 674–693, July 1989.

[43] S. Mallat, “Multifrequency channel decomposition of images and

wavelet models,” IEEE Trans. Acoust., Speech, Signal Processing,

vol. 37, pp. 2091-2110, 1989.

[44] S. Mallat, “Wavelets for a vision” Proc. IEEE, vol. 84, pp. 604–614,

1996.

[45] Ekkart Rudolph, Peter Graubmann and Jens Grabowski: Tutorial on

Message Sequence Charts. MSC Tutorial of the 7th SDL Forum,

September 1995, Norway.

[46] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).

ITU-TS, Geneva (1997).

[47] Rudolph, E., Graubmann, P. and Grabowski, J.: Tutorial on Message

Sequence Charts. In Computer Networks and ISDN Systems-SDL

and MSC, Volume 28 (1996).

[48] Booch, G., Jacobson, I. and Rumbaugh, J.,: Unified Modeling

Language User Guide. Addison-Wesley (1997).

[49] Harel, D. and Gery, E.: Executable object modeling with statecharts.

IEEE Computers, July 1997, pp. 31-42.

[50] Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar and

P.S. Thiagarajan: Regular Collections of Message Sequence Charts.

Published in Springer Lecture Notes in Computer Science, pp. 405-

414. In Mathematical Foundation of Computer Science (MFCS).

[51] Michael Huth, “Logic in Computer Science: tool based modeling and

reasoning about systems”, Proceedings of the International

Conference on Frontiers in Education 2000, Kansas City, October

2000.

[52] Cadence Berkeley Laboratories, Free download from the website:

http://www.kenmcmil.com/smv.html, Califonia, USA. SMV Model

Checker, 1999.

Engineering Letters, 16:2, EL_16_2_04
__

(Advance online publication: 20 May 2008)

